Allen-Cahn equation in periodic media

Exercises 2

Guglielmo Albanese, Matteo Cozzi (Universita degli Studi di Milano)

Intensive Programme / Summer School "Periodic Structures in Applied Mathematics" Göttingen, August 18 - 31, 2013

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held Georg-August-UNIVERSITÄT responsible for any use which may be made of the information contained therein.

> D-2012-ERA/MOBIP-3-29749-1-6 Grant Agreement Reference Number:

Plane-like minimizers in periodic media - Exercise sheet*

Let $a_{ij} : \mathbb{R}^n \to \mathbb{R}$ be, for any i, j = 1, ..., n, be a Lipschitz function, periodic under integer translations, i.e. $a_{ij}(x+v) = a_{ij}(x)$, for any $v \in \mathbb{Z}^n$. Assume moreover that the a_{ij} 's form a symmetric, bounded and uniformly elliptic matrix, that is

$$a_{ij} = a_{ji}$$
 and $\lambda |\xi|^2 \le a_{ij}\xi_i\xi_j \le \Lambda |\xi|^2, \, \forall \xi \in \mathbb{R}^n,$

for some $0 < \lambda \leq \Lambda < +\infty$. Let $W : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be a *double well* potential, i.e. a non-negative function $(x, u) \mapsto W(x, u)$ measurable and \mathbb{Z}^n -periodic in the x variable, C^2 in the u variable, such that

$$W(x, \pm 1) = W_u(x, \pm 1) = 0, \quad W_{uu}(x, \pm 1) > 0, \quad \text{for any } x \in \mathbb{R}^n, \\ W(x, u) > 0, \quad \text{for any } x \in \mathbb{R}^n, u \in (-1, 1).$$

Given any $\omega \in \mathbb{Q}^n \setminus \{0\}$, consider on \mathbb{R}^n the equivalence relation ~ defined by

$$x \sim y$$
 if and only if $y - x = k \in \mathbb{Z}^n$, with $\omega \cdot k = 0$.

Set $\widetilde{\mathbb{R}}^n := \mathbb{R}^n / \sim$. Furthermore, we consider the strip

$$S_M^{\omega} := \{ x \in \mathbb{R}^n : \omega \cdot x \in [0, M] \},\$$

and the related quotient $\widetilde{S}_M^{\omega} := S_M^{\omega} / \sim$. In the following we will freely identify a quotient with any of its corresponding fundamental domains of \mathbb{R}^n . For any measurable $\Omega \subset \mathbb{R}^n$, we introduce the energy functional

$$\mathcal{G}_{\Omega}(u) := \int_{\Omega} a_{ij}(x) u_i(x) u_j(x) + W(x, u(x)) \, dx, \qquad \text{for } u \in H^1_{\text{loc}}(\Omega),$$

considering it set to $+\infty$ whenever the integral does not converge.

Exercise 1.

Prove that cutting off the values above 1 and below -1 from a function u does not increase its energy \mathcal{G}_{Ω} , that is

$$\mathcal{G}_{\Omega}(\min\{u,1\}), \mathcal{G}_{\Omega}(\max\{u,-1\}) \leq \mathcal{G}_{\Omega}(u).$$

Due to this fact we will always implicitly assume the functions to have values in [-1, 1]. Introduce now the class of *admissible functions* on \mathbb{R}^n

$$\mathcal{X}_M^{\omega} := \{ u \in H^1_{\text{loc}}(\widetilde{\mathbb{R}}^n) : u(x) \ge 9/10 \text{ if } \omega \cdot x \le 0, \text{ and } u(x) \le -9/10 \text{ if } \omega \cdot x \ge M \},$$

and let \mathcal{M}_M^{ω} denote the set of the absolute minimizers of $\mathcal{G}_{\mathbb{R}^n}$ in \mathcal{X}_M^{ω} , i.e.

$$\mathcal{M}_{M}^{\omega} := \{ u \in \mathcal{X}_{M}^{\omega} : \mathcal{G}_{\widetilde{\mathbb{R}}^{n}}(u) = \min\{ \mathcal{G}_{\widetilde{\mathbb{R}}^{n}}(v) : v \in \mathcal{X}_{M}^{\omega} \} \}.$$

Exercise 2.

Prove the following two assertions in order to obtain the existence of a global minimizer of $\mathcal{G}_{\mathbb{R}^n}$ in \mathcal{X}_M^{ω} periodic with respect to \sim .

(i) Show that the functional G_{ℝn} is not identically infinite on X^ω_M by giving the explicit example of a function u₀ ∈ X^ω_M with G_{ℝn}(u₀) < +∞;
(Hint: consider the piecewise linear function u₀ : ℝⁿ → ℝ having constant values 1 for ω ⋅ x ≤ 0 and -1 for ω ⋅ x ≥ M.)

^{*}The exercises listed here will be carried out as part of the tutoring activities on August, 28th.

(ii) Show then that \mathcal{M}_{M}^{ω} is not empty; (Hint: use the standard direct method of calculus of variations. It could be useful to introduce the set $\widetilde{D}_{R} := \{x \in \mathbb{R}^{n} : \omega \cdot x \in [-R, R] \}$, with R > M, to cope with some difficulties due to the unboundedness of \mathbb{R}^{n} .)

It can be shown - using techniques à la De Giorgi or applying the regularity theory for elliptic PDEs to the Euler-Lagrange equation of \mathcal{G} - that there exists $\alpha \in (0, 1)$ such that, given any compact $K \subset \mathbb{R}^n$,

 $||u||_{C^{0,\alpha}(K)} \le C, \qquad \text{for any } u \in \mathcal{M}_M^{\omega},$

for some constant C > 0, so that, in particular, $\mathcal{M}_M^{\omega} \subset C^{0,\alpha}_{\text{loc}}(\mathbb{\tilde{R}}^n)$. Now we introduce the periodic function

$$u_M^{\omega}(x) := \inf_{u \in \mathcal{M}_{\mathcal{H}}^{\omega}} u(x), \qquad \text{for any } x \in \widetilde{\mathbb{R}}^n,$$

which will be referred to as the minimal minimizer of \mathcal{X}_{M}^{ω} .

