
Ökopedologie I + II

Einführung Boden als Wasserspeicher Potentialkonzept

Bodenphysikalische Kenngrößen - Raumanteile

Lagerungsvolumen (V):

Gesamtvolumen der 3 Phasen (fest, flüssig, gasförmig) eines ungestörten Bodens. $V = V_{\rm M} + V_{\rm W} + V_{\rm L}$

Porenvolumen (V_P):

Gesamtvolumen der flüssigen und gasförmigen Phase. Wird meist als Prozentanteil des Lagerungsvolumens (V) angegeben (Porosität).

$$V_P = V_W + V_L$$

Bodenphysikalische Kenngrößen - Bodenfeuchte

Volumetrischer Wassergehalt (θ):

Gesamtvolumen der flüssigen Phase bezogen auf das Lagerungsvolumens (V) (Angabe meist in %).

$$\theta = V_W / V$$

Gravimetrischer Wassergehalt (θ_q):

Gesamtmasse der flüssigen Phase bezogen auf die Gesamtmasse der trockenen Bodenfestphase (Angabe meist in %).

$$\theta_{\rm q} = M_{\rm W} / M_{\rm M}$$

Wassergefüllter Porenraum (WFPS):

Gesamtvolumen der flüssigen Phase bezogen auf das Porenvolumen (V_P) (Angabe meist in %).

WFPS =
$$V_W / V_P$$

Bodenphysikalische Kenngrößen - Dichte

Lagerungsdichte oder scheinbare Dichte (ρ_a):

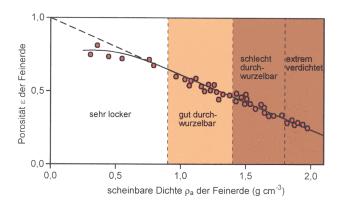
Verhältnis von Trockenmasse ($M_{\rm M}$) zu Lagerungsvolumen (V) eines Bodens.

$$\rho_a = M_M / V$$

Die Lagerungsdichte (ρ_a) von Böden variiert zwischen 0,5 und 1,8 g cm⁻³.

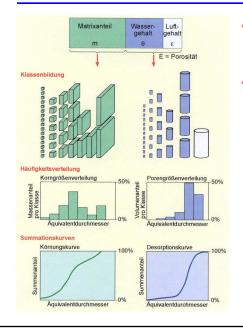
Reelle Dichte der Matrix (ρ_r):

Verhältnis von Trockenmasse ($M_{\rm M}$) zum Volumen der festen Phase ($V_{\rm M}$)


$$\rho_r = M_M / V_M$$

Das spezifische Gewicht wichtiger Bodenbestandteile beträgt:

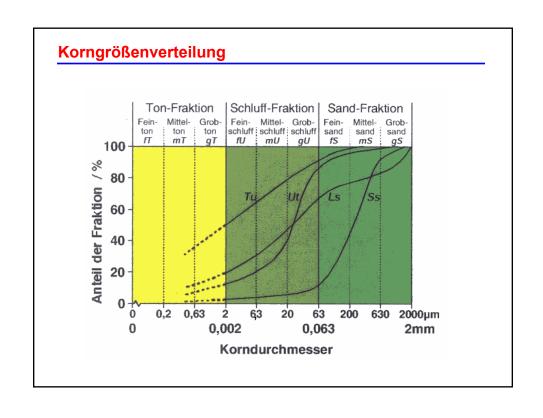
Quarz: 2,65 g cm⁻³ (mittlere Mineraldichte in Böden)

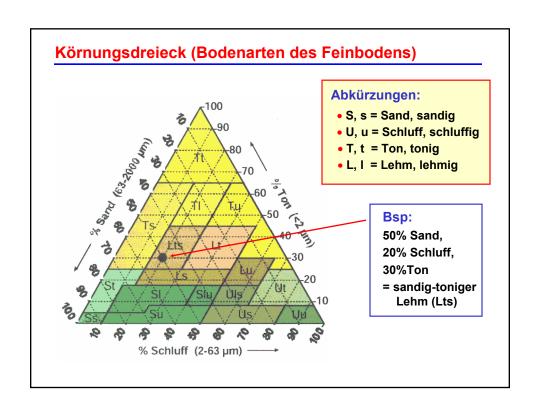

Calciumcarbonat: 2,71 g cm⁻³

Lagerungsdichte und Porosität

- Da die reelle Dichte in Böden nur wenig variiert (Ausnahme: Böden mit viel organischer Substanz!), ist die Beziehung zwischen Lagerungsdichte und Porosität über weite Bereiche linear.
- ⊠ Das Porenvolumen wird in der Regel über die scheinbare Dichte ($ρ_a$) des Bodens bestimmt. $V_p(%) = (1 (ρ_a / ρ_r)) \cdot 100$ Faustzahl für die reelle Dichte ($ρ_a$) von Mineralböden: 2,65 g cm⁻³

