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Abstract

Common generalized linear models (GLM) depend on several assumptions: (i) the specified
linear predictor, (ii) the chosen response distribution that determines the likelihood and (iii) the
response function that maps the linear predictor to the conditional expectation of the response.
Generalized additive models (GAM) provide a convenient way to overcome the restriction to
purely linear predictors. Therefore the covariates may be included as flexible nonlinear or
spatial functions to avoid potential bias arising from misspecification. Single index models, on
the other hand, utilize flexible specifications of the response function and therefore avoid the
deteriorating impact of a misspecified response function. However, such single index models are
usually restricted to a linear predictor and aim to compensate for potential nonlinear structures
only via the estimated response function. We will show that this is insufficient in many cases
and present a solution by combining a flexible approach for response function estimation using
monotonic P-splines with additive predictors as in GAMs. Our approach is based on maximum
likelihood estimation and also allows us to provide confidence intervals of the estimated effects.
To compare our approach with existing ones, we conduct extensive simulation studies and
apply our approach on two empirical examples, namely the mortality rate in São Paulo due
to respiratory diseases based on the Poisson distribution and credit scoring of a German bank
with binary responses.
Keywords: flexible response function, generalized additive model, monotonic P-spline, single
index model

1 Introduction

In standard generalized linear models (GLM) (McCullagh and Nelder, 1989), we assume that
the conditional distribution of the observed responses yi given covariates xi for observations i =
1, . . . , n belongs to the simple exponential family and that the conditional expectation of the
response can be related to the linear predictor x>i β via

µi = E[Yi|xi] = h(x>i β)

where β comprises the regression coefficients and h(·) is a monotonically increasing, pre-specified
response function. As a consequence, the expected value µi = E[Yi|xi] depends not only on the
predictor ηi = x>i β, but also on the choice of the response function h and misspecification may
result in biased and misleading estimates. As a motivating example, consider binary responses
where the GLM can be derived from a latent model specification for the unobserved, continuous
response y∗i = x>i β−εi, where εi follows a given distribution with cumulative distribution function
(CDF) F (εi ∼ F ). The latent response is then related to the observed, binary responses via the
thresholding mechanism

yi =

{
1, if y∗i > 0
0, if y∗i ≤ 0

and one can show that E[Yi|xi] = F (x>i β) such that the CDF of the latent error term determines
the response function (Cameron and Trivedi, 2005).
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To achieve additional flexibility, many previous extensions of GLMs dealt with replacing the linear
predictor with an additive version that accommodates for example nonlinear effects of continu-
ous covariates, spatial effects, random effects or complex types of interactions (see Wood, 2017;
Fahrmeir et al., 2013, for overviews). However, as demonstrated for the specific case of binomial
GLMs, the quality of estimates and predictions depends not only on the predictor specification
but also on the chosen response function. This problem is well known in the literature (see for
example Czado and Santner, 1992). The most well known model class to deal with it are single
index models as introduced by Ichimura (1993), where kernel density estimates are used to determ-
ine the response function. A similar design was used by Klein and Spady (1993) and Weisberg
and Welsh (1994) were among the first to name this the missing link problem. Others like Car-
roll et al. (1997) and Wang et al. (2010) developed single index models further and applied them
to the partial linear single index framework. Alternatively, Koenker and Yoon (2009) proposed
to use more flexible, but still parametric response functions like the Pregibon response function.
Friedman and Stuetzle (1981) also describe a method to estimate a nonlinear relationship between
the response and the predictor. The kernel methods based on Ichimura (1993) all have the disad-
vantage to regularly estimate too flexible response functions which are often quite wiggly and do
not ensure monotonicity of the response function. To stabilize the estimation, approaches based
on penalized splines have been introduced by Yu and Ruppert (2002), Muggeo and Ferrara (2008)
and Yu et al. (2017). They penalize the flexibility of the response function estimate such that
the result is a smooth curve. The penalized estimation procedure of the response function has
also been transferred to the boosting framework (Bühlmann and Hothorn, 2007) by Leitenstorfer
and Tutz (2011) and Tutz and Petry (2012). However, these methods are only defined for linear
predictors, while nonlinear effects may still occur even after considering a flexible specification for
the response function. In our simulation study (Section 4) we show that classical single index
models with linear predictors are not able to capture nonlinear covariate effects.
Novel approaches in this direction comprise Marx (2015) and Tutz and Petry (2016). While Marx
(2015) defines his algorithm only for continuous responses and puts more emphasis on defining
varying coefficient surfaces, Tutz and Petry (2016) build an additive version of Tutz and Petry
(2012) with a particular focus on the variable selection enabled in the boosting framework. In
contrast, we will combine the framework of single index models based on P-splines as described in
Muggeo and Ferrara (2008) with the generalized additive model (GAM) (Hastie and Tibshirani,
1986) based on maximum likelihood (ML) methods. This has several advantages:

� We can readily combine the flexibility of GAMs in terms of predictor specifications with the
data-driven determination of the shape of the response function.

� Ensuring monotonicity of the response function is easily integrated in the estimation frame-
work, which also ensures that we obtain interpretable covariate effects.

� Embedding estimation in the ML framework allows us to also derive corresponding inferential
statements, for example concerning the standard errors of estimated effects.

� The approach can be implemented based on existing software and in particular the R-package
mgcv.

The rest of the paper is structured as follows: First, we give a short overview of GAMs in Section 2.
In Section 3, we summarize the approach of Muggeo and Ferrara (2008) and introduce our new
method including semiparametric predictors. Afterwards we report on our simulation study in
Section 4 to compare our new method with previous suggestions. Furthermore, we introduce data
on mortality rates in São Paulo due to respiratory diseases and credit scoring of a German bank,
as applications in Section 5. The paper concludes with a discussion in Section 6.
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2 Additive Models

2.1 Generalized Additive Models

Standard GLM depend on the assumption that the data follow a distribution which is member of
the exponential family. Thus the corresponding density may be written as

f(yi, θi, φ) = exp

(
yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
,

where θi are the unknown parameters and a, b, c are fixed functions depending on the specific
distribution. Furthermore the moments of the distribution are given as

E(Yi|xi) = µi = b′(θi) & Var(Yi|θi) = a(φ)b′′(θi).

