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Abstract

Data regarding agricultural production often have a natural hierarchical

structure. Ownership of multiple plots by a farmer is one such case. When

there is more than one level of observation at which technical efficiency can

be estimated, the process of its aggregation from a micro unit of analysis to

a higher, aggregate level, poses a topic for a methodological debate. Hav-

ing used Stochastic Frontier Analysis on data concerning maize production,

with a hierarchical structure, we compare scaling up of technical efficiency

scores from a plot-level stochastic frontier model, and the Linear Mixed Ef-

fects model. With Monte Carlo simulation, we conclude that if monotonicity

in the ranking of farm households is to be preserved, the Linear Mixed Ef-

fects Model performs slightly better than aggregation indices applied after

plot-level estimation. In maintaining the Cumulative Density of the true

aggregated efficiency scores, unlike aggregation indices, the Linear Mixed Ef-

fects Model performs accurately.

Keywords: Technical efficiency, Hierarchical modelling, Stochastic Frontier

Analysis
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1. Introduction

A hierarchical data structure is commonplace in agricultural surveys.

Ownership of more than one plot by a farm household is one case, where, the

collected data on production has a hierarchical structure. Notwithstanding

that the data is cross-sectional, without a time dimension, a farm household

can form a cluster, with data on the plots owned by it assuming the role of

repeated measurements. Output and input usage are directly measured at

the plot-level. Data on socio-economic variables which determine the effi-

ciency of the household as a producer, are collected at the farm-level. These

variables do not vary across plots which belong to the same household but

vary between households. Plot-level technical efficiency can be directly esti-

mated by classifying the production inputs as the explanatory variables of the

frontier, and the household-level inputs as Z-variables, by using Stochastic

Frontier Analysis (SFA).

Theoretically, the production frontier is attached to the notion of a pro-

ducer as a Decision Making Unit (DMU). Quoting from Fried et al. (1993),

”..in practice, one has only data—a set of observations for each decision-

making unit (DMU) corresponding to achieved output levels for given input

levels”. (p. 121)

The inefficiency term in SFA captures the effect of managerial ability of

the concerned DMU (here, the producer). Thus, estimation of technical ef-

ficiency should ideally produce the efficiency score of the producer. Given

the naturally occurring hierarchical structure of survey data regarding pro-

duction, there arises an estimation and inference anomaly with respect to
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technical efficiency. The estimated efficiency at the plot-level by SFA does

not fit in the otherwise unanimous understanding of ”efficiency”. Plot-level

efficiency is, thus, difficult to interprete and cannot directly be used to con-

clude about the performance of a DMU. This calls for a methodologically

sound aggregation strategy for navigating from plot-level efficiency estimates

to the higher level in the data hierarchy, who, in this case are the produc-

ers/farm households. One may also intend to make policy recommendations

which affect DMUs so as to facilitate an improvement in their efficiency and

this requires information about their efficiency performance.

Cook et al. (1998) recognize the need for an aggregation method in effi-

ciency estimation when DMUs occur naturally in groups. They distinguish

between pure hierarchies and levels. The former refers to hierarchies formed

based on a particular attribute of the DMUs whereas the latter refers to

groupings at one level which may be formed based on multiple attributes.

They propose a method for synchronizing DMU ratings based on relative

efficiency according to those received by their respective groups in the appli-

cation of Data Envelopment Analysis (DEA). Blackorby and Russell (1999)

extend this approach by deriving conditions under which efficiency index ag-

gregation can be carried out consistently across different levels of DMUs,

using DEA.

Brorsen and Kim (2013) examine the consequences of data aggregation on

the estimation of a stochastic frontier, when dealing with hierarchical data,

using a cost function approach. In the light of the closed skew normal being

the true distribution of the aggregated data, they find that misspecification
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caused by using the standard stochastic frontier model leads to an incorrect

conclusion of diseconomies of scale and and higher inefficiency of smaller

units. The hierarchical structure studied by them concerns aggregation across

DMUs, whereas our study, which is regarding multiple plots per farm, is

concerned with a hierarchy across parts of a DMU.

