
Introduction to Ordinal Analysis
Hilbert–Bernays Summer School on Logic and Computation

July 2015 Göttingen

Wolfram Pohlers
WWU Münster

Contents

I Handouts 2

1 Motivation 2

2 Ordinals 3
2.1 Ordinals as equivalence classes . 3
2.2 Set theoretical ordinals . 3
2.3 Basics of ordinal arithmetic . 5
2.4 Exercises . 6

3 The standard model of arithmetic 6
3.1 Primitive recursive functions . 6
3.2 The standard structure N. 8

3.2.1 Exercises . 8
3.3 The verification calculus . 9
3.4 Π1

1–completeness . 10
3.5 Exercises . 11

4 The axiom system NT 11
4.1 Peano arithmetic . 11
4.2 Pure logic . 12
4.3 The axioms of arithmetic . 13

5 The upper bound 13
5.1 Embedding of NT . 13
5.2 Cut elimination . 13
5.3 The upper bound . 14

1

6 The lower bound 14
6.1 Ordinal notations . 14
6.2 The well–ordering proof . 14

II Selected proofs and solutions 15

Part I

Handouts
1 Motivation
One of the aims of mathematical activities is the study of abstract structures. The
perhaps most important structure in mathematics is the “standard model of arithmetic”
which we are going to denote by N in this course.

The only tools that mathematicians have at their disposal to perform this task are
axiom systems and (mathematical) logic. By axiom systems they try to characterize
structures as accurately as possible and then use logic to derive their theorems from the
axioms.

However, it follows from Gödel’s incompleteness theorems that no axiom system
can be rich enough to logically entail all the theorems of a (sufficiently complex) struc-
ture, e.g., of the complexity of N.

A possibility to gauge the performance of an axiom system is ordinal analysis.
Here we try to calibrate its performance in terms of infinite magnitudes, i.e., by infinite
ordinals.

The origin of this type of ordinally informative proof theory goes back to Gerhard
Gentzen who—despite of Gödels incompleteness theorem—gave a consistency proof
for an axiom system for arithmetic. This proof only used finitistic means except for
an application of a transfinite induction along a well–ordering of order–type ε0 ([1].
By Gödel’s incompleteness theorem it therefore follows that transfinite induction up
to ε0 cannot be provable from the axioms of arithmetic. In a later paper [2] he then
showed that any ordinal less than ε0 can be represented by a well–ordering whose
well–foundedness is provable in arithmetic. This was the birth of ordinally informative
proof theory. Since then we define the proof theoretic ordinal of an axiom system T as
the supremum of the order–types of well–orderings which are elementarily definable
in the language of T and whose well–foundedness is provable in T .

The aim of the course is an ordinal analysis of an axiom system for N which is
equivalent to the Peano axioms.

2

2 Ordinals
Our main tool in gauging the range of axiom systems are ordinals. Intuitively an ordinal
is the order–type of a well–ordering.

2.1 Ordinals as equivalence classes
Given two finite set M1 and M2 there are two methods to compare their size. We can
bring the elements of both sets into one–one correspondence and check on which side
there are elements left or we simple count the members and compare the numbers.
Mathematically speaking the first methods yields the definition

M1 ≤M2 :⇔ there is a f :M1
1−1−→ M2

and

M1 = M2 :⇔ M1 ≤M2 ∧ M2 ≤M1 ⇔ there is a f :M1 ←→ M2

and we call the equivalence class {N M = N} the cardinality of the set M .
Counting the elements of a set M means to order the elements of M . Orders which

are suited for counting are order–relations with the property that every non–void subset
of the field of the ordering possesses a least element (the candidate for the next element
to be counted).

2.1 Definition A binary relation≺ is a well–ordering if it is total, transitive, irreflexive
and satisfies (∀X)[X ⊆ field(≺) ∧ X 6= ∅ ⇒ (∃x ∈X)[(∀y)[y ≺ x→ y /∈ X]]].

For well–orderings ≺1 and ≺2 we define

≺1≤≺2 :⇔ (∃f)[f : field(≺1) −→ field(≺2) order preserving]

and

≺1=≺2 :⇔ ≺1≤≺2 ∧ ≺2≤≺1 .

The order–type of a well–ordering ≺ is the equivalence class

otyp(≺) := {≺∗ ≺=≺∗}.

2.2 Theorem Let ≺ a well–ordering. Then

(∀X)
[
(∀x)[(∀y)(y ≺ x→ y ∈ X)→ x ∈ X]→ (∀x∈ field(≺))(x ∈ X)

]
.

Let WO(≺) abbreviate the above sentence. Then we obtain that ≺ is a well–ordering
iff WO(≺).