In a standard GLM, it is also assumed that the expected values may be modeled as

µi = h(ηi),

where ηi = x>i β is the linear predictor. However, restricting the predictor to be a linear com-
bination of the covariates is often not sufficient. Therefore semiparametric predictors have been
introduced (see for example Hastie and Tibshirani, 1986; Wood, 2017; Fahrmeir et al., 2013) that
combine linear effects of some covariates xi1, xi2, . . . with smooth, nonlinear effects of continuous
covariates xir, xir+1, . . . leading to a predictor of the form

ηi = β0 + xi1β1 + xi2β2 + . . .+

sr(xir) + sr+1(xir+1) + . . .

One convenient way to specify the nonlinear effects sj is based on B-splines where the effects

sj(xij) are approximated by sums of several B-spline basis functions B
(d)
lj

(xij) (of a pre-specified

degree d) evaluated at xij , scaled by the basis coefficients γlj such that

sj(xij) =

Lj∑
lj=1

B
(d)
lj

(xij)γlj .

The derivative of a B-spline can be routinely calculated based on the local polynomial structure
of B-splines. To determine the derivative, we start with defining a set of new basis functions

Ḃlj (xij) = (d− 1)

 B
(d−1)
lj

(xij)

κlj+d−1 − κlj
−

B
(d−1)
lj+1 (xij)

κlj+d − κlj+1

 ,

where B
(d−1)
lj

(xij) are B-spline basis functions determined based on the same set of knots κlj as

the original basis functions B
(d)
lj

(xij) but with the degree decreased by one. Combining Ḃlj (xij)

with the original coefficients results in the derivative (for details see de Boor, 1978)

s′j(xij) =
dsj(xij)

dx
=

Lj∑
lj=1

Ḃlj (xij)γlj . (1)

In the following, we suppress the degree d of the basis functions to simplify notation. While pure
B-spline fits depend crucially on the number Lj and positioning of the basis functions, P-splines
as introduced by Eilers and Marx (1996) avoid this dependency by considering a large number of
basis functions subject to the smoothness condition that neighboring basis coefficients should not

differ too much. This is achieved by adding the penalty terms λj
∑Lj

lj=3 (γlj − 2γlj−1 + γlj−2)2 for
each smooth effect to the fit criterion where λj ≥ 0 is the smoothing parameter determining the
impact of the penalty on the estimation result. The penalty may be written in matrix notation
as λjγ

>
j Kjγj , with γj = (γj1 , . . . , γjLj

)> the vector coefficients of one smooth effect. Kj is the

penalty matrix to determine the second order differences.
To simplify the notation, we generically define the semiparametric predictor as ηi = z>i γ where
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� Z is the design matrix built jointly from the linear effects and the evaluated basis functions.
The ith row of Z is defined as

z>i = (1, xi1, . . . , Blr(xir), Blr+1(xir), . . .)

� γ is the complete vector of coefficients

γ> = (β0, β1, . . . , γlr , γlr+1, . . .)

� K is a blockdiagonal matrix summarizing the penalties λjKj of the individual effects on the
diagonal. Unpenalized coefficients have diagonal elements with value 0.

In summary, including a semiparametric predictor in GLMs results in GAMs. The likelihood of
GAMs is similar to the one of GLMs where only the penalty needs to be augmented when fitting
the model. Hence, the penalized log-likelihood is defined as

l(γ, λ) = log

(
n∏
i=1

f(yi,γ)

)
− 1

2
γ>Kγ.

The estimation scheme for GAMs stays the same Fisher scoring algorithm as in the standard GLM.
Thus the coefficients are estimated using iteratively weighted least squares with working responses

y
(k)
i = z>i γ

(k−1) +
yi − h(z>i γ

(k−1))

h′(z>i γ
(k−1))

and working weights

w
(k)
i =

(
h
′
(z>i γ

(k−1))
)2

Var(z>i γ
(k−1))

for the kth iteration. The coefficients are now estimated including the penalty via penalized
iteratively weighted leasted squares, i.e.

γ(k) =
(
Z>W (k)Z +K

)−1
Z>W (k)y(k),

with W (k) representing the diagonal matrix of the working weights. To optimize the smoothing
parameters λj , several approaches such as generalized cross-validation (GCV) can be considered
(see Wood, 2017, for details). In Wood (2017) also details on the derivation of the standard GLM
Fisher scoring and for the derivation of the GAM are displayed. Besides P-splines, several other
types of smooth functions may be included in the same way, e.g. tensor product splines or Gaussian
Markov random fields (see Fahrmeir et al., 2013, for details).

2.2 Monotonic P-splines

For the estimation of the response function, we are interested in monotonically increasing P-splines.
For their estimation several approaches have been introduced. Bollaerts et al. (2006) use an extra
penalty that adds a heavy penalty for negative differences of neighboring coefficients. However, this
approach lacks identifiability if more than one smooth covariate is used. An alternative approach
overcoming this restriction was introduced by Pya and Wood (2015), leading to shape constrained
P-splines (SCOP-splines). In the case that there is only one covariate x, these SCOP-splines are
defined like standard B-splines as

Ψ(xi) =
L∑
l=1

Bl(xi)ξl = B>i ξ,

where B>i = (B1(xi), . . . , BL(xi)) is the vector of evaluated basis functions at observation i and B
is the corresponding matrix for all observations. To fulfill the condition of a monotonic increase,
i.e. Ψ′(x) > 0⇔ ξl ≤ ξl+1∀l, they reparameterize the coefficients ξ such that

ξ = Uν̃
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where

ν =


ν1

ν2
...
νL

 , ν̃ =


ν1

exp(ν2)
...

exp(νL)

 ,U =


1 0 0 · · · 0
1 1 0 · · · 0

. . .

1 1 1 · · · 1

 .