The need for consistent efficiency estimation at different levels of obser-

vation in a hierarchical data structure gives rise to the need for a method

of aggregation. Using hierarchical maize production data of smallholders in

Kenya, we address the unresolved question of being able to infer about aggre-

gate efficiency from lower-level estimates from a data hierarchy, using SFA,

by specifying two models: plot-level stochastic frontier model and the Linear

Mixed Effects (LME) model. We verify if a fundamentally correct distribu-

tion of efficiency can be arrived at, at the household level from plot-level

estimates of technical efficiency. We compare the performance of the plot

stochastic frontier model and the LME model in deriving efficiency estimates

at an aggregate level, with respect to estimating the true scores, using Monte

Carlo simulation. We also examine the role of the plot-level statistical error

term in maintaining robustness of the aggregation process.

The rest of the paper is organized as follows: In Section 2, the method-

ological background is provided for setting the context of hierarchical mod-

elling. In Section 3, the methodology used for aggregation in the two models

is explained, respectively, after a description of their specification. Section

4 provides a description of the variables used in the study. In Section 5,

we present the characteristics of the data used. Section 6 describes the pro-
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cedure followed for Monte Carlo simulation, along with the result obtained

from it. In Section 7, we present the empirical application of the two models

on the existing data, along with a discussion of its result. Section 8 presents

the conclusion.

2. Methodological background

Data arising from repeated measurements of different plots belonging

to the same farmer implies a clustered structure. It is a data structure

in which a unit of observation is nested within another higher-level unit of

observation. Such data can be analyzed using a cross-sectional multilevel

modeling approach. In multilevel modeling, estimation and inference at one

level of an observed unit often depends on the estimation and inference of

parameters (random coefficients) at a higher level. It is this property of

conditional modeling due to which it is also known as ”hierarchical” (Gelman

and Hill, 2007). It retains the identity of being cross-sectional but implies a

hierarchical structure.

Clark (2016) provides an explanation of the different modeling approaches

in clustered data analysis. There are several terms used for models applied

to clustered data: Variance components, Random Intercept, Random effects,

Hierarchical model, Multilevel model, Mixed models, and so on. These refer

to the same modeling scheme, viewed from a different purpose of analysis

and treatment of the random components. To start with, the classical linear

model is expressed in terms of the data generating process, before considering

the clustered structure of the data. Having introduced the cluster structure,

5



a model is specified in which the coefficients vary by cluster. These coeffi-

cients can be varying intercepts as well as varying slopes. Since our study

uses varying intercepts and not varying slopes, we focus on the typology of

clustered data analysis with respect to a random intercepts model.

We use the ”Multilevel model” classification (Clark, 2016), which is given

as follows:

yij = αi + βXij + εij (1)

αi = βo + γoi (2)

γoi ∼ N(0, τ 2)

In equation (2), yij is the dependent variable, which in our case is the

output. xijk is the kth covariate and the βs are the estimated coefficients cor-

responding to the covariates. γoi measures the extent to which the cluster i

differs in its ”base” level of production from the population fixed intercept βo.

Thus, the sum of βo and γoi is the cluster-specific random intercept, denoted

by αi. The random deviation γoi is assumed to follow a normal distribution

with zero mean and variance τ 2. εij is the random error term.

Substituting equation (2) in equation (1), we get equation (3) as follows:

yij = (βo + γoi) + βXij + εij (3)

Alternatively, the random deviation γoi can be summed with the random

error term, εij as given in equation (4).

yij = βo + βXij + (γoi + εij) (4)
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Equations (3) and (4) correspond to the different treatment of the random

component γoi in terms of the purpose of modeling. Equation (3) considers

the random deviation as a variable of interest which forms the cluster-specific

intercept. Equation (4) regards the random deviation as a nuisance param-

eter. In our study, we will be using cluster-specific intercepts for estimating

technical efficiency. Hence, random effect is a substantive parameter, and we

use the Multilevel model specification in equations (1) and (2)1.