2.2 Set theoretical ordinals
Since the equivalence classes “cardinality” and “order–type” are proper classes and
thus no sets in a set theoretical sense is has become common to represent order–types
by set theoretical ordinals.

3

0 = ∅, 1 = {0}, 2 = {∅, {∅}} = {0, 1}, . . . , n+ 1 = {0, . . . , n},
ω = {0, 1, 2, . . .} ω + ω = {0, . . . , ω, ω + 1, . . .} . . .

Figure 1: Some set theoretical ordinals

As a reminder: A set a is transitive if it possesses no ∈ holes, i.e., if

(∀x∈ a)(∀y ∈ x)[y ∈ a].

2.3 Definition An ordinal is a transitive set that is well–ordered by the ∈–relation.
Let On be the class of all set theoretical ordinals. We define

α < β :⇔ α ∈ On ∧ β ∈ On ∧ α ∈ β.

Clearly

β ∈ On ∧ a ⊆ β ∧ Tran(a) entail a ∈ On. (1)

Observe that by this definition a set theoretical ordinal coincides with the set of its
predecessors, i.e.,

α = {ξ ξ < α}.

2.4 Theorem (Transfinite Induction) If (∀ξ < η)F (ξ) entails F (η) for any ordinal η
then we already have (∀ζ ∈On)F (ζ).

2.5 Lemma β ∈ On , Tran(a) and a (β imply a ∈ β.

2.6 Lemma In presence of the foundation scheme an ordinal is a hereditarily transi-
tive set.

2.7 Definition An ordinal κ is a cardinal iff (∀f)(∀ξ)[f :κ ←→ ξ ⇒ κ ≤ ξ] where
we generally agree that lower case Greek letters are supposed to vary over ordinals.

2.8 Definition An ordinal λ is a limit ordinal iff (∀ξ < λ)(∃η < λ)[ξ < η].

2.9 Definition For a set M of ordinals let supM = min {ξ (∀η ∈M)[η ≤ ξ]} =⋃
M .

Recall that
⋃
M := {x (∃y ∈M)[x ∈ y]}.

2.10 Lemma If α is an ordinal then α ∪ {α} is again an ordinal satisfying
(∀α < ξ)[α ∪ {α} ≤ ξ]. We call α ∪ {α} the successor of α often denoted by α′.

2.11 Lemma An ordinal λ 6= 0 is a limit ordinal iff supλ = λ. If α is not a limit
ordinal then (supα)′ = α. Let Lim denote the class of limit ordinals.

There are three types of ordinals: 0, successor ordinals α′ and limit ordinals.

4

2.12 Definition Let ω := min Lim. Then ω ∈ Lim ∧ (∀η < ω)[η /∈ Lim]. An ordinal
ξ is finite iff ξ < ω.

2.13 Theorem Every finite ordinal and ω are cardinals.

2.14 Definition Let ≺ be a well–ordering and x ∈ field(≺). Then we define

otyp≺(x) := sup {(otyp≺(y))′ y ≺ x}

and

otyp(≺) := sup {otyp≺(x) x ∈ field(≺)}.

This definition coincides with the first—informal—definition in so far that otyp(≺) is
a representative of the equivalence class otyp(≺).

2.15 Definition Let M be a class of ordinals. Then otyp(M) := otyp(<�M). The
inverse function enM : otyp(M) −→ M satisfying enM (otyp<(x)) = x is the enu-
merating function of M .

Observe that ω is the order–type of the natural numbers in their canonical ordering.

2.3 Basics of ordinal arithmetic
2.16 Definition (Ordinal addition) Let

α+ 0 := α
α+ β′ := (α+ β)′

and
α+ λ := sup {α+ ξ ξ < λ}.

2.17 Definition (Ordinal multiplication) Let
α · 0 := 0
α · β′ := (α · β) + α
α · λ := sup {α · ξ ξ < λ} for limit ordinals λ.

2.18 Definition (Ordinal exponentiation) Let
α0 := {0} (= 1)
αβ
′

:= (αβ) · α
αλ := sup {αξ ξ < λ}.

2.19 Definition An ordinal α is additively indecomposable if ξ, η < α entail ξ + η <
α.

2.20 Lemma The function λξ.(α + ξ) is the enumerating function of the class M =
{ξ α ≤ ξ}. Hence ξ < η iff α+ ξ < α+ η.

2.21 Lemma The function λξ.(ωξ) is the enumerating function of the class of addi-
tively indecomposable ordinals. Hence ξ < η iff ωξ < ωη .

2.22 Definition Let ε0 := min {ξ ωξ = ξ}.

2.23 Lemma Put ω(0)(α) := α and ω(n+1)(α) := ωω
(n)(α). Then ε0 = sup {ω(n)(0) n ∈ ω}.

For any ordinal ξ < ε0 we get ε0 = sup {ω(n)(ξ) n ∈ ω}.