The monotone spline is then defined as

Ψ(xi) = B>i Uν̃.

So we optimize the penalized log-likelihood

l(ν, λν) = l(ν)− 1

2
ν>Kνν,

where Kν is the corresponding penalty matrix including the smoothing parameter λν . In order
to estimate the coefficients, we apply the reparameterization via Uν̃ inside of l(ν). Details of the
estimation procedure are described in Pya and Wood (2015). This method is implemented in the
scam package (Pya, 2017).
Similarly as in Equation (1) we get the derivative of the SCOP-spline as

Ψ′(xi) =
dΨ(xi)

dx
= Ḃ>i Uν̃, (2)

where Ḃ>i is the vector of evaluated basis functions Ḃl(xi) as before.

The third alternative is using constrained least squares. For monotonic splines, we again set up
the P-spline as

ĥ(xi) =

L∑
l=1

Bl(xi)νl = B>i ν.

The aim is to optimize the penalized least squares criterion (PLS)

(y −Bν)>(y −Bν) + ν>Kνν,

with second order difference penalty Kν (including λν) subject to the constraint that the coeffi-
cients are increasing, i.e. νl ≤ νl+1. This can be done using inequality constraints via quadratic
programming. An approach to solve this was introduced by Wood (1994) and is implemented in
the pcls function of the mgcv package.

3 Generalized Additive Models with Flexible Response Functions

3.1 Indirect Estimation of the Response Function (FlexGAM1)

Our first approach for combining flexible estimates for the response function with additive predict-
ors is inspired by an earlier proposal by Muggeo and Ferrara (2008) for flexible response functions
in GLMs (which itself is an extension of the paper of Yu and Ruppert, 2002). Muggeo and Fer-
rara (2008) combine the standard response function with a smooth transformation of the linear
predictor, leading to

g(µi) = Ψ(ηi) ⇔ µi = g−1(Ψ(ηi)) = h(Ψ(ηi))

where Ψ is estimated as a monotone P-spline, i.e. in our setting a SCOP-spline, and h is the
canonical response function.
Replacing the linear predictor ηi = x>i β with a semiparametric predictor ηi = z>i γ leads to
our first proposed approach called FlexGAM1 in the following. The penalized log-likelihood now
depends on the coefficients of the covariate effects γ and the coefficients of the estimated response
function Ψ: l(γ,ν)
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For the maximization of this likelihood, we use a similar type of algorithm as proposed by Muggeo
and Ferrara (2008) for the linear case. In particular, we rely on an iterative procedure with
fixing either γ(k) to estimate Ψ(m) (outer loop (m)) or fixing Ψ(m) to estimate γ(k) (inner loop
(k)). Thereby the outer loop is a GAM with one single smooth function Ψ(m) of the continuous
covariate η(k). Thus Ψ(m) is estimated with the standard tools of SCOP-splines. The single
covariate is the semiparametric predictor η(k) that changes during the iterations. The inner loop
is then optimizing the profile likelihood with fixed Ψ(m). This is done with the usual iteratively
weighted least squares algorithm. Based on similar ideas as in the standard GLM (see Wood, 2017,
for example), the working weights and working responses can be derived. However, the chain rule
has to be applied to consider the response function as h(Ψ(ηi)

(m)). Finally, we get the following

working responses y
(k)
i and working weights w

(k)
i

y
(k+1)
i = z>i γ

(k) +
yi − h

(
Ψ(m)(z>i γ

(k))
)

h′
(
Ψ(m)(z>i γ

(k))
)

Ψ′(m)(z>i γ
(k))

w
(k+1)
i =

(
h
′ (

Ψ(m)(z>i γ
(k))
)

Ψ
′(m)(z>i γ

(k))
)2

Var(z>i γ
(k))

where Ψ′ is the derivative of the SCOP-spline as defined in Equation (2).
Algorithm 1 in the Appendix gives a detailed description of the resulting fitting scheme. We also
provide details on the derivation of the IWLS updates for binomial, Poisson, Gaussian and gamma
distributed data in the supplementary material.
An important issue in models with flexible response functions is the inclusion of appropriate
identifiability constraints. In our case, these constraints are as follows:

1. We require at least two continuous covariates in the model specification. Otherwise, the
flexible response function and the flexible covariate effect can not be separated from each
other.

2. The intercept has to be removed, i.e. γ0 = 0. Alternatively, a shift on the x-axis of the
response function is compensated by the intercept.

3. All smooth effects have to be centered around zero, i.e.
n∑
i=1

sj(xij) = 0. This is done to

prevent that one covariate spline is shifted on the y-axis and that shift is compensated by a
shift of another covariate spline.

4. The predictor has to be scaled, i.e.
n∑
i=1

ηi = 0 and 1
n

n∑
i=1

η2
i = 1. Otherwise, the predictor can

be shifted and stretched arbitrarily and the effect is compensated by a shift or stretching in
the response function.

5. The response function has to be monotonically increasing, i.e. Ψ′(η) > 0.

Condition (3) is incorporated in the setup of the smooth effects by including a QR-decomposition
in their basis functions (for details see Wood, 2017). We consider condition (4) via scaling of the
inner predictor

ηi =
ηi −mean(η)

sd(η)

in each step of the algorithm. The monotonicity condition (5) is considered as an identifiability
restriction, otherwise the estimated function h(Ψ(η)) will not be a valid response function in a
strict sense (compare McCullagh and Nelder, 1989, p. 27). This restriction reduces the flexibility
of the approach, but it allows us to interpret the covariate effects in a traditional way. Thus an
increase of the predictor induces an increase of the expected value. Moreover, the reduced flexibility
also stabilizes the estimation and prevents from weird effects at the edge of the parameter space.
Furthermore, a small simulation study also showed, that using monotone splines results in smoother
estimates of the response function.
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In this paper, we follow the approach of Muggeo and Ferrara (2008) when scaling the predictor
to achieve identifiability, but alternatives are possible. Tutz and Petry (2016), for example, apply
constraints on the variance of each effect, which could be included in our method by scaling
each effect sj with

sj∑
i

∑
j s

2
j (xij)

. In our simulation study, both scalings achieved similar results.