Since we are interested in cluster-specific random intercepts, we acknowl-

edge their process of prediction as the Best Linear Unbiased Predictor (BLUP).

Since the random deviation is a random variable, we ”predict” them instead

of ”estimating” them. Its prediction is about realizing its conditional mean,

based on the data at hand. For an explanation of the method of prediction

of the random effects, one can refer to Fitzmaurice et al. (2011).

The multilevel modeling approach can also be viewed as a combination

1The nomenclature and interpretation of ”Fixed effects” and ”Random effects” is not

uniform and is often a source of confusion among researchers. An account of their var-

ious interpretations is given in the footnote of Gelman and Hill (2007), p. 245. They

identify five different definitions of these terms, out of which, we adopt the first one.

Accordingly, ”fixed effects” are fixed across all individuals whereas random effects are

individual-specific. In the context of our model, the ”fixed effects” are parameters (β)s,

including the coefficients of the X-covariates as well as the overall population intercept

(which can be interpreted as the expected value of the random intercepts in multi-level

modeling), estimated from regression, and ”random effects” refer to the random deviation

estimated to capture subject heterogeneity. These fixed and random effects, together,

form the Linear Mixed Effects model.
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of regressions, conditional and marginal model, correlated error model, mul-

tivariate normal model, penalized regression and Bayesian mixed model. For

a complete overview of the different modeling approaches, one can refer to

Clark (2016).

3. Methodology

A variant of clustered data is longitudinal data, wherein, the ordering

of the repeated measures is to be preserved for analysis (Fitzmaurice et al.,

2011). Several methods of longitudinal data analysis come under the purview

of those which are used in the more general case of clustered data, as given

in Fitzmaurice et al. (2011).

Various models have been proposed for efficiency estimation with longi-

tudinal data in SFA. Schmidt and Sickles (1984) provide a framework for

estimating the production frontier, wherein, inefficiency is assumed to be

time-invariant. It can be estimated by way of fixed effects or random effects.

Models addressing time-varying efficiency estimation with longitudinal data

were proposed thereafter - each building upon the previous in order to sep-

arate inefficiency, as distinct from heterogeneity. Inefficiency estimation has

further been bifurcated into persistent and transient – giving rise to another

class of models which estimate it.

We estimate technical efficiency scores at the farm level independently

from two models: (i) Plot-level Stochastic Frontier, and (ii) the Random

Intercept Model (henceforth, the Linear Mixed Effects (LME) Model). Hav-

ing arrived at two efficiency scores for the same farm household from the two
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models, we measure Spearman’s rank correlation coefficient and Kolmogorov-

Smirnov D statistic for comparing their performance. Estimation of the cor-

relation coefficient is for checking if the ranking of farm households, based

on their efficiency, is in accordance with the true ranking. The Kolmogorov-

Smirnov D statistic, which measures the maximum difference between two

distributions, has been estimated to check if the full distribution of the true

efficiency can be arrived at.

3.1. Plot-level Stochastic Frontier Model

We use the stochastic frontier model proposed by Aigner et al. (1977)

and Meeusen and van den Broeck (1977) for plot-level stochastic frontier

estimation, as given by equation (5).

Yj = βo + βkXjk + υj − uj (5)

j = 1, 2, ..., n

υj ∼ N(0, σ2
υ) (6)

uj ∼ N+(0, σ2
u) (7)

j is an index for a plot. Yj is the output of plot j. Xjk is the kth input

applied on plot j. βk is the estimated coefficient corresponding to input k.

uj is the one-sided inefficiency at the level of plot j and υj is the symmetric

statistical noise term, which is meant to capture measurement error at the

plot level. υj is assumed to follow the normal distribution with zero mean

9



and variance, σ2
υ. uj is assumed to follow a half-normal distribution with

zero mean and variance, σ2
u.