Größenklassen der Phasenbestandteile

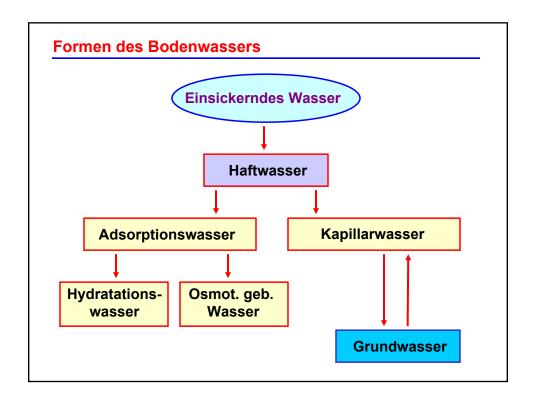

- Sowohl die Festphase (Matrix) als auch der Porenraum wird in Größenklassen unterteilt.
- Die Massen- bzw. Volumenanteile dieser Größenklassen sind wichtige Kenngrößen von Böden


Matrix:

- Skelettgehalt (> 2 mm)
- Feinbodenanteil (< 2 mm)
 - Korngrößenverteilung
 - Bodenart

Porenraum:

Porengrößenverteilung



Porengrößenbereiche und ihre Funktion

Porengrößen- bereiche	Porendurch- messer (µm)	Wasserspann cm WS, hPa	ungsbereich pF	Funktion
Grobporen				
weit	> 50	0 - 60	< 1,8	Luft und
eng	50 - 10	60 - 300	1,8 – 2,5	Sickerwasser
Mittelporen	10 – 0,2	300 - 15000	2,5 - 4,2	verfügbares Wasser
Feinporen	< 0,2	> 15000	> 4,2	Totwasser

Substrat	Porenvolumen (%)	Grobporen (%)	Mittelporen (%)	Feinporen (%)
Sande	46 ± 10	30 ± 10	7 ± 5	5 ± 3
Schluffe	47 ± 9	15 ± 10	15 ± 7	15 ± 5
Tone	50 ±15	8 ± 5	10 ± 5	35 ± 10
Anmoore	70 ±10	5 ± 3	40 ± 10	25 ± 10
Hochmoore	85 ±10	25 ±10	40 ±10	25 ±10

Bindungsformen des Bodenwassers

1. Haftwasser:

- ⇒ Gegen den Einfluß der Schwerkraft im Boden gebundenes Wasser.
- Unterteilung nach Art der wirkenden Kräfte zwischen den Wassermolekülen und der Bodenmatrix sowie zwischen den Wassermolekülen selbst.

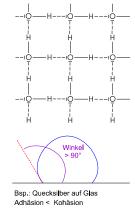
2. Adsorptionswasser:

- Umhüllt die Oberfläche der Bodenteilchen, ohne daß Menisken ausgebildet werden.
- ⇒ Bindungsfestigkeit ist in der Regel sehr hoch, es ist nicht pflanzenverfügbar

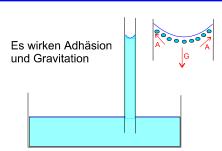
3. Hydratationswasser:

- ⇒ Die Bindung kann sowohl über elektrostatische Kräfte als auch über H-Brücken sowie kovalente Bindung erfolgen.
- ⇒ Die Bindung ist so fest, daß die Beweglichkeit des Wassers eingeschränkt ist.
- Auch lufttrockener Boden enthält noch Wasser (abh. vom Wasserdampfdruck der Luft). Bindungsstärke unmittelbar an der Mineraloberfläche ist sehr hoch.