5

2.4 Exercises
2.24 Exercise Prove Lemmata 2.20 , 2.21 and 2.23.

2.25 Exercise Show that ξ < α implies ξ + α = α for additively indecomposable
ordinals α.

2.26 Exercise (Cantor normal form) Show that for every ordinal α there are additively
indecomposable ordinals α1, . . . , αn such that α = α1 + · · · + αn and α1 ≥ α2 ≥
· · · ≥ αn.

3 The standard model of arithmetic
In general a structure has the form M = (M, C,R,F) where

• M is a non–void set, the domain of the the structure

• C is a subset of M , the constants of M.

• Every R ∈ R is a subset M#R where 0 ≤ #R < ω is the arity of the relation R

• Every f ∈ F is a function f :M#f −→ M where 0 < #f < ω is the arity of
f .

3.1 Primitive recursive functions
Let PRF be the smallest class of arithmetical functions which

• contains the successor function S.

• contains all n–ary constant functions Cnk (z1, . . . , zn) = k.

• contains all n–ary projection functions Pnk (x1, . . . , xn) = xk.

• is closed under substitutions, defined by

Sub(g, h1, . . . , hm)(x1, . . . , xn) = g(h1(x1, . . . , xn)) . . . (hm(x1, . . . , xn)).

• is closed under primitive recursion, defined by

Rec(g, h)(0, x1, . . . , xn) = g(x1, . . . , xn)

Rec(g, h)(Sy, x1, . . . , xn) = h(y,Rec(g, h)(y, x1, . . . , xn), x1, . . . , xn)

An n–ary relation R ⊆ ωn is primitive recursive iff its characteristic function χR,
defined by

χR(y1, . . . , yn) =

{
1 if (y1, . . . , yn) ∈ R
0 otherwise,

is primitive recursive. Let PRP denote the set of primitive recursive relations. Cf.
Figure 2 for a list of primitive–recursive functions and relations.

6

Function/Relation Name Definition

sg(n) signum of n (case distinction) sg(0) = 0, sg(S(x)) = 1

sg(n) antisignum of n (case distinction) sg(0) = 1, sg(S(x)) = 0

a+ n addition a+ 0 = a, a+ S(n) = S(a+ n)

a · n multiplication a · 0 = 0, a · (Sn) = (a+ n) + a

a! a faculty 0! = 1, (Sa)! = a! · a

an exponentiation a0 = 1, aS(n) = an · a

Pd(n) predecessor Pd(0) = 0, Pd(S(x)) = x

a−· x arithmetical difference a−· 0 = 0, a−· S(x) = Pd(a−· x)

|a− x| absolute value (a−· x) + (x−· a)

I := {(x, x) x ∈ ω} identity χI = sg(|x− y|)

x < y, x ≤ y less than (or equal to) (∃z < y)[x+ z = y], x < y ∨ x = y

max{a, b} maximum max{a, b} =
{
a if b ≤ a
b otherwise

x/y x divides y (∃z < S(y))[x · z = y]

Prime(x) x is a prime number (∀z < S(x))[z = 1 ∨ z = x ∨ ¬(z/x)]

pn(n) Enumeration of the primes pn(n) =
{
2 if n = 0
µx < pn(n)! + 2. [Prime(x) ∧ pn(n) < x] if n > 0

〈x0, . . . , xn〉 Coded tuple =

{
0 for n = −1 (empty sequence)∏n

i=0[pn(i)S(xi)] for n ≥ 0

lh(x) length of the tuple coded by x lh(〈x0, . . . , xn〉) = n+ 1

(a)i decoding function (〈x0, . . . , xn〉)i = xi for 0 ≤ i ≤ n

Seq(s) s codes a sequence s = 0 ∨ (∀i < S(s))[¬(pn(S(i))/s) ∨ pn(i)/s]

a belongs to a finite set a ∈ {a1, . . . , an} a = a1 ∨ · · · ∨ a = an

Figure 2: Some primitive–recursive functions and relations

7

3.2 The standard structure N.
3.1 Definition We call the structure N = (ω, 0,PRP,PRF) the standard structure of
arithmetic.

3.2 Definition The first order language LN of N is inductively defined by:

• 0 and every free individual variable x is an LN–term.

• If t1, . . . , tn are LN–terms and f is a name for an n–ary function in PRF then
(ft1, . . . , tn) is an LN–term.

• If t is an LN–term and X a set variable then t ∈ X and t /∈ X are atomic
LN–formulas.

• If t1, . . . , tn are LN–terms and R is a symbol for an n–ary relation in PRP then
(Rt1, . . . , tn) is an atomic LN–formula.

• Every atomic LN–formula is an LN–formula.