From the plot-level Stochastic Frontier model, we estimate the technical

efficiency of each plot based on Jondrow et al. (1982). For deriving effi-

ciency estimates at the farm level from the plot efficiency scores, we use

four composite indices: Arithmetic Mean (AM), Output-Weighted Arith-

metic Mean (WAM), Geometric Mean (GM) and Output-Weighted Geomet-

ric Mean (WGM). The weight refers to the share of the plot’s output in the

total output of the respective farm household and is applied to the plot’s

efficiency score.

We estimate a Cobb-Douglas production frontier. Our main interest is in

studying aggregation of technical efficiency, and less in the fit of the functional

form. Previously, Ruggiero (1999), Ondrich and Ruggiero (2001), and Banker

et al. (1993) have used the Cobb-Douglas specification for comparison of

different methods of efficiency estimation. The dependent variable is output

of maize of each plot.

3.2. The Linear Mixed Effects Model

The LME uses the hierarchical structure of the data concerning maize pro-

duction on multiple plots owned by farm households. Hierarchical data tend

to exhibit (positive) correlation within repeated measurements of a cluster.

If the presence of this correlation is not accounted for, it leads to erroneous

statistical inference as the resultant standard errors are too high. The statis-

tics for hypothesis testing such as the p-value will be flawed (Fitzmaurice
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et al., 2011). The LME model remedies the problem with the help of a ran-

dom effects induced covariance structure. It also facilitates the inclusion of

covariates which vary at the household (cluster) level and not the plot level

- the Z-variables specified in the stochastic frontier model can be classified

as such group-level predictors.

The LME model has been estimated with the following specification:

yij = βo + βkXijk + γoi + εij (8)

i = 1, 2, ...,m

j = 1, 2, ..., ni

yij = αi + βkXijk + εij (9)

i refers to a farm household out of a total of m observed farm households.

j refers to a plot which belongs to the farm household i. The total number

of plots owned by a farm household, ni, is not the same for all households.

Hence, the subscript i has been assigned to n, for denoting the total number

of plots owned by a specific household i. Analogous to equation (5), yij is
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the maize output of plot j which belongs to farm household i, xijk is the kth

input applied on plot j of farm i and β is a vector of estimated coefficients

corresponding to the inputs. γoi measures the extent to which household i

differs in its ”base” level of production from the population fixed intercept

βo. Thus, the sum of βo and γoi is the household random intercept, denoted

by αi. εij is the plot level random error.

Having estimated the random intercept for each farm household, we es-

timate the farm efficiency score, as proposed by Schmidt and Sickles (1984).

Aggregation of efficiency indices is carried out as given in Equations (10) and

(11).

ui = max(αi) − αi (10)

TEi = exp(−ui) (11)

The random intercept estimated at the household level is transformed to

arrive at household-level technical efficiency, denoted by TEi.

4. Variable Description

The selection of inputs as frontier covariates follows Liu and Myers (2009),

who, in a bid to introduce a model choice procedure across different speci-

fications of the stochastic frontier model, also estimate the model for maize

production from a survey of smallholders in Kenya. Similar to Liu and Myers

(2009), we also distinguish between inputs which would determine the phys-

ical output of maize and those which are expected to affect production by
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operating as farm management characteristics i.e. Z variables. There is, how-

ever, some dissimilarity in the measurement of some variables as compared

to our study.

The inputs which are included in the estimation of the production frontier

are plot size, seed usage, labour (pre-harvest as well as post-harvest, family

as well as hired) and the quantity of fertilizer, pesticide, and manure. . An

interaction term of seed usage and fertilizer application has been included for

estimating the differential impact of fertilizer, given a unitary increase in seed

usage. Additionally, we incorporate a dummy variable for the soil quality of

each plot, viz., poor, medium and good. Medium soil type is the reference

category and the effect of poor and good soil is captured through dummy

variables. Similarly, the season of cultivation is controlled for by introducing

a dummy variable for long rains (March-April, 2012). The season of short

rains (October-November, 2011) is the reference category.

