

CRC 990

Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems Sumatra, Indonesia

Trace gas fluxes, soil N cycling, and nutrient leaching in heavily-weathered soils under rainforest transformation systems

Prof. Dr. Edzo Veldkamp and Dr. Marife Corre Dr. Muhammad Damris (UNJA) Dr. Sri Rahayu Utami (Brawijaya University) Dr. Aiyen Tjoa (Tadulako University

PhD Students:

Kara Allen **Evelyn Preuss** Syahrul Kurniawan

Background

Tropical soils are globally important sources/sinks of the climaterelevant trace gases: nitric oxide (NO), nitrous oxide (N₂O), methane (CH_{4}) , and carbon dioxide (CO_{2}) . These trace gases all have in common that they are produced and consumed in soils through microbiallymediated processes, which strongly depend on soil chemical and physical characteristics. Transformations of rainforests in regions like Sumatra have profound effects on soil chemical, physical and biological characteristics which, in turn, strongly influence nutrient cycling and losses (i.e. trace gas fluxes and leaching).

Objectives:

Assess the impacts of rainforest transformation to jungle rubber, rubber plantation, and oil palm plantation on:

1) soil chemical and physical properties 2) soil nitrogen (N)-cycling rates 3) soil-atmosphere exchange of trace gases 4) leaching losses

Soil chemical and physical characteristics (Kara Allen & Syahrul Kurniawan)

Soil sampling down to 2-m depth (e.g. Fig. 1) at 32 core sites for quantification of chemical and physical characteristics, employing space-for-time substitution.

Status : Soil sampling is in progress and will be finished in December 2013.

Fig. 1. Soil profile down to 2-m depth in (1) *jungle rubber and (2) forest.*

Fig. 2. Gross rates of soil N cycling (mg N kg⁻¹ d⁻¹; on arrows), N pools (mg N kg⁻¹; upper numbers in boxes) and mean residence time (day; lower numbers in boxes). GNM – gross N mineralization, GN – gross nitrification, DNRA – dissimilatory NO_3^- reduction to NH_4^+ , immo – immobilization by microbial biomass, Micro N – microbial biomass N.

Soil-atmosphere exchange of trace gases (Evelyn Preuss)

Whole-year measurements of NO, N₂O, CH₄ and CO₂ fluxes (Fig. 3) and soil factors known to control soil-atmosphere trace gas exchange at 32 core sites. In oil palm plantations, we are also conducting in-situ incubations of organic debris gathered on leaf axils in order to detect above ground sources of N_2O , CH_4 and CO_2 .

Status: Whole-year measurements of trace gas fluxes and in-situ incubations of organic debris on oil palm leaf axils will be finished in December 2013.

Soil N-cycling rates (Kara Allen)

Quantify gross rates of microbially-mediated soil N cycling (Fig. 2) at 32 core sites, using ¹⁵N pool dilution techniques.

Status: Sampling is finished on all plots. Laboratory analyses are on-going.