Following Li and Racine (2007, p. 251f.), coefficients are scaled to have ||γ|| = 1. However, this
ignores the ties in the coefficients of the smooth effects. Thus we decided to follow the approach of
Muggeo and Ferrara (2008), since it allows for the inclusion of other smooth effects like Gaussian
Markov random fields more easily.

3.2 Direct Estimation of the Response Function (FlexGAM2)

In the paper of Muggeo and Ferrara (2008) and our FlexGAM1 approach, the combination of the
traditional response function h and a transformation function Ψ is used to estimate the fitted
values

µi = E[Yi|xi] = h(Ψ(ηi)).

This is done to get a flexible response function while simultaneously ensuring that the response
function maps the predictor to the right parameter space, e.g. 0 ≤ µ̂i ≤ 1 for binary data.
By applying an outer response function, we however implicitly keep a distributional assumption.
Therefore we aim at removing this implicit assumption and fit the response function completely
flexible (FlexGAM2 ) such that

µi = E[Yi|xi] = ĥ(ηi).

However, ĥ should still be a valid response function and we incorporate corresponding restrictions
via constrained least squares. Furthermore, we want to be able to deal with nonlinear effects such
that we combine our procedure with semiparametric predictors.
Similar to the standard GAM, we can derive the estimation procedure. We just exchange the
response function to be estimated directly using a strictly monotonically increasing P-spline which
also considers restrictions on the fitted values

ĥ(z>i γ) =

L∑
l=1

Bl(z
>
i γ)νl.

For the estimation, we use the constraint least squared approach as introduced by Wood (1994).
This leads to a the similar penalized log-likelihood as in the standard GAM, but besides the
coefficients of the covariate effects γ the coefficients ν of the response function also have to be
estimated, which results in the penalized log-likelihood: l(γ,ν).
We optimize this log-likelihood using a two stage procedure as in FlexGAM1. Here, in the outer
loop, we estimate the monotonically increasing P-spline ĥ(m), while in the inner loop we apply a
standard IWLS algorithm as in the usual GAM but with the estimated response functions instead
of the pre-specified ones. This results in the following working elements:

y
(k)
i = z>i γ

(k−1) +
yi − ĥ(m)(z>i γ

(k−1))

ĥ′(m)(z>i γ
(k−1))

w
(k)
i =

(
ĥ
′(m)(z>i γ

(k−1))
)2

Var(z>i γ
(k−1))

The complete algorithm is displayed in the Appendix in Algorithm 2, while the derivation for
binomial, Poisson, Gaussian and gamma distributed data is displayed in the electronic appendix.
The derivatives ĥ′ are calculated as introduced in Equation (1).
Moreover we require the same constraints as for FlexGAM1 to ensure identifiably. In addition, we

need some further constraints to get a valid response function ĥ(·) =
L∑
l=1

Bl(·)νl:
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� The response function should be strictly monotonically increasing (∂h∂η > 0), i.e.

νl < νl+1 ⇔ νl+1 − νl ≥ δmin

where δmin is a small positive number.

� For binomial, Poisson or gamma distributed data the response function should be positive
(ĥ(·) ≥ 0): Since an unscaled B-spline basis function is always non-negative (Bl(·) ≥ 0), this
is achieved by

νl ≥ 0 ∀l.

� The maximal value of the response function should be one (ĥ(·) ≤ 1) for binomial distributed
data: Since an unscaled B-spline sums up to one

(
L∑
l=1

Bl(·) = 1), this is achieved by

νl ≤ 1 ∀l.

In summary, we have several linear inequality constraints on the coefficients ν, which we can
translate into Aν ≥ b, where A and b are the matrix and the vector of the linear inequality
constraints respectively. Therefore we can apply the pcls function of the mgcv package, which
deals with least squares problems under inequality constraints and quadratic penalties (Wood,
1994), to estimate ĥ(m) in the outer loop.

3.3 Numerical Details of FlexGAM1 and FlexGAM2

So far we have defined both, FlexGAM1 and FlexGAM2, for fixed smoothing parameters λj
and λν . In practice, these smoothing parameters have to be optimized. Since both stages of
the algorithms depend on each other and therefore on the smoothing parameters of both stages,
an optimization within these stages cannot achieve the best results. We therefore propose to
optimize all smoothing parameters jointly from outside the algorithm, i.e. to define one set of
fixed smoothing parameters, estimate the model, evaluate its prediction error and then check
the next set of smoothing parameters. The possible smoothing parameter sets are evaluated by
standard optimization procedures. We compute the prediction error via an ordinary 5-fold cross-
validation with true separation in training and validation data sets. The error is thereby estimated
as the predictive deviance. In our setting, a GCV criterion would not be applicable straightforward
since the definition of the effective degrees of freedom in this interdependent two stage procedure
is non-trivial.
In the estimation procedure, it regularly occurs that the algorithm does not converge, since a small
difference in one of the estimates induces another small change in the other estimates. This micro-
oscillation also occurs in standard GLM estimation via the Fisher-Scoring/ IWLS algorithm, mostly
when not using the conjugate link function (see for example Marschner et al., 2011). Thereby a
nondecreasing deviance can be detected. Generally, in these cases step halving is applied (see for
example Jørgensen, 1984, Marschner et al., 2011 or Yu et al., 2017). So we adapt the approach by
only accepting the new γ(k) in the inner loop if they reduce the penalized deviance. If the deviance
is nondecreasing, a new proposal of γ(k) is calculated as

γ(k) =
1

2

(
γ(k) + γ(k−1)

)
.