The six Agro-Ecological Zones (AEZs) to which the plots belong have

been split into five dummy variables, with Coastal Lowland being the ref-

erence category. These AEZ dummies would account for the difference in

environmental conditions, the omission of which, would result in an omitted

variable bias as they determine input level decisions (Liu and Myers, 2009).

Additional dummy variables for certain inputs have been included in order

to accommodate for zero input values for some plots under a Cobb-Douglas

specification (Battese, 1997).

The set of Z-variables comprises of the farm-level inputs which are ex-

pected to affect efficiency. The maximum level of education among the mem-
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bers of a household would affect the efficiency of the household in produc-

tion. Similarly, the distance to the nearest agricultural extension service

center from the household residence is expected to inversely affect produc-

tion efficiency. The type of land ownership affects the incentive structure

for investment through the notion of tenure security (Liu and Myers, 2009).

Therefore, the proportion of land owned out of the total land cultivated by

the household has been included. The measurement of this variable differs

from Liu and Myers (2009) as they create a dummy variable, depending

upon whether the concerned field was owned or rented. We also include a

dummy variable which is indicative of whether the farm household tried to

avail credit and was unsuccessful in doing so, as this is expected to reduce

efficiency by distorting the timing of input usage.

5. Data

The survey was concentrated in the areas which mainly grow maize,

spread across the six AEZs of Kenya. The classification of AEZs is based

on the one given by Hassan et al. (1998). These AEZs were the strata from

which rural sublocations were sampled using the probability proportionate

to size method. Households were randomly sampled from these sublocations.

The reference year for recall was 2012. The data used is a subsample2 com-

prising of 2799 plots, owned by 1050 households. The count of plots from

each AEZ is given in Table 1. Some plots are repeated in the data in order to

2Plots which reported crop failure, as indicated by zero harvest of maize and zero

harvest labour were excluded.
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account for cultivation in two seasons, long and short rains. The number of

observations according to the season is given in Table 2. The total number

of households exceeds 1050 because there are some plots cultivated in both

seasons by them.

Table 1: Count of plots by AEZ

AEZ No. of plots

Highland tropics 234

Moist transitional 578

Dry transitional 638

Dry mid-altitude 532

Moist mid-altitude 619

Lowland tropics 198

Total 2799

Table 2: Count of observations by season

Season No. of plots No. of households

Long rains (March-April) 1576 921

Short rains (Oct-Nov) 1223 734

Total 2799 1655

The count of households according to plot ownership is given in Table 3.
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Table 3: Count of households by plot ownership

No. of plots No. of households

Long rains Short rains

1 481 404

2 301 213

3 87 84

4 37 26

5 10 6

6 or more 5 1

Total 921 734

The descriptive statistics are given in Table 4.
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Table 4: Descriptive Statistics

Variable Unit Mean SD Min Max

Dry Harvest Kg 363.6 534.05 1 5490

Plot size Acre 1.05 0.79 0.05 4

Seed Kg 6.98 6.3 0.5 60

Fertilizer Kg 26.15 55.94 0 600

Pesticide Liters 0.1 0.5 0 6

Manure Kg 268.6 539.34 0 7000

Labour Person-days 22.53 20.48 1 210

Poor soil Dummy 0.12 0.33 0 1

Good soil Dummy 0.36 0.48 0 1

Max education Years 10.89 2.87 0 18

Credit Shortage Dummy 0.12 0.33 0 1

Distance to extension Km 7.63 8.4 0 80

Female headed HH Dummy 0.16 0.37 0 1

Own cultivation Proportion 0.85 0.26 0 1

a SD stands for the standard deviation.

The seed types were mainly recycled hybrids, local varieties or Open Pol-

linated Varieties (OPVs). Fertilizer mainly consists of quantities of DAP3

and variants of NPK4. Fertility of plot soil was self-reported by the farmers.