• If F and G are LN–formulas then F ∧ G and F ∨ G are LN–formula.

• If F is an LN–formula and x a free individual variable then (∀x)F (x) and
(∃x)F (x) are LN–formula in which x is not longer free but bound.

A formula which does not contain free variables is a sentence.
We use the language LN in Tait style. I.e. there is no negation symbol among the

logical symbols. We can however define negation using deMorgan’s rules.

• For an atomic (Rt1, . . . , tn) we define ¬(Rt1, . . . , tn) ≡ (Rt1, . . . , tn) where
R is a symbol for the complement of R.

• For the atomic formulas t ∈ X and t /∈ X we define ¬(t ∈ X):≡ t /∈ X and
¬(t /∈ X):≡ t ∈ X .

• ¬(F ∧ G):≡ ¬F ∨ ¬G and ¬(F ∨ G):≡ ¬F ∧ ¬G.

• ¬(∀x)F (x):≡ (∃x)¬F (x) and ¬(∃x)F (x):≡ (∀x)¬F (x).

Observe that although we do not have a constant for every natural number there is a
name for every n ∈ ω. Here we do not mean the set theoretical name but the name
in the structure N which is obtained from 0 by successively applying the successor
function S. We call these names numerals.

3.2.1 Exercises

3.3 Exercise Show that the primitive–recursive functions are closed under definition
by primitive recursive case distinctions.

3.4 Exercise Show that the primitive–recursive relations are closed under all Boolean
operations, bounded quantification and substitutions with primitive–recursive func-
tions.

8

3.5 Exercise Show that for any primitive–recursive function f the bounded search
function µ ≤ k. (f(x, y1, . . . , yn) = 0), defined by

µx ≤ k. (f(x, y1, . . . , yn) = 0) =

{
min {z ≤ k f(z, y1, . . . , yn) = 0} if this exists
k otherwise,

is primitive–recursive.

3.6 Exercise Verify the open facts in Figure 2

3.3 The verification calculus
3.7 Definition We divide the sentences of LN into two types:
The

∧
–type comprises:

• All true atomic sentences,

• The sentences F ∧ G and (∀x)G(x).

The
∨

–type comprises:

• All false atomic sentences,

• The sentences F ∨ G and (∃x)F (x).

3.8 Definition The characteristic sequence CS(F) of a sentence F is defined by

• CS(F) = ∅ if F is an atomic sentence.

• CS(F ◦G) = 〈F,G〉 for ◦ ∈ {∧,∨}.

• CS((Qx)F (x)) =
〈
F (n) n ∈ ω

〉
for Q ∈ {∀,∃}.

3.9 Lemma For every sentence F ∈ LN ∩
∧

–type we have:

N |= F iff N |= G for all G ∈ CS(F).

For every sentence F ∈ LN ∩
∨

–type we have:

N |= F iff N |= G for some G ∈ CS(F).

3.10 Definition (The verification calculus) Let ∆ be a finite set of LN–sentences. We
define the verification calculus by two rules:

(
∧

) If F ∈ ∆ ∩
∧

–type then
αG

∆, G and αG < α for all G ∈ CS(F) implies
α

∆.

(
∨

) If F ∈ ∆ ∩
∨

–type then
α0

∆, G and α0 < α for some G ∈ CS(F) implies
α

∆.

3.11 Lemma For rnk(F) := sup {rnk(G) + 1 G ∈ CS(F)} we obtain

N |= F iff
rnk(F)

F.

9

3.4 Π1
1–completeness

3.12 Definition A pseudo Π1
1–sentence is a LN–formula which must not contain free

individual variables but may contain free set variables.
We extend the definitions of

∧
–type and

∨
–type to pseudo Π1

1–sentences. Sen-
tences of the form t ∈ X and t /∈ X belong to no type.

3.13 Observation Let F (X) be a pseudo Π1
1–sentence. Then

N |= (∀X)F (X) iff N |= F (X)[S] for any set S ⊆ ω.

3.14 Definition We extend the verification calculus
α

∆ to a semi–formal system
α

ρ ∆ for finite sets ∆ of pseudo Π1
1–sentences. We replace

α
∆ by

α

ρ ∆ in (
∧

)– and
(
∨

)–rules and add the new rules

(X–rule) If sN = tN and {s ∈ X, t /∈ X} ⊆ ∆ then
α

ρ ∆ holds true for all ordinals
α

and

(cut) From
α0

ρ ∆, F ,
α0

ρ ∆,¬F and rnk(F) < ρ infer
α

ρ ∆ for all α > α0.

3.15 Lemma We have
2·rnk(F)

0
∆, F,¬F for any pseudo Π1

1–sentence F .