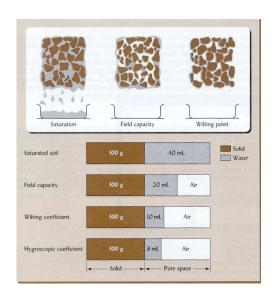
Bindungsformen des Bodenwassers


4. Osmotisch gebundenes Wasser:

Wasseranlagerung um Bodenteilchen aufgrund einer erhöhten Konzentration von Ionen in der Nähe der Mineraloberfläche (Streben nach Konzentrationsausgleich).


5. Kapillarwasser:

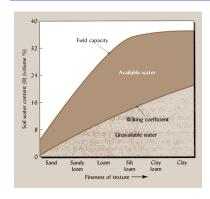
- Wenn ein Sättigungsgrad erreicht ist, bei dem sich die Adsorptionswasserschichten, die die Mineralteilchen umgeben, berühren und zu Menisken zusammenfließen, ist die Grenze zur Kapillarwasserbildung erreicht.
- Meniskenbildung durch Zusammenwirken von Adhäsionskräften (Wassermolekül- Matrix) und Kohäsionskräften (Wassermolekül – Wassermolekül)
- Wasserstoffbrücken der Wassermoleküle verursachen Kohäsion.


Kapillarer Aufstieg

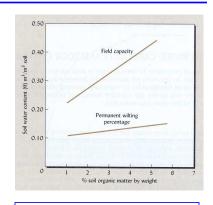
- Die aufwärts gerichtete Kraft ist genauso groß wie das Gewicht der unterhalb des Meniskus befindlichen Wassersäule.
- \Rightarrow Nach oben wirkt: $F_{auf} = 2 \cdot \pi \cdot r \cdot \cos \alpha \cdot \text{Oberflächenspannung}$ (Umfang der Kapillaren x Randwinkel x Oberflächenspannung)
- \Rightarrow Nach unten wirkt: $F_{ab} = h \cdot \pi \cdot r^2 \cdot d \cdot g$ (Volumen Wassersäule x Dichte des Wassers (d) x Gravitationskonstante (g))

Die kapillare Aufstiegshöhe h (in cm) ist: h = 0.15/r

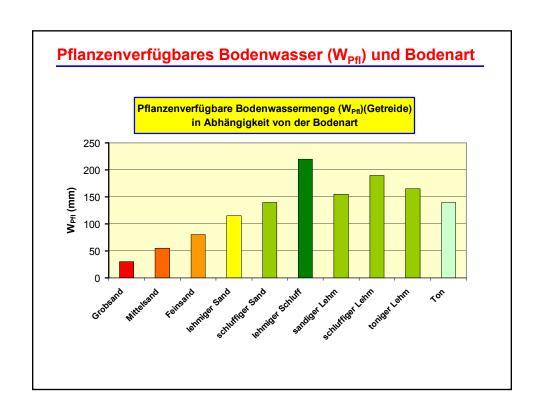
Bestimmung des Wassergehalts bei Feldkapazität

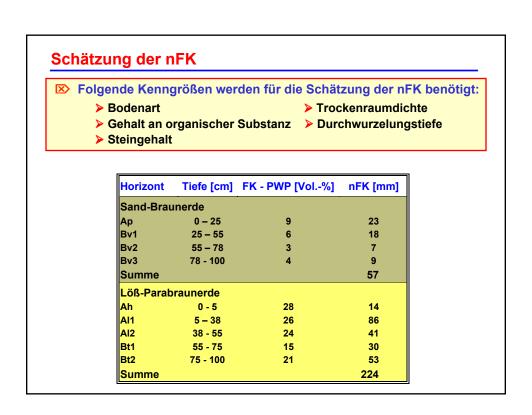

Feldkapazität (FK, θ_{FK}):

Maximale Haftwassermenge in Vol.-% bezogen auf den trockenen Boden (Wassergehalt bei ≈ pF 1,8 bis 2,5)


Permanenter Welkepunkt (PWP, θ_{PWP}):

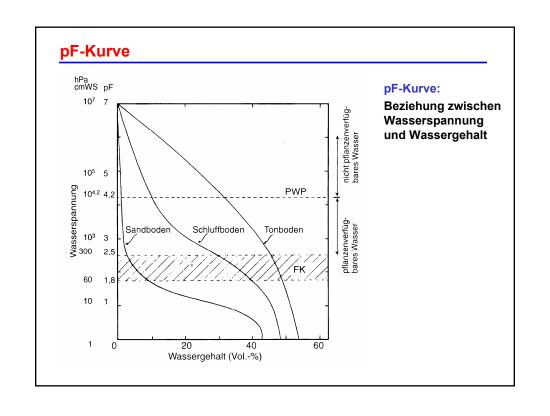
Wassergehalt, unterhalb dem Pflanzen dem Boden kein Wasser mehr entziehen können (Wassergehalt bei ≈ pF 4,2).