These data constitute a hierarchy, wherein a farm-household/producer

3DAP stands for Diammonium Phosphate
4NPK stands for Nitrogen, Phosphorous and Potassium
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owns cultivable plots. We use the single level structure of ownership of mul-

tiple plots (repeated measurements) by households (the group at a higher

level).

6. Monte Carlo simulation

The purpose of carrying out Monte Carlo simulation is to check the per-

formance of the two models in arriving at the true aggregated efficiency scores

at the household level as well as observe the effect of changes in plot error

on their performance.

We use an artificially created hierarchical set of data from our original

data. We establish a balanced cluster of farm households by assigning them

a random identification variable which is common across 3 plots per house-

hold5 Thus, we have a cluster of 933 households who own 2799 plots, each

supposed to be owning 3 plots. We generate the random deviation (γoi) at the

household level from a skew-normal distribution with zero mean, standard

deviation 1 and omega parameter as -2.

γoi ∼ SN(0, 1,−2)

αi = 4.35 + γoi (12)

5We extended the analysis procedure to 9 plots per household and found identical

patterns in the results.
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ui = max(αi) − αi (13)

Having assumed the fixed population intercept βo as 4.35 (the average

value returned in model estimation), we compute the unique random inter-

cept specific to each household, as given in equation (12). We use equation

(13) to arrive at household inefficiency estimates, and equation (14) to gen-

erate the true efficiency score for each household.

TEtrue = exp(−ui) (14)

We generate random numbers for the plot error term υj with different

combinations of the parameters pertaining to the assumed normal distribu-

tion with parameters µ and σ2
υ, as the mean and variance, respectively. Thus,

συ indicates the standard deviation of the plot error.

υj ∼ N(µ, σ2
υ)

We use two of our X-covariates from the data, plot-size and labour, with

their respective elasticities, 0.45 and 0.35, and calculate the true values of yj

through the data generating mechanism, given by equations (15) and (16).

log yj = αi + 0.45 log plotsizej + 0.35 log labourj + ploterrorj (15)

yj = exp(log yj) (16)

We apply the two models, plot-stochastic frontier and LME model, in

their original specification as given in Section 3.1 and Section 3.2, on this

19



Table 5: Monte Carlo simulation statistics for µ = 0

συ ρ D συ ρ D συ ρ D

AM 0.2 0.98 0.74 0.4 0.94 0.78 0.6 0.88 0.82

WAM 0.2 0.97 0.74 0.4 0.93 0.79 0.6 0.85 0.84

GM 0.2 0.98 0.73 0.4 0.94 0.77 0.6 0.88 0.81

WGM 0.2 0.97 0.74 0.4 0.93 0.79 0.6 0.86 0.84

LME 0.2 0.98 0.06 0.4 0.94 0.08 0.6 0.88 0.10

newly generated dependent variable, yj and compute aggregated farm effi-

ciency by their respective aggregation strategies. We use 500 replications of

the simulation procedure and compare the farm efficiency scores generated

thus, from the two models, with the true values, using Spearman’s rank cor-

relation coefficient (ρ) and Kolmogorov-Smirnov test statistic (D). Tables

5 and 6 present the mean6 of ρ and D, for different plot error parameter

combinations, across the 500 replications. They are presented for the values,

µ=0 and µ=2 7.

6The standard deviation of ρ across 500 simulations was 0.00 and increased to a positive

integer in the second decimal place as the plot error standard deviation increased.
7Further, Monte Carlo simulation was carried out for other values of the assumed mean

of the plot error such as -2, 4, and -4. The pattern, as observed in Tables 5 and 6, did not

change.
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Table 6: Monte Carlo simulation statistics for µ = 2