However, step halving is only applicable in the inner loop, which is a modification of the standard
IWLS. Still, micro-oscillation also occurs in the outer loop. Therefore we include an extra stopping
criterion for the outer loop, if the penalized deviance does not decrease. To force the algorithm
to always start iterating, the outer stop criterion is not used in the first outer loop, while the
step halving of the inner loop is always possible except in the very first step. Overall step halving
solved the convergence problem in our algorithms.
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An additional possibility for adjustments is the choice of the initial parameters. Generally we
propose to use a standard GAM with canonical response function. However, this model could be
either estimated including the intercept, or excluding the intercept. In the simulation study, the
models with intercept in the initial model provided better results, while in the empirical examples
the estimates without intercept in the initial model performed better. Checking both possibilities
reduces the risk of being stuck in a local optimum.

3.4 Uncertainty Quantification

In addition to providing point estimates, determining measures of uncertainty for the estimated
coefficients is also of high relevance. Since we apply cubic P-splines to model the response func-
tion, we can differentiate the likelihood two times continuously. Therefore the Fisher regularity
conditions (see Held and Sabanés Bové, 2014, p. 80) are fulfilled and we can make use of the
standard asymptotics of ML-estimates (compare Fahrmeir et al., 2013, p. 662)

θ̂
a∼ N(θ,F−1(θ̂)),

where θ̂ = (γ̂, ν̂)> are the ML-estimates based on the algorithms given above and F (θ̂) is the
expected Fisher information derived for all coefficients jointly (for the formulas of F (θ̂) see sup-
plementary material Section A). To get valid asymptotics, we need enough data, such that the
coefficients are asymptotically unbiased. Based on the distribution of the coefficients, we can build
the standard confidence intervals for the coefficients of the linear effects. For the display of the
variation of smooth effects we make use of the approach of Marra and Wood (2012), i.e. we build
the confidence intervals for a smooth function sj(xij) as

ŝj(xij)± z1−α/2

√
[Vsj ]ii

where [Vsj ]ii is the ith diagonal element of the covariance matrix Vsj = ZjF
−1
j Z>j . Here Zj is

the model matrix for the jth component and F−1
j are the corresponding elements of the inverse of

the expected Fisher information matrix. Additionally, the confidence intervals for the estimated
response function are given similarly as

h

(
Ψ(ηi)± z1−α/2

√
[Vη]ii

)
respectively

ĥ(ηi)± z1−α/2

√
[Vη]ii

where [Vη]ii is the ith diagonal element of the covariance matrix Vη = ZηF
−1
η Z>η . Here Zη is the

model matrix for the predictor η and F−1
η are the elements for the spline of the predictor in the

inverse of the expected Fisher information matrix.
Since the penalization is included in the Fisher information, we need to restrict the smoothing
parameters to be small enough such that the Fisher information is not dominated by the penalty
and the matrix stays invertible.

4 Simulation Study

We validate the suggested methods for flexible response functions by conducting a simulation study
with n = 1000 observations and N = 100 replications for both binomial and Poisson data. Since
the main part of our research concerns estimation of the response function, we provide a three step
procedure to simulate the data. First, we simulate the predictor η. Here we generate two different
scenarios comprising either only linear effects or considering smooth effects. The linear type is
designed to compare our approach with the traditional single index models while the smooth type
shows the benefits of our combination with additive predictors. The predictors in the simulation
study are specified as follows:

x1, x2, x3, x4 ∼ U [0, 1]

η = 3x1 + 4x2 − 4x3 − 3x4 (Linear)

η = −4 + 2 sin(6x1) + 2 exp(x2) + 2x3 − 2x4 (Smooth)

9



see Figure 1 for a graphic representation of the covariate effects. Furthermore, we simulate the
covariates xj as being independent for the linear case while they are correlated with ρ = 0.5 in the
smooth design. The predictors are the same for binomial and Poisson data.
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Figure 1: Covariate effects in the simulation study.

In the second step, we determine the expected response values by applying the response function
h on the predictor. The response functions for the binomial case are

hLogit(ηi) =
exp(ηi)

1 + exp(ηi)

hGamma(ηi) = cdf of Γ(ηi + 2, shape = 2, rate =
√

2)

hBimodal(ηi) =
0.25

1 + exp(−7.5ηi − 10)

+
0.75

1 + exp(−7.5ηi + 10)

while the response functions for the Poisson data are specified as

hLog(ηi) = exp(ηi/2)

hPois1(ηi) =
10

1 + exp(−1.5ηi)

hPois2(ηi) =
10

1 + exp(−3.75ηi − 7.5)
+

10

1 + exp(−3.75ηi + 7.5)

The functions hBimodal, hPois1 and hPois2 are similar to response functions of the simulation study
in Tutz and Petry (2012). Furthermore, we include the logit and the log response functions as a
benchmark, where our flexible methods are not necessary and the ordinary GAM is sufficient. All
response functions are visualized in Figure 2.
As the third step, we use the expected values µi = h(ηi) as parameters for the simulation of the
responses yi:

yi ∼ B(1, µi) and yi ∼ Po(µi)

All estimations are done in R (R Core Team, 2017). As models, we consider the following altern-
atives:

GAM: Classical GAM based on code of the R-package mgcv.

IC: Single index model of Ichimura (1993) with code of the R-package np.

10
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Figure 2: Response functions in the simulation study.

SIBoost: Single index boosting model of Tutz and Petry (2012) for the linear case and Tutz
and Petry (2016) for the smooth case. The code of the linear case is attached to their
paper, while the code for the smooth case was provided to us by the authors.

FlexGAM1: Indirect estimation of the response function as described in Section 3.1 with code of
our FlexGAM package (see supplementary material).

FlexGAM2: Direct estimation of the response function as described in Section 3.2 with code of
our FlexGAM package (see supplementary material).