Kenngrößen des Bodenwasserhaushalts



- Das Totwasservolumen steigt mit dem Tongehalt an.
- Die FK steigt bei abnehmender Korngröße bis zum schluffigen Lehm an.
- Die nFK ist im schluffigen Lehm am höchsten.

- Die FK steigt bei gleicher Textur mit dem Gehalt an org.
 Substanz an.
- Gleiches gilt für die nFK.



Wassergehalt - Wasserspannung Die Beziehung wird als pF-Kurve oder Wasserspannungskurve bezeichnet. Sie ist eine wichtige Kenngröße für: ⇒ Die Wasserspeichereigenschaft ⇒ Die Entwässerungseigenschaft ⇒ Die Wasserverfügbarkeit für Pflanzen **Bestimmung:** ⇒ Wassergesättigte Bodenproben werden bei definierter Saugspannung entwässert und anschließend Druck wird der Wassergehalt gravimetrisch bestimmt Druck-Die Entwässerung erfolgt meist in einer Druckapparatur, in probe der das Wasser durch Anlage eines definierten Überdrucks

poröse Platte

aus den Poren des Bodens

gedrückt wird.

Das Potenzialkonzept

- ⇒ Beschreibung der Bindung und der Bewegung des Wassers im Boden durch die einwirkenden Kräfte.
- □ Das Potenzial ist hierbei definiert als die Arbeit, die notwendig ist, um eine Einheitsmenge Wasser von einem gegebenen Punkt zu einem Bezugspunkt zu transportieren.
- ➡ Die Wassermenge wird hierbei als eine Volumen- oder Gewichtseinheit dargestellt.
- ⇒ Wasser bewegt sich immer von Stellen höheren Potenzials (= höhere potentielle Energie) zu Stellen mit niedrigerem Potenzial.
- Die Wasserbewegung hält so lange an, bis an allen Stellen das Gesamtpotenzial den gleichen Wert aufweist.

Einheiten und Dimensionen der Potenziale

Allgemein: Potenzial (potentielle Energie) = $m \cdot g \cdot h$ m = Masse, g = Erdbeschleunigung, h = Höhe

- → Potenzial des Bodenwassers wird bezogen auf eine Volumen- oder Gewichtseinheit Wasser:
- 1. Volumenbezug:

$$\Psi_{(V)} = \frac{m \cdot g \cdot h}{V} = \frac{m \cdot g \cdot h}{A \cdot h} \qquad \frac{N}{m^2} = Pa$$

bezogen auf eine Volumeneinheit Wasser hat das Potenzial die Dimension eines Druckes.

2. Bezogen auf das Gewicht im Kraftfeld der Erde

$$\Psi_g = \frac{m \cdot g \cdot h}{m \cdot g} = h \quad [m, cm \quad Wassers\"{a}ule]$$

bezogen auf eine Gewichtseinheit Wasser hat das Potenzial die Dimension cm Wassersäule.

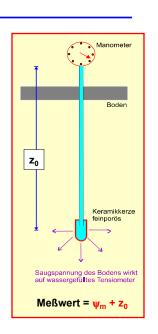
Das Potenzialkonzept - Teilpotenziale

1. Gravitationspotenzial (ψ_z):

- > vertikal nach unten gerichtete Kraft
- entspricht der zu leistenden Kraft, um eine Einheit Wasser von einem Bezugsniveau auf eine bestimmte Höhe anzuheben.
- bezogen auf das Gewicht des Wassers entspricht ψ_z dem vertikalen Abstand von der Bezugsebene.