συ ρ D συ ρ D συ ρ D

AM 0.2 0.98 0.74 0.4 0.94 0.78 0.6 0.88 0.82

WAM 0.2 0.97 0.74 0.4 0.93 0.79 0.6 0.85 0.84

GM 0.2 0.98 0.73 0.4 0.94 0.77 0.6 0.88 0.82

WGM 0.2 0.97 0.74 0.4 0.93 0.79 0.6 0.86 0.84

LME 0.2 0.98 0.06 0.4 0.94 0.09 0.6 0.88 0.09

An overall comparison of the ρ and the D statistic between the plot

stochastic frontier model and LME reveals that both are able preserve the

ranking of true efficiency scores, with minor differences between them. In

each case, LME performs slightly better than the aggregation indices but

the latter do produce high correlation as well. However, there is a stark

contrast between the two models when one considers the D statistic. The

aggregation indices lead to high values of the Kolmogorov-Smirnov D, most

of them being close to one. The LME model produces low values of the D,

most of them being close to zero. This indicates that LME model is well able

to maintain the cumulative density of the true efficiency distribution.

An increase in the plot-level statistical error variability (συ) erodes the

ranking of the efficiency scores, as ρ falls with an increase in the standard de-

viation. The plot stochastic frontier model as well as LME report a decrease

in the correlation due to increase in συ.

As far as the choosing between the different aggregation indices is con-

cerned, the Arithmetic Mean produces the highest correlation, as compared
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to other indices. The Geometric Mean produces high correlation at lower

levels of plot error variability but its performance drops to second to the

Arithmetic Mean, when there is an increase in plot error standard deviation.

However, although none of the indices are an appropriate choice according

to D. Also, irrespective of whether it is WAM or WGM, the application of

weights reduce the correlation, as compared to the unweighted means.

7. Empirical application

This section applies the two models on the existing maize data from

smallholders in Kenya. Estimates are presented in tables 7 and 8.
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Table 8: Estimates of classical inputs in plot stochastic frontier and LME model

Plot Stochastic frontier Linear Mixed Model

Log(Harvest) Estimate Estimate t-value

Intercept 5.07*** 4.35 15.14

(0.17) (0.29)

Log(Size) 0.52*** 0.4 9.23

(0.03) (0.04)

Log(Seed) 0.13*** 0.17 4.06

(0.04) (0.04)

Log(Labour) 0.05 0.18 4.48

(0.03) (0.04)

Fertilizer dummy 0.11 0.03 0.33

(0.07) (0.1)

Log(Fertilizer) 0.07* 0.09 2.16

(0.03) (0.04)

Log(Seed)*Log(Fertilizer) 0.04*** 0.02 1.81

(0.01) (0.01)

Pesticide dummy -0.08 -0.09 -0.97

(0.06) (0.1)

Log(Pesticide) 0.02 -0.02 -0.28

(0.03) (0.06)

Manure dummy 0.49*** 0.04 0.31

(0.11) (0.14)

Log(Manure) 0.07*** 0.01 0.37

(0.02) (0.02)

a Figures have been rounded upto 2 decimal places.

b *, **, *** correspond to 0.1, 0.05 and 0.01 level of significance, respectively.

c Standard errors are reported in parenthesis.



Table 7: Estimates of dummy variables in plot stochastic frontier and LME model

Plot Stochastic frontier Linear Mixed Model

Log(Harvest) Estimate Estimate t-value

Poor soil -0.27*** -0.16 -2.15

(0.05) (0.07)

Good soil 0.15*** 0.08 1.73

(0.04) (0.05)

Long rains dummy 0.05 -0.03 -1.01

(0.03) (0.03)

High Tropics 0.68*** 0.59 3.59

(0.09) (0.17)

Moist Transitional 0.35*** 0.36 2.33

(0.08) (0.15)

Dry Transitional 0.2** 0.1 0.62

(0.08) (0.16)

Dry Mid-Altitude 0.2** 0.03 0.2

(0.08) (0.16)

Moist Mid-Altitude 0.37*** 0.41 2.71

(0.08) (0.15)

a Figures have been rounded upto 2 decimal places.

b *, **, *** correspond to 0.1, 0.05 and 0.01 level of significance, respectively.

c Standard errors are reported in parenthesis.