3.16 Theorem (Π1
1–completeness) For a Π1

1–sentence we have N |= (∀X)F (X) iff
α

0
F (X) for some ordinal α < ωCK

1 where ωCK
1 denotes the least ordinal which is not

the order–type of a primitive–recursively definable well–ordering on N.

3.17 Definition We define the truth complexity of (pseudo) Π1
1–sentences by

tc
(
(∀X)F (X)

)
:=

{
min {α α

0
F (X) } if this exists

ωCK
1 otherwise.

3.18 Theorem (Boundedness Theorem) An LN–definable ordering is a well–ordering

iff otyp(≺) ≤ 2tc
(

WO(≺)
)
< ωCK

1 .

3.19 Definition For a structure M we define its Π1
1–ordinal

πM := sup {tc
(
F
)

M |= F}.

3.20 Definition Define WO(X,≺) as the pseudo Π1
1–sentence such that WO(≺) ≡

(∀X)WO(X,≺). Let T be an axiom system for N. Then we define its proof–theoretic
ordinal

|T | := sup {otyp(≺) T WO(X,≺)}

where ≺ is any elementarily definable ordering, and its Π1
1–ordinals by

πT := sup {tc
(
F
)
T F}.

10

3.21 Remark We have πN = ωCK
1 .

3.22 Corollary Let T be an axiom system for N. Then |T | ≤ 2π
T

.

3.23 Remark Actually we have |T | = πT in general. We will prove this for the axiom
system NT.

Also the Boundedness Theorem (Theorem 3.18) can be sharpened to otyp(≺) =
tc
(
WO(≺)

)
. The proof is more involved and the sharper bound is not needed in the

ordinal analysis of NT.

3.5 Exercises
3.24 Exercise Show:

(Str)
α

ρ ∆ , α ≤ β, ρ ≤ σ,∆ ⊆ Γ ⇒ β

σ Γ .

(
∧

–Inv)
α

ρ ∆, F and F ∈
∧

–type ⇒ α

ρ ∆, G for every G ∈ CS(F).

(∨–Exp)
α

ρ ∆, F , F ∈
∨

–type and CS(F) is finite ⇒ α

ρ ∆,Γ for Γ = CS(F).

3.25 Exercise a) Show that sN = tN and
α
F (s) imply

α
F (t).

b) Show that sN = tN and
α

ρ ∆(s) imply
α

ρ ∆(t) .

c) Show that there is an α such that
α

0
s 6= t,¬F (s), F (t) . How large is α?.

3.26 Exercise Let≺ be a primitive–recursively definable well–ordering with field(≺) = N.
Denote by otyp≺(n) the order–type of n in ≺ and let

Prog(X,≺) :⇔ (∀x)[(∀y)[y ≺ x→ y ∈ X]→ x ∈ X].

Show
4·otyp≺(n)

0
¬Prog(X,≺), n ∈ X .

Conclude that πN = ωCK
1 .

4 The axiom system NT

4.1 Peano arithmetic
The only non–logical symbols of Peano arithmetic are the constants for 0, 1, and the
function symbols + for addition and · for multiplication. The non–logical axioms of
Peano arithmetic comprise the defining equations for + and · together with the succes-
sor axioms (∀x)[x+ 1 6= 0] and (∀x)(∀y)[x+ 1 = y+ 1→ x = y] and the scheme of
mathematical induction.

We will, however, give the ordinal analysis for an axiom system NT which com-
prises symbols for all primitive–recursive functions and –predicates and thus is more
expressive than Peano arithmetic. It can, however, be shown that NT is an extension

11

by definitions of Peano arithmetic. This is not completely trivial and rests on the fact
that Peano arithmetic proves the existence of a coding machinery. The key to such
a machinery is Gödel’s β–function whose definition bases on the Chinese remainder
theorem.

4.2 Pure logic
To fix the logical framework we introduce a Hilbert style calculus for first order pred-
icate logic. We presuppose familiarity with the language of first order predicate logic
with identity where we allow free second order variables in the language. Since we
aim at the language of arithmetic we restrict ourselves to unary predicate variables and
talk about set variables.

4.1 Definition The Boolean atoms of first order formula F are the subformulas of F
which are either atomic or the outmost logic symbol of which is a quantifier.

A Boolean valuation for a first order formula F is the assignment of a truth value
to every Boolean atom of F .

The truth value of a first order formula under a Boolean valuation is computed
according to the familiar rules for the Boolean connectives.

A first order formula is Boolean valid if it is true under any Boolean valuation.

4.2 Definition The logical axioms of the Hilbert calculus are:

(BOOLE) All Boolean valid formulas

(∀) All formulas (∀x)F (x)→ F (t) for any term t

(∃) All formulas F (t)→ (∃x)F (x) for any term t

The identity axioms are

(Ref) (∀x)[x = x]

(Sym) (∀x)(∀y)[x = y → y = x]

(Tran) (∀x)(∀y)(∀z)[x = y ∧ y = z → x = z].