The initial models of FlexGAM1 and FlexGAM2 are estimated including the intercept.
In the following, we compare two different settings. First, we focus on the comparison with the
existing methods by applying the linear predictors to generate the data and to analyze the data
(Section 4.1). Second, we benchmark the error that occurs by generating the data with the smooth
predictor, but only applying the linear predictor in the single index models, while the logit model,
the model of Tutz and Petry (2016) and our models use the semiparametric predictor (Section 4.2).
As measure for the goodness of fit, we use the bias, the root mean squared error (RMSE) and
the predictive deviance. The bias and the RMSE are estimated from the difference between the
true underlying expected values of the data generating process µi and the fitted values µ̂i while
the predictive deviance is estimated by applying a validation data set of the same data generating
process (but with n = 10.000 observations) to the estimated models and comparing the responses
yi with the fitted values µ̂i:

Bias =
1

n

n∑
i=1

µi − µ̂i

RMSE =

√√√√ 1

n

n∑
i=1

(µi − µ̂i)2

Pdeviance =


2

n∑
i=1

(1− yi) log
(

1
1−µ̂i

)
+ yi log

(
1
µ̂i

)
2

n∑
i=1

yi log
(
yi
µ̂i

)
− (yi − µ̂i)

The area under the receiver operator characteristic curve (AUC) would be another measure for
the classification performance of a binomial regression model. However, in the literature (see for
example Lobo et al., 2008; Hand, 2009, and citations therein) a fundamental discussion about the
use of the AUC is going on. Furthermore, the AUC is based on a binary classification derived from
a cut off for the predicted probabilities and will therefore only react to changes in probabilities
close to that cut off. This results in a rather low sensitivity with respect to changes in the response
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function as illustrated in the supplementary material. We therefore focus on the predictive deviance
in the following which rewards improvements in predicting the success probability rather then
rewarding the correct classification of the response.

4.1 Linear Predictor

4.1.1 Binomial Data

Most single index approaches are able to deal with linear predictors, therefore we build a simulation
design based on linear predictors to check whether our approaches are able to compete with the
existing ones. The resulting RMSE is plotted in the first row of Figure 3 where the red horizontal
line indicates the median RMSE of the logit model as a benchmark.
These figures show that all single index models give more accurate results than the logit model if
indeed the data are simulated with non-standard response functions. However, in the case that we
have logistically distributed data, the standard GLM fits better than all single index models, except
the FlexGAM1 approach originally proposed by Muggeo and Ferrara (2008). Overall, FlexGAM1
fits best in all data settings. Except for the pure logistic data, both approaches FlexGAM1 and
FlexGAM2 behave similarly. All estimated response functions are plotted in the supplementary
material. By analyzing the estimated response curves, it is visible that the kernel methods regularly
result in very wiggly estimates despite that fact that the bandwidth is optimized in the np package.
Pre-specifying the bandwidth appropriately solves the problem of wiggliness, but the model fit does
not change relevantly compared to our models, especially in the simulation design with smooth
predictors.

4.1.2 Poisson Data

Besides the binomial model, Poisson data are also of interest in this paper. Therefore we present
in the second row of Figure 3 their estimated RMSE for the case with linear predictors. Similar
to the binomial case, the data generating process with log link deals as a benchmark. Based on
the resulting RMSE, we can conclude that the FlexGAM1 model has a similar behavior as the
standard GLM for this benchmark data setting, while the other models have a small drawback.
For the other two data settings, the original GLM is not sufficient and the P-spline based methods
result in smaller RMSE. The method based on Ichimura (1993) yields competitive results in this
linear setting but the estimated response functions are not necessarily monotonically increasing.

4.2 Smooth Predictor

The new approaches proposed in this paper have the big advantage of being able to also deal
with nonlinear covariate effects. To show this, we conduct the simulation study with the smooth
predictor specified above. So there are two possible misspecifications, either the predictor is fixed
to be only linear (IC), even if we have nonlinear covariate effects and otherwise the response
function is fixed to a specified response function (GAM) and not able to capture the skewness
of the response function. Only the new approaches (FlexGAM1, FlexGAM2) and the boosting
approach of Tutz and Petry (2016) (SIBoost) are able to deal with both error types. As it can
be seen from Figure B.22 in the supplementary material, all methods are approximately unbiased,
even if the predictor is misspecified.

4.2.1 Binomial Data

In the third row of Figure 3, the estimated RMSE for models based on binomial data and smooth
predictors is displayed. In the case of logistically distributed data, we see that the traditional
single index model gets far worse RMSE than the GAM that uses the semiparametric predictors
and our new approaches are within the range of the standard GAM. Beyond the data following a
latent logistic distribution, the new approaches result in better RMSE than the traditional GAM,
while the standard single index model results in worse RMSE.
The bias and the RMSE are measures for the goodness of fit on the given data sets. However,
the predictive performance of the models is also essential. Therefore we compare the estimated
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Figure 3: RMSE of binomial and Poisson models with linear and smooth predictors.

predictive deviances. Since these yield a similar pattern as with the RMSE, we show the results
in the supplementary material Figure B.23.
Besides the goodness-of-fit criteria, the estimated response functions are of special interest. The
estimated functions of the logit model as well as FlexGAM1 and FlexGAM2 models for the logistic
and the bimodal data are given in Figure 4 (rows 1 and 2). The other functions are displayed
in the supplementary material. From the pictures, we can conclude that our methods estimate
the response functions correctly. In the logistic data, the FlexGAM2 method provides results
with more variation than FlexGAM1. FlexGAM1 has the logit model as a limit, since a high
penalization of the transformation function Ψ results in the identity function. Therefore we obtain
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better estimates in the logistic setting. On the other side, the indirect estimation of the response
function is not as flexible as the direct one, due to the slight distributional input of the logit link.
This results in a worse estimation of the response function in the bimodal case. However, the
response function estimated via FlexGAM1 also captures the effects a lot better than the logit
model. Additionally to the estimated response functions, the estimated covariate effects are of
interest. Therefore the estimated covariate effects of x1 for the logit, FlexGAM1 and FlexGAM2
model for the logistic and the bimodal data are plotted in Figure 4 (rows 3 and 4). The other
estimated effects are given in the supplementary material. We achieve comparability between the
models by rescaling the results of the logit model with η = η−η̄

sd(η) , as well as the underlying effect

(red dashed line). From Figure 4 we conclude that our methods as well as the logit model identify
the underlying effects correctly. However, our methods penalize the splines a bit more such that
we get smoother results.