Ref. 10 cm $\psi_{ZA} = 20 \text{ cm}, \quad \psi_{ZB} = -10 \text{ cm}$ $\Delta \psi_Z = \psi_{ZA} - \psi_{ZB} = 30 \text{ cm}$

Ermittlung von ψ_z :


- 1. Festlegung einer willkürlichen Bezugsebene.
- Punkte oberhalb dieser Ebene haben ein positives ψ₂ das der Höhe (in cm) über der Bezugsebene entspricht.
- 3. Punkte unterhalb dieser Ebene haben ein negatives ψ_z das der Tiefe (in cm) unter der Bezugsebene entspricht.
- 4. Die Differenz des ψ, zwischen zwei Punkten A und B ergibt sich aus:

 $\psi_{z(A)}$ - $\psi_{z(B)}$

Das Potenzialkonzept - Teilpotenziale

2. Matrixpotenzial (ψ_m):

- ⇒ wird auch als Saugspannung oder pF-Wert bezeichnet
- ⇒ wird verursacht duch Kapillarkräfte, bei völliger Wassersättigung ist ym daher 0
- ⇒ ψ_m hat ein negatives Vorzeichen
- ⇒ je geringer der Wassergehalt desto negativer wird das Matrixpotenzial ψ_m. Die Saugspannung des Bodens steigt mit abnehmender Wassersättigung, z. B. mit zunehmender Entfernung von der Grundwasseroberfläche
- Bestimmung des Matrixpotenzials ψ_m im Boden mit einem Tensiometer. Die Saugspannung überträgt sich durch die Kapillaren der Keramikkerze auf die Wassersäule des Tensiometers. Meßbereich ca. 0 bis 1000 cm Wassersäule.

Das Potenzialkonzept - Teilpotenziale

3. Druckpotenzial (ψ_0):

- Arbeit, die erforderlich ist, um Druckunterschiede zum Atmosphärendruck aufzuheben.
- Im Freiland ist der hydrostatische Druck unterhalb der Grundwasseroberfläche von Bedeutung.
- \Rightarrow Im ungesättigten ist ψ_{p} daher 0.
- Unterhalb der Grundwasseroberfläche (GOF) steigt ψ_p mit zunehmendem Abstand von der GOF an, das Vorzeichen dieses Potentials ist positiv.

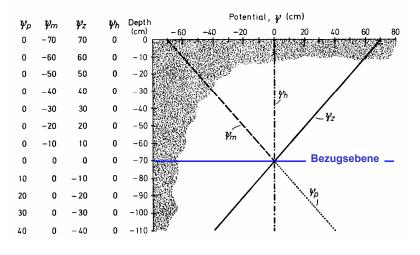
4. Osmotisches Potenzial (ψ₀):

- Arbeit, die erforderlich ist, um eine Einheit Wasser durch eine semipermeable Membran zu transportieren.
- Abh. vom Salzgehalt in der Lösung.
- ⇒ Bedeutend besonders in stark salzhaltigen Böden.

Das Potenzialkonzept - Hydraulisches Potenzial

5. Hydraulisches Potenzial (ψ_h):

⇒ ψ_h ist die Summe der Teilpotenziale:

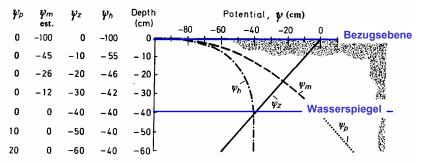

$$\psi_h = \psi_z + \psi_m + \psi_p$$

- Ist ψ_h im ganzen Bodenprofil konstant, dann befindet sich das Bodenwasser im Gleichgewicht und es findet kein Wasserfluß statt.
- Ist ψ_h nicht konstant, dann fließt Wasser vom höheren zum niedrigeren hydraulischen Potenzial.

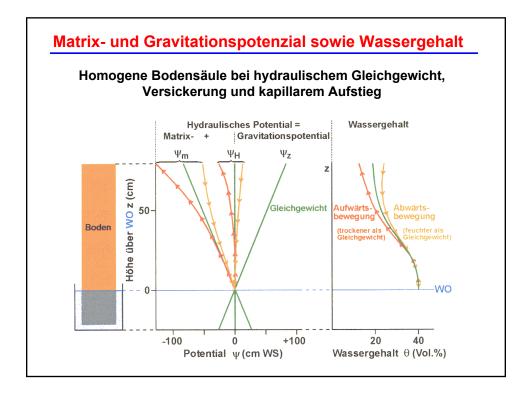
Beispiel: Hydraulisches Potenzial im Gleichgewicht

Given: A soil in which the liquid water is in equilibrium with a water table at -70 cm and the reference level is chosen as -70 cm.