(Com) (∀x1) . . . (∀xn)(∀y1) . . . (∀yn)[
∧n
i=1xi = yi ∧ F (x1, . . . , xn)→ F (y1, . . . , yn)]

The inference rules are

(mp) A and A→ B ⇒ B.

(∀) A→ F (x) ⇒ A→ (∀x)F (x) where the eigenvariable x must not
occur in A.

(∃) F (x)→ A ⇒ (∃x)F (x)→ A where the eigenvariable x must not
occur in A.

4.3 Theorem A formula F is logically valid, i.e., true in any model under any assign-
ment, iff F .

4.4 Lemma For any Boolean valid formula F (x1, . . . , xn) there is a finite ordinal k

such that
k

0
F (z1, . . . , zn) holds true for any tuple z1, . . . , zn of numerals.

12

4.5 Theorem For any logically valid formula F (x1, . . . , xn) whose free individual
variables occur all in the list x1, . . . , xn there are finite ordinals m and r such that
m

r F (t1, . . . , tn) for any tuple t1, . . . , tn of LN–terms.

4.3 The axioms of arithmetic
4.6 Definition The non–logical axioms of NT comprise

(MATHAX) All true atomic LN–sentences

(MATHIND) The scheme F (0) ∧ (∀x)[F (x)→ F (S(x))] → (∀x)F (x) of math-
ematical induction, where F (x) is any LN–formula.

4.7 Theorem A pseudo Π1
1–sentence F is a theorem of NT iff it is a logical conse-

quence of the axioms, i.e., iff there there are finitely many axioms A1, . . . , An of NT
such that A1 ∧ · · · ∧ An → F is logically valid.

5 The upper bound

5.1 Embedding of NT

5.1 Lemma For every natural number n and LN–formula F (x) we have

2(rnk(F)+n)

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (n) .

5.2 Theorem (Induction Theorem) We have
ω+3

0
F (0) ∧ (∀x)[F (x)→ F (S(x))] → (∀x)F (x) .

5.3 Theorem (Embedding Theorem) Let F (x1, . . . , xn) be a LN–formula whose free
individual variables occur all in the list x1, . . . , xn. Then NT F (x1, . . . , xn) im-
plies that there is a finite ordinal r such that

ω+ω

r F (z1, . . . , zn) holds true for every
tuple z1, . . . , zn of numerals.

5.2 Cut elimination
5.4 Lemma (Reduction Lemma) From

α

ρ ∆, F and
β

ρ Γ,¬F for F ∈
∧

–type and

rnk(F) = ρ we obtain
α+β

ρ ∆,Γ .

5.5 Theorem (Elimination Theorem)
α

ρ+1
∆ implies

ωα

ρ ∆ .

13

5.3 The upper bound
5.6 Theorem If NT F for a pseudo Π1

1–sentence F then tc
(
F
)
< ε0.

5.7 Corollary We have πNT ≤ ε0, hence also |NT| ≤ ε0.

5.8 Corollary The theory NT is consistent.

6 The lower bound

6.1 Ordinal notations
6.1 Theorem For every ordinal α less than ε0 there are ordinals α1, . . . , αn such that
α = ωα1 + · · ·+ ωαn and α > α1 ≥ α2 ≥ · · · ≥ αn.

6.2 Corollary There is is notation system α such that for every α < ε0 the nu-
meral α denotes the ordinal α. The set On = { α α < ε0} and the relation
α ≺ β :⇔ α < β are primitive–recursive.

6.2 The well–ordering proof
In the sequel we identify ordinals α and their notations. We denote members of On by
lower case Greek letters and write α < β instead of α ≺ β.

We use the following abbreviations:

α ⊆ β :⇔ (∀ξ)[ξ < α→ ξ < β] (which unabbreviated is)
⇔ α ∈ On ∧ β ∈ On ∧ (∀ξ ∈On)[ξ ≺ α→ ξ ≺ β]

Prog(X) :⇔ Prog(X,≺)

⇔ (∀ξ)[ξ ⊆ X → ξ ∈ X]

α ⊆ X :⇔ (∀ξ)[ξ < α→ ξ ∈ X]

α ∈ J (X) :⇔ (∀ξ)[ξ ⊆ X → ξ + ωα ⊆ X].

TI (α) :⇔ Prog(X)→ α ⊆ X.

The formula TI (α) then expresses transfinite induction up to α.

6.3 Lemma NT Prog(X)→ Prog(J (X)).

6.4 Lemma NT TI (α) entails NT TI (ωα).

6.5 Theorem For any ordinal α < ε0 there is a primitive–recursively definable well–
ordering ≺ of order–type α such that NT WO(≺).