In the estimation of plot stochastic frontier, monotonicity is globally sat-

isfied as all output elasticities are positive. The largest output elasticity is
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that of the plot size, followed by seed. Soil fertility plays a major role in de-

termining production, as the coefficients of both, poor as well as good type

are significantly different from medium category, which is the reference cat-

egory. Also, they have opposite signs, as expected. The five AEZs included

in the model perform significantly better than Coastal Lowland, which is the

reference category. The LME model hints at a significant effect of labour on

the frontier, with an output elasticity of 0.18 percent.

Table 9 provides the coefficients of Z-variables/group-level predictors, re-

spectively, from plot stochastic frontier and the LME model. Education in

the household and a female headed household are significant in explaining

inefficiency, according to plot stochastic frontier. The former reduces ineffi-

ciency and the latter increases it, as expected. The negative effect of a female

headed household is in lines with the result of Liu and Myers (2009). They

explain this adverse effect on efficiency through the fact that it is difficult

for women to possess land ownership rights, unlike men and this affects the

incentive to work. The coefficients of group-level predictors in LME model

indicate the effect of a unitary increase in the predictor on the household

random deviation.

Table 10 presents model-specific results. In terms of AIC, BIC and Log-

likelihood, the LME model fares better than the plot stochastic frontier.

Further, the higher value of the standard deviation of the random effect, de-

noted by σγ, as compared to the residual standard deviation, confirms a high

level of heterogeneity among the farm households in production. The esti-

mates of Gamma and variance share of the inefficiency term in plot stochastic
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Table 9: Estimates of coefficients of plot-invariant variables

Plot Stochastic frontier Linear Mixed Model

Log(Harvest) Estimate Estimate t-value

Max education -0.21*** 0.01 0.67

(0.05) (0.01)

Female headed HH 0.81*** -0.15 -1.64

(0.23) (0.09)

Cultivated land owned -0.83 -0.36 -2.59

(0.49) (0.14)

Distance to Extension -0.01 0 -1.13

(0.01) (0)

Credit Shortage -0.53 0.13 1.26

(0.3) (0.1)

a Figures have been rounded upto 2 decimal places.

b *, **, *** correspond to 0.1, 0.05 and 0.01 level of significance, respectively.

c Standard errors are reported in parenthesis.
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frontier confirm the existence and high level of inefficiency in production by

the households.

Table 10: Model-specific estimates

Plot Stochastic frontier Linear Mixed Model

AIC 8117 7210

BIC 8272 7364

Log likelihood -4033 -3579

σγ 1.03

Residual σ 0.577

Mean efficiency 0.446

Gamma 0.967

Var(u) / Var(u)+Var(υ) 0.914

a σγ denotes the standard deviation of the household random deviation γoi.

b Residual σ is the standard deviation of the residuals after LME estimation.

8. Conclusion

This is study is a first in examining the performance of the LME model

and aggregation indices in estimating technical efficiency when there is a

data hierarchy, using Stochastic Frontier Analysis. We perform Monte Carlo

simulations with replications of the data generating process, using different

parameter combinations of the plot error and observe the mean of correla-

tion and Kolmogorov-Smirnov statistic of plot-level stochastic frontier and

the Linear Mixed Effects model, in order to compare the accuracy in effi-

ciency estimation at an aggregate (farm household) level. We observe that
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both models maintain the ranking of households according to the true rank-

ing. However, the LME also closely estimates the true efficiency distribution,

unlike aggregation indices of the plot-level stochastic frontier. The variabil-

ity of plot-level error plays a systematic role in affecting the performance of

both models. As it increases, the comparability of both models with the true

aggregate efficiency distribution is reduces progressively.

The empirical application of the two models on maize production data,

collected from smallholders in Kenya, gives insight into the factors which

play a role in determining production of maize and the efficiency of the con-

cerned farm households. There is scope for increasing the production through

improving the soil fertility. Higher education achieved in the household im-

proves efficiency in production.

Further, one can explore the potential of the LME model by incorporating

more levels in the data hierarchy and use Multilevel Modeling to check the

robustness of the results of our study.
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