Spatio-Temporal Expectile Regression Models Supplementary Material

Elmar Spiegel ${ }^{1,2}$, Thomas Kneib ${ }^{1}$, Fabian Otto-Sobotka ${ }^{3}$
${ }^{1}$ University of Goettingen
${ }^{2}$ Helmholtz Zentrum München
${ }^{3}$ Carl von Ossietzky University Oldenburg

1 Remarks

In this supplementary material plots that did not fit into the paper are displayed. These are the results of the simulation study for more asymmetry parameters and also for two numbers of observations (5000 as in the paper and 2000), the results of the application for more asymmetry parameters and the daily effect for four German cities which are mentioned in the paper. As in the paper it starts with the simulation study and continues with the application.

For explanations of the other supplementary material, i.e. the code and the data, please see the README_SpatTemp.pdf file.

2 Simulation Study

Figure 1: PMWSE of the simulation study for $\mathrm{n}=2000$. On the left side of each plot the models with heteroscedastic errors are displayed and homoscedastic errors are on the right. For each data setting (1 or 2) the smoothing parameter selections are placed next to each other. The ranges of the y -axis are fixed to 0.30 .

Figure 2: PMWSE of the simulation study for $n=5000$. On the left side of each plot the models with heteroscedastic errors are displayed and homoscedastic errors are on the right. For each data setting (1 or 2) the smoothing parameter selections are placed next to each other. The ranges of the y-axis are fixed to 0.10 .

3 Application

3.1 Temporal Trend per City

- Main -- Hamburg .-. Berlin -- Cologne .-. Munich

Figure 3: Temporal trend per city of the model based on trivariate splines.

3.2 Application for more asymmetry parameters

3.2.1 Model based on trivariate splines

$$
\begin{array}{|c}
-1 \%-2 \%-5 \%-10 \%-20 \%-50 \%-80 \%-90 \%-95 \%-98 \%-99 \% \\
\hline
\end{array}
$$

Figure 4: Main effects for elevation, day and year (including intercept). Based on the model using trivariate splines.

Figure 5: Spatial Effect for the 31st of January for several asymmetry parameters. The predictions are without the intercept! The range is here between -18 and 18 and not -15 to 15 as in the paper, but the steps are still $1^{\circ} C$. Based on the model using trivariate splines.

31Jul 01 \%

31Jul 10%

31Jul 80 \%

31Jul 02 \%

31Jul 20 \%

31Jul 90%

31Jul 05%

31Jul 50 \%

31Jul 95 \%

31Jul 98%

31Jul 99 \%

Figure 6: Spatial Effect for the 31st of July for several asymmetry parameters. The predictions are without the intercept! The range is here between -18 and 18 and not -15 to 15 as in the paper, but the steps are still $1^{\circ} \mathrm{C}$. Based on the model using trivariate splines.

3.2.2 Model based on GMRF

- $1 \%-2 \%-5 \%-10 \%-20 \%-50 \%-80 \%-90 \%-95 \%-98 \%-99 \%$

Figure 7: Main effects for elevation, day and year (including intercept). Based on the model using GMRF.

31Jan 10 \%

31Jan 50 \%

31Jan 95 \%

31Jan 98 \%

31Jan 99 \%

O Hamburg }\diamond\mathrm{ Berlin }\triangle\mathrm{ Cologne }\nabla\mathrm{ Munich
O Hamburg }\diamond\mathrm{ Berlin }\triangle\mathrm{ Cologne }\nabla\mathrm{ Munich

Figure 8: Spatial Effect for the 31st of January for several asymmetry parameters. The predictions are without the intercept! The range is here between -18 and 18 and not -15 to 15 as in the paper, but the steps are still $1^{\circ} \mathrm{C}$. Based on the model using GMRF.

Figure 9: Spatial Effect for the 31st of July for several asymmetry parameters. The predictions are without the intercept! The range is here between -18 and 18 and not -15 to 15 as in the paper, but the steps are still $1^{\circ} \mathrm{C}$. Based on the model using GMRF.