6.6 Theorem |NT| = πNT = ε0.

6.7 Theorem There is a pseudo Π1
1–sentence (∀x)F (x,X) such that N |= (∀X)(∀x)F (x,X),

NT F (n,X) for any numeral n but NT6 (∀x)F (x,X).

14

Part II

Selected proofs and solutions
Section 2

Proof of Lemma 2.5.

Let ξ := min(β \ a). Then ξ ⊆ a by minimality of ξ. For η ∈ a we get η 6= ξ and
ξ /∈ η by transitivity of a, Hence η ∈ ξ. So we have a = ξ ∈ β. �

Proof of Lemma 2.6.

Clearly every ordinal is hereditarily transitive. If conversely α is hereditarily transitive,
then ∈ is transitive on α and well–founded. Again by well–foundedness of ∈ we have
α /∈ α. It remains to prove linearity. We show that any hereditarily transitive α is
linearly ordered by ∈ by ∈–induction.
For ξ, η ∈ α let γ := ξ ∩ η. If γ = ξ (η we get ξ ∈ η by Lemma 2.5. If γ 6= ξ we get
γ ∈ ξ by Lemma 2.5. If γ = η we have η ∈ ξ and γ 6= η entails γ ∈ η ∩ ξ = γ which
contradicts ∈–foundation. �

Proof of Lemma 2.20.

We show by induction on β that for α < β there is an ordinal ξ such that α + ξ = β.
If β is a successor γ′ then α ≤ γ. If α = γ we choose ξ := 0. If α < γ there
is by induction hypothesis a ξ0 such that γ = α + ξ0, hence γ = α + ξ′0. If β is a
limit ordinal then we get for every η < β an ordinal ξη such that η = α + ξη . Hence
β = supη<β(α+ ξη) = α+ ξ for ξ = supη<β ξη . �

Proof of Lemma 2.21.

It follows by induction on α that ξ, η < ωα imply ξ + η < ωα. This is obvious for
α = 0. For α = β′ we obtain that ξ, η < ωα = ωβ · ω implies ξ < ωβ · n and
η < ωβ · m, hence ξ + η < ωβ · (n + m) < ωβ · ω = ωα. For α ∈ Lim the claim
follows from the induction hypothesis.

Conversely we observe that between ωα and ωα+1 all ordinals are additively de-
composable. For if ωα < ξ < ωα · ω there is an n < ω such that ωα · n ≤ ξ < ωα ·
(n+ 1). Hence ξ = ωα · n+ η for η < ωα < ξ. �

Proof of Lemma 2.23

Since α < ε0 implies ωα < ε0 we get ω(n)(ξ) < ε0 for ξ < ε0 by induction on n. For
η := sup {ω(n)(0) n ∈ ω}we thus have η ≤ ε0 and get ωη = sup {ωω

(n)(0) n ∈ ω} =

sup {ω(n+1)(0) n ∈ ω} = η. Hence ε0 ≤ η. �

Solution to Exercise 2.25

Since α ∈ Lim we have α ≤ ξ + α = sup {ξ + η η < α} ≤ α. �

15

Solution to Exercise 2.26

Induction on α. The claim is clear for additively indecomposable ordinals α. If α is
additively decomposable then α = ξ + η for ξ, η < α. By induction hypothesis we get
ξ =NF ξ1 + · · · + ξm and η =NF η1 + · · · + ηm. Hence α = ξ1 + · · · + ξm + η1 +
· · ·+ ηn =NF ξ1 + · · ·+ ξk + η1 + · · ·+ ηn by Exercise 2.25 for k the index such that
ξk ≥ η1 and ξk+1 < η1. �

Section 3

Solution to Exercise 3.3

If

f(x1, . . . , xn) =

g1(x1, . . . , xn) if R1(x1, . . . , xn)
...
gn(x1, . . . , xn) if Rn(x1, . . . , xn)
h(x1, . . . , xn) otherwise

for pairwise disjoint primitive–recursive predicates Ri then put

f(x1, . . . , xn) = (

n∑
i=1

gi(x1, . . . , xn) · χRi(x1, . . . , xn))

+h(x1, . . . , xn) · sg(

n∑
i=1

χRi(x1, . . . , xn)).

Solution to Exercise 3.4

It is χ¬A := sg(χA), χ(A ∧ B) = χa · χB and for P (z, ~x) ⇔ (∀x≤ z)R(x, ~x) we
have χP (z, ~x) =

∏z
i=0 χR(i, ~x), where

∏0
i=0 f(i, ~x) = f(0, ~x) and

∏S(n)
i=0 f(i, ~x) =∏n

i=0 f(i, ~x) · f(S(n), ~x)

Solution to Exercise 3.5

Define F (0, y1, . . . , yn) = 0 and

F (S(k), y1, . . . , yn) =

{
F (k, n) if (∃z ≤ k)[f(z, y1, . . . , yn) = 0]
S(k) otherwise

and check that F (k, y1, . . . , yn) = µz ≤ k.(f(z, y1, . . . , yn) = 0).

