

B12

CRC 990

Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems Sumatra, Indonesia

Reproductive strategies of weedy flowering plants in tropical rainforest transformation systems Elvira Hoerandl, Sri Sudarmiyati Tjitrosoedirdjo, Nicole Opfermann

Background

- weedy plants, especially invasive species have a strong impact on tropical ecosystems
- breeding systems play an important role for invasiveness of species of flowering plants
- in the understory of tropical palm oil and rubber plantations, the most aggressive weedy species are known to reproduce via apomixis (=asexual reproduction via seed)
 the control of weedy species with apomixis has become a major issue for conservation strategies in tropical ecosystems

Methods

Two model systems:

 the biological factors for weedy and even invasive behavior in human-influenced landscapes are poorly understood

Project outline

The main goal of the project is to investigate the impact of apomictic reproduction on frequent weeds and their ecological and socioeconomic role in transformation systems.

Hypotheses

Biological function

Melastomataceae: *Clidemia hirta*

Poaceae: Panicoideae

(both widespread invasive species with facultative apomixis)

Within species: assessment of degree of facultative apomixis vs. sexuality:

- autonomous apomixis: pollen exclusion experiment (removal of pistil (apomixis))
- molecular progeny arrays with microsatellite markers genotyping and population analysis of seedlings and mother plans
- microscopic histological investigations of embryo sac development
- flow cytometric seed screening

Frequent weedy understory plants (herbs and shrubs) *reproduce predominantly via apomixis,* ie. apomictic offspring is more frequent than sexual one.

Biodiversity function

Frequencies of weedy apomictic species increase in the understory vegetation of transformation systems with the intense of disturbance and use.

Ecological function

Abundance of weedy apomictic taxa reduces biodiversity and ecological community functions in transformation systems.

Socioeconomic function

Biological and chemical control of invaders may have impacts on socioeconomic functions. Abundance of apomictic species within plots

Spontaneous colonization of apomictic taxa within enrichment experiment plots

Status:

- pollen exclusion experiment
- sampling of pre-flowering stages, seeds and leaves
- abundance of respective species recorded

Clidemia hirta flower with removed pistil

Next steps:

- microscopic investigations
- genotyping and population analysis