4.2.2 Poisson Data

Similar to the binomial data setting, the classical single index models are not able to deal with
the nonlinear structure of the predictor in the Poisson case. However, the flexible approaches
FlexGAM1 and FlexGAM2 both capture the covariate effects and the response function. Therefore
their RMSE is lower than the one of the standard GAM, as shown in the forth row of Figure 3.
Further index of the goodness of fit and the estimated response functions and covariate effects are
plotted in the supplementary material.

4.3 Models without Monotonicity Constraint

Additionally to the models discussed above, we also applied our approaches without monotonicity
constraints (FlexGAM1n, FlexGAM2n) in the simulation study. They show similar results in terms
of the goodness-of-fit criteria. However, rather wiggly response functions are estimated and we
therefore show the results of the non-monotonic estimates only in the electronic appendix.
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Figure 4: Estimated response functions and effects for x1 of the logit, FlexGAM1 and FlexGAM2
model for the logistic and the bimodal data (grey, solid), with the true underlying function (red,

dashed). The predictors are scaled simultaneously
(
η = η−η̄

sd(η)

)
.
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5 Application

5.1 Mortality Rate in São Paulo

To illustrate our methods, we apply them to the data set used exemplary in Tutz and Petry
(2016), where the mortality rate of 65 year old persons living in the area of São Paulo (Brazil)
is estimated for the years 1994 to 1997. The original data set is available at http://www.ime.

usp.br/~jmsinger/Polatm9497.zip. We make use of the subset of Leitenstorfer and Tutz (2007)
which is also used in Tutz and Petry (2016). The sample size is n = 1351 and the considered
variables are described in Table 1.

Variable Explanation

RES65 Number of daily deaths caused by respiratory reasons (0-12).
TEMPO Time in days (1461 in total).
SO2ME.2 The 24-hours mean of SO2 concentration (in µg/m3) over all monitoring

measurement stations, led by 2 days.
TMIN.2 The daily minimum temperature, led by 2 days.
UMID The daily relative humidity.
CAR65 Cardiologically caused deaths per day.
OTH65 Other (non respiratory or cardiological) deaths per day.

Table 1: Variables to model the death rate in São Paulo.

As response variable, we take the number of deaths caused by respiratory diseases. All other
variables are used as smooth covariates applying P-splines with 20 inner knots. We compare the
standard GAM model (GAM ), the boosting model of Tutz and Petry (2016) (SIBoost) and our
two approaches FlexGAM1 and
FlexGAM2. For GAM, SIBoost and FlexGAM1 we choose the log-link. The smoothing para-
meters were optimized for GAM with the GCV criterion, for FlexGAM1 and FlexGAM2 via
cross-validation, while we choose λh = 1 and λf = 0.01 for SIBoost as in Tutz and Petry (2016).
As initial model for FlexGAM1 and FlexGAM2 we chose the standard Poisson model without
intercept, since these models had a lower predictive deviance. The estimated response functions
are displayed in Figure 5. They show that assuming a pure log-link does not give sufficient results,
since the estimated curves show faster increasing behavior for positive predictors and slower for

negative predictors. Here we scaled the predictors via
(
η = η−η̄

sd(η)

)
to be comparable.
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Figure 5: Estimated effects for the death rate data. On the left the estimated response function
of the full data set, with confidence intervals in dashed lines, are displayed. Therefore the effects

are standardized
(
η−η̄
sd(η)

)
. On the right the predictive deviance of 50 models with randoms splits

of the data set.

We checked the predictive behavior of the models by estimating 50 models based on random splits
of the data set, with sample size of 1000 for the training data set. To speed up the analysis,
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the smoothing parameters in the random splits were fixed to the output of the original model
with the full data set. The resulting predictive deviance is plotted in Figure 5. Thereof we may
conclude that FlexGAM1 and FlexGAM2 give similar results, which are better than the one by
pure GAM. In contrast to the paper by Tutz and Petry (2016) SIBoost resulted in worse predictive
patterns than the standard GAM. However, in our design the standard GAM had a lower predictive
deviance, than in the original paper, which might explain the problem.
Additionally, we provide the estimates of the covariate effects in Figure 6. Here, we can see
that the variable TEMPO has the largest impact (consider the different scaling of the y-axis). It
shows the seasonal dependence of the mortality rate. Besides with increasing SO2 concentration
the mortality rate increases, while it decreases with increasing humidity. Differences between the
models should be analyzed with care, since the models are scaled. So only differences in the
shapes can be analyzed, while the absolute value can only be considered jointly with the response
function. All shifting and stretching effects are compensated by the response function and also by
the centering of the splines. The upwards shift of the TEMPO variable for small values for example
depends on the large negative values for 1000 < TEMPO < 1300. However, the divergence from the
usual seasonal pattern is a specific pattern of the new approaches. This effect might be explained
by some “unobserved” covariate. For the other covariates only the cardiological deaths (CAR65)
show a slight change in the new models. Generally the new models put even more emphasis on
the seasonal effect, since compared to this effect the other covariates decline in their impact.

5.2 Credit Scoring

As a second example and to apply our new methods to binomial data, we use credit scoring data
of a German bank. The data was published in Fahrmeir et al. (1996) and is available online
at https://data.ub.uni-muenchen.de/23/. Here we use a sample size of n = 1000, but we
truncated 12 outliers of the continuous covariates. Table 2 describes the variables used in the
model.

Variable Explanation

credit Whether a person repaid its credit (response).
moral Whether the person has a good previous payment behavior.
guarantor Whether the credit is secured by other persons (0 = non, 1 = other person

involved, 2 = guarantor).
duration Duration of the credit (0-60).
amount Amount of the credit (250-14896).
age Age of the person (19-70).

Table 2: Variables to model the credit scoring rate.