Find: The values of ψ_p , ψ_m , ψ_z , and ψ_h throughout the soil profile to -110 cm. Solution:



Beispiel: Wasserbewegung


Given: Water is evaporating at the soil surface and there is a water table at -40 cm. The reference level is at the soil surface.

Find: Values of ψ_z , ψ_p , and ψ_h throughout the soil profile to -60 cm. In order to find ψ_h , measured or estimated values of ψ_m must be available. Make estimates of ψ_m for the conditions specified.

Solution:

Note: For upward flow, the hydraulic potential at -40 cm must be greater than at -30 cm, etc. Thus, $\psi_{h(-40)} > \psi_{h(-30)} > \psi_{h(-20)} > \psi_{h(-10)} > \psi_{h(0)}$. We may have variations in the gradient $\Delta \psi_h/\Delta z$ with depth; but for upward flow, the sign must always be negative.

Wasserbewegung und das Darcy-Gesetz

- Das Ausmaß der Wasserbewegung wird bestimmt durch:
 - 1. Potenzialgefälle Δψ_h
 - 2. Wasserleitfähigkeit Kw

$$J_{_{W}} = -K_{W} \cdot \frac{\Delta \Psi_{_{h}}}{\Delta z}$$

J_W = Wassermenge, die pro Zeiteinheit durch einen Fließquerschnitt perkoliert (Wasserflußdichte) (cm³/cm² · s)

 K_W = hydraulische Leitfähigkeit (cm/s)

 $\Delta \psi_h$ = Differenz des hydraulischen Potenzials (cm)

 $\Delta z = Entfernung zwischen 2 Punkten (cm)$

 Der Zusammenhang zwischen diesen Größen und dem Wasserfluß wird durch das Darcy-Gesetz beschrieben:

$$J_W = \frac{Q_W}{A \cdot t}$$

 $J_W = Wasserflußdichte$ (cm³/cm² · s)

 Q_W = Wassermenge (cm³)

A = Fließquerschnitt (cm²)

t = Zeit(s)

Bsp: Darcy-Gesetz

Aufgabe:

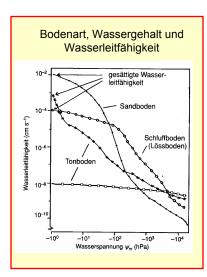
➡ Wieviel Wasser (in cm³) fließt im folgenden Beispiel innerhalb von 10⁴ Sekunden durch eine Fläche von 10 cm²? Die mittlere hydraulische Leitfähigkeit betrage 10⁻² cm/s.

ψ_m am Punkt A ist -10 cm

 ψ_m am Punkt B ist -100 cm.

$$\psi_{h(A)} = \psi_{m(A)} + \psi_{z(A)} = -10 + 10 = 0 \text{ cm}$$

$$\psi_{h(B)} = \psi_{m(B)} + \psi_{z(B)} = -100 + 0 = -100 \text{ cm}$$


$$\frac{\Delta \Psi_h}{\Delta z} = \frac{0cm - (-100cm)}{10cm} = 10$$

$$Q_{w} = -K_{w} \cdot A \cdot t \cdot \frac{\Delta \Psi_{h}}{\Delta z} = -10^{-2} \frac{cm}{s} \cdot 10cm^{2} \cdot 10^{4} s \cdot 10 = -10^{4} cm^{3}$$

Hydraulische Leitfähigkeit

- ⇒ Die Wasserleitfähigkeit wird stark beeinflußt durch:
 - 1. Wassergehalt
 - 2. Körnung und Gefüge
- ⇒ Bei Wassersättigung ist die Leitfähigkeit K_s am höchsten.
 - 1. abh. von Textur
 - 2. abh. von Struktur

Bodenart	Gesättigte Wasserleitfähigkeit (cm/s)		
Sand	4 · 10 ⁻¹ bis 4 · 10 ⁻³		
Schluff	$4 \cdot 10^{-1}$ bis $5 \cdot 10^{-5}$		
Lehm	$4 \cdot 10^{-1}$ bis $1 \cdot 10^{-5}$		
Ton	$4 \cdot 10^{-1}$ bis $1 \cdot 10^{-7}$		