Exercise 3.

Prove that $u_M^{\omega} \in C^{0,\alpha}_{\text{loc}}(\widetilde{\mathbb{R}}^n)$.

Exercise 4.

Given $\alpha, \beta \geq 0$, consider the strip

$$S^{\omega}_{-\alpha,M-\beta} := \{ x \in \mathbb{R}^n : \omega \cdot x \in [-\alpha, M-\beta] \},\$$

and the associated space of minimizers $\mathcal{M}_{-\alpha,M-\beta}$. Prove the following statements.

(i) If $u, v \in H^1_{\text{loc}}(\widetilde{\mathbb{R}}^n)$, then

$$\mathcal{G}_{\widetilde{\mathbb{R}}^n}(\min\{u,v\}) + \mathcal{G}_{\widetilde{\mathbb{R}}^n}(\max\{u,v\}) \le \mathcal{G}_{\widetilde{\mathbb{R}}^n}(u) + \mathcal{G}_{\widetilde{\mathbb{R}}^n}(v);$$

- (ii) If $u \in \mathcal{M}_{M}^{\omega}$ and $v \in \mathcal{M}_{-\alpha,M-\beta}$, then $\min\{u,v\} \in \mathcal{M}_{-\alpha,M-\beta}$ and $\max\{u,v\} \in \mathcal{M}_{M}^{\omega}$. In particular, $(\mathcal{M}_{M}^{\omega},\min,\max)$ is a lattice;
- (iii) $u_M^{\omega} \in \mathcal{M}_M^{\omega}$. (Hint: use Arzelà-Ascoli theorem.)

For $k \in \mathbb{R}^n$, denote with \mathcal{T}_k the translation of vector k, both for sets and functions:

$$\mathcal{T}_k E := \{ x + k : x \in E \}, \qquad \mathcal{T}_k f := f(\cdot - k)$$

Given a set $E \subset \mathbb{R}^n$ and a vector $\varpi \in \mathbb{R}^n$, we say that E satisfies the *Birkhoff property* with respect to ϖ (or are ϖ -*Birkhoff*) if

- For any $k \in \mathbb{Z}^n$ such that $\varpi \cdot k \leq 0$, we have $\mathcal{T}_k E \subset E$;
- For any $k \in \mathbb{Z}^n$ such that $\varpi \cdot k \ge 0$, we have $\mathcal{T}_k E \supset E$.

Exercise 5.

Check the following geometric properties.

- (i) If $\{E_{\alpha}\}_{\alpha \in A}$ is a family of ϖ -Birkhoff sets, then both $\cap_{\alpha \in A} E_{\alpha}$ and $\cup_{\alpha \in A} E_{\alpha}$ are ϖ -Birkhoff;
- (ii) If E is Birkhoff with respect to ϖ , then E^c is Birkhoff with respect to $-\varpi$;

(iii) There exists a constant $\rho > 0$ depending on n such that if a ϖ -Birkhoff set E contains a ball of radius ρ , then it contains also a strip of width 1 with sides orthogonal to ϖ which itself contains the center of the ball.

Exercise 6.

Given $\theta \in \mathbb{R}$, show that the superlevel set $\{u_M^{\omega} > \theta\}$ is ω -Birkhoff. (Hint: Use point (ii) of Exercise 4 with u_M^{ω} and $\mathcal{T}_k u_M^{\omega}$.)

Fix now a fundamental domain for \sim of the form $F = Q_F \times \mathbb{R}$, with Q_F a (n-1)-dimensional hyperrectangle in any hyperplane orthogonal to ω . Introduce the *doubled* relation \sim_D defined by setting

$$x \sim_D y$$
 if and only if $y - x = k \in (2\mathbb{Z})^n$, with $\omega \cdot k = 0$,

and choose $D = Q_D \times \mathbb{R}$ to be a fundamental domain for \sim_D with $Q_F \subset Q_D$. We also introduce the space of admissible functions $\mathcal{X}_{D,M}^{\omega}$ and that of minimizers $\mathcal{M}_{D,M}^{\omega}$ relative to $D = \mathbb{R}^n / \sim_D$. Clearly, $\mathcal{X}_M^{\omega} \subset \mathcal{X}_{D,M}^{\omega}$ and $\mathcal{G}_D(u) = 2^{n-1} \mathcal{G}_{\mathbb{R}^n}(u)$, for any $u \in \mathcal{X}_M^{\omega}$. In the following exercise we show that the minimal minimizer enjoys the so-called *doubling* property or no-symmetry-breaking property, that is the minimal minimizer is still a minimizer with respect to functions of doubled periodicity.

Exercise 7. Let $u_{D,M}^{\omega}$ denotes the minimal minimizer of $\mathcal{X}_{D,M}^{\omega}$. Show that

$$\{\mathcal{T}_k u_{D,M}^{\omega} = \ell\} = \{u_{D,M}^{\omega} = \ell\}, \quad \text{for any } \ell \in \mathbb{R}, \, k \in \mathbb{Z}^n \text{ with } \omega \cdot k = 0,$$

deduce that $u_{D,M}^{\omega}$ is periodic with respect to \sim and thus that it defines an element in \mathcal{X}_{M}^{ω} . Use this to conclude that u_{M}^{ω} and $u_{D,M}^{\omega}$ coincide.