Similar to the example above, we estimate a model with P-splines with 20 inner knots for the
smooth covariates (duration, amount, age). In addition, the categorical covariates (moral,
guarantor) were also included. As initial model for FlexGAM1 and FlexGAM2 we chose the
standard logit model without intercept to take care of the categorical covariates in the design mat-
rix. Since the code for SIBoost provided by the authors does only support continuous covariates,
we cannot estimate their model in this setting. Hence we only compare the three models GAM,
FlexGAM1 and FlexGAM2, with logit link if necessary. Therefore we first estimate a model with
optimized smoothing parameters based on the full data set and afterwards 50 models based on
training data sets of size 800. The resulting response functions of the full models are given in
Figure 7 next to the estimated predictive deviance of the random split models. Here the estimated
response functions are scaled again according to η = η−η̄

sd(η) .
The estimated response functions describe a flat area for η between -4 and -1. This behavior shows
that there is some unobserved heterogeneity in the model. Furthermore, it indicates that using
the logit link is not sufficient. Here we occasionally find that the pointwise confidence intervals
are not monotonically increasing. This results from the increasing uncertainty associated with a
smaller number of observations on the outer part of the parameter space. Estimating simultaneous
confidence intervals instead of pointwise intervals could solve this problem. From the values of the
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Figure 6: Estimated covariate effects for the death rate data.

predictive deviance we conclude that our approaches are able to better deal with the unobserved
parts, so the deviance is lower.
Besides the estimated response function also the estimated covariate effects are of interest. There-
fore we show in Figure 8 the estimates of the smooth effects. With increasing duration, the
probability of paying back the credit declines. Contrarily with increasing age the probability in-
creases until the person ages 40, than the effect is constant. Small credits and larger credits have
a higher probability of default, while the medium sized credits are rather surely payed back, if the
other covariates stay constant. Here rather small differences between the estimates of the logit
model (black) and the new models (green, blue) occur. However, in the middle of the parameter
space for amount and duration the new models show higher values, while they decrease faster for
higher values.

6 Conclusion

Based on our simulation study and the empirical examples, we conclude that estimating the re-
sponse function along with a flexible predictor often leads to a better model fit. We have proposed
two approaches for estimating the response function, where one is more flexible while the other has
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Figure 8: Estimated covariate effects for the credit scoring data.

the advantage of having the canonical response function as the natural limit. Both are working
very well in the simulation studies so the user may decide which property she/he prefers. An
important step in our approach is first of all the identifiability which we achieve with the introduc-
tion of several constraints, and second the correct estimation of the smoothing parameters. If the
smoothing parameters are misspecified, the predictive properties decline. Therefore we accept the
computational intensive cross-validation for simultaneously determining the smoothing parameters
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of the response function and the semiparametric predictor. Alternatives for the estimation of the
smoothing parameters using cross-validation could be, first of all, an adaption of the approach by
Wood and Fasiolo (2017) to our combined likelihoods such that the estimation of the covariate
effects and of the smoothing parameters is done jointly. Second, a theoretically well-grounded
estimation of the degrees of freedom could be established in on our interdependent likelihoods
such that the generalized cross-validation criterion could be applied and the number of model fits
could be reduced. Both alternatives are left for further research.
The flexibility of the approach provides several benefits, but it has a drawback, namely the cor-
rect specification of the model. This specification has a relevant impact on the goodness-of-fit of
each GAM. Therefore several approaches to select models with additive structure have been pro-
posed (see Marra and Wood, 2011, for an overview). The flexible response function may capture
some unobserved effects, however structured approaches on model selection for GAM with flexible
responses are left for further research.
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7 Appendix

Algorithm 1 (FlexGAM1)

Start:

γ̂(0) = gam(y ∼ x1 + x2 + s(xr) + s(xr+1) + . . . ,

family= . . . )

η
(0)
1 = Zγ̂(0)

⇒ η(0) =
η
(0)
1 −mean(η

(0)
1 )

sd(η
(0)
1 )

Outer (m) :

Ψ(m)(η(k−1)) = scam(y ∼ s(η(k−1), bs="mpi"),

family= . . . )

Inner (k) :

y(k) = η(k−1) +
y − h(Ψ(m)(η(k−1)))

h′(Ψ(m)(η(k−1))) Ψ′(m)(η(k−1))

w(k) =

(
h

′
(Ψ(m)(η(k−1))) Ψ′(m)(η(k−1))

)2
Var(η(k−1))

γ̂(k) =
(
Z>W (k)Z +K

)−1
Z>W (k)y(k)

via mgcv::gam

η
(k)
1 = Zγ̂(k)

⇒ η(k) =
η
(k)
1 −mean(η

(k)
1 )

sd(η
(k)
1 )

The inner iteration is done until the convergence of γ(k), meaning
||γ(k)−γ(k−1)||
||γ(k)|| < ε1. Then the

outer iteration is repeated. The inner and outer loops are iterated until the coefficients of Ψ(m)

are constant, meaning
||ν(m)−ν(m−1)||
||ν(m)|| < ε2.
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Algorithm 2 (FlexGAM2)

Start:

γ̂(0) = gam(y ∼ x1 + x2 + s(xr) + s(xr+1) + . . . ,

family= . . . )

η
(0)
1 = Zγ̂(0)

⇒ η(0) =
η
(0)
1 −mean(η

(0)
1 )

sd(η
(0)
1 )

Outer (m) :

ĥ(m)(η(k−1)) = pcls(y ∼ s(η(k−1), bs="ps") | Aν ≥ b)

Inner (k) :

y(k) = η(k−1) +
y − ĥ(m)(η(k−1))

ĥ′(m)(η(k−1))

w(k) =

(
ĥ′(m)(η(k−1))

)2
Var(η(k−1))

γ̂(k) =
(
Z>W (k)Z +K

)−1
Z>W (k)y(k)

via mgcv::gam

η
(k)
1 = Zγ̂(k)

⇒ η(k) =
η
(k)
1 −mean(η

(k)
1 )

sd(η
(k)
1 )

Again the inner iteration is done until the convergence of γ(k), Then the outer iteration is re-
peated. The inner and outer loops are iterated until the coefficients of ĥ(m) are constant, meaning
||ν(m)−ν(m−1)||
||ν(m)|| < ε2.
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