Proof of Lemma 3.15 by induction on rnk(F).

If F is an atomic sentence then either F or ¬F is true, hence in
∧

–type . By an (
∧

)

rule we thus obtain
α

0
∆, F,¬F for any ordinal α.

If F is a formula t ∈ X then we obtain
α

0
∆, t ∈ X, t /∈ X for any α by an (X)–

rule.
If F is in

∧
–type then we obtain

2·rnk(G)

0
∆, G,¬G for all G ∈ CS(F) by induc-

tion hypothesis. Hence
2·rnk(G)+1

0
∆, G,¬F by a (

∨
)–rule and finally

2·rnk(F)

0
∆, F,¬F

16

by a (
∧

)–rule. �

Proof of Theorem 3.16

By a straightforward induction on α we get that
α

0
∆ implies N |=

∨
∆[Φ] for any

assignment Φ(X) ⊆ ω. So soundness is straightforward.
More difficult is completeness, Since there are no free individual variables in pseudo

Π1
1–sentences every term has a computable value. W.l.o.g. we may therefore assume

that all terms are replaced by the numerals denoting their value.
Let ∆ be a finite sequence of pseudo Π1

1–sentences (from now on just called sen-
tences for short). ∆ is reducible if it contains a sentence in

∧
–type ∪

∨
–type . The

first sentence in ∆ which is in
∧

–type ∪
∨

–type is its redex R(∆). The reduct ∆r of
a reducible ∆ is obtained by cancelling its redex. We define the search tree S∆ together
with a label–function δ that assigns a finite sequence of sentences to the nodes of S∆.

• 〈 〉 ∈ S∆ and δ(〈 〉) = ∆.

Now let s ∈ S∆ and assume that δ(s) is not an instance of an X–rule.

• If δ(s) is irreducible then s_〈0〉 ∈ S∆ and δ(s_〈0〉) = δ(s).

• If F :≡ R(δ(s)) ∈
∧

–type and CS(F) =
〈
Fi i ∈ I

〉
then s_〈i〉 ∈ S∆ and

δ(s_〈i〉) = δ(s)r, Fi.

• If F :≡ R(δ(s)) ∈
∨

–type then s_〈0〉 ∈ S∆ and δ(s_〈i〉) = δ(s)r, G, F where
G is the first sentence in CS(F) which is not

⋃
s0⊆s δ(s0) if such a sentence exists.

Observe that S∆ is primitive–recursively definable.
By an easy induction on the order–type |s| in a well–founded tree S∆ we immedi-

ately get:

If S∆ is well–founded then we have
|s|
0
δ(s) for any node s ∈ S∆. (i)

If S∆ is not well–founded it contains an infinite path f . Let

δ(f) :=
⋃
n∈ω

δ(〈f(0), . . . , f(n)〉).

We define an assignment Φ(X) := {n (n /∈ X) ∈ δ(f)} and prove

N 6|= G[Φ] for all G ∈ δ(f). (ii)

by induction on rnk(G).
If G ≡ (n ∈ X) then n /∈ X cannot belong to δ(f) since f is infinite. Hence

n /∈ Φ(X). If G ≡ (n /∈ X) then n ∈ Φ(X).
If G ≡ R(n1, . . . , nk) then there is a node s = f(m) such that R(δ(s)) = G.

Then G ∈
∧

–type implies that s is a leave which contradicts the infinity of f . Hence
G ∈

∨
–type which implies N 6|= G.

For non–atomic G ∈
∧

–type we have CS(G) 6= ∅. Therefore there is a H ∈
CS(F) ∩ δ(f) and N 6|= H[Φ] follows by induction hypothesis. Hence N 6|= G[Φ].

17

If G ∈
∨

–type then, since f is infinite, we get H ∈ δ(f) for all H ∈ CS(G).
Hence N 6|= H[Φ] for all H ∈ CS(G) which entails N 6|= G[Φ].

If we assume6 α
0
F (X) for all α < ωCK

1 we obtain by (i) that SF (x) cannot be well–
founded. So there is by (ii) an assignment Φ such that N 6|= F (X)[Φ] which implies
N 6|= (∀X)F (X).

Proof of Theorem 3.18

If tc
(
WO(≺)

)
< ωCK

1 we have
α

0
WO(≺) hence N |= WO(≺) and ≺ is well–founded.

For the opposite direction we prove by induction on α:
α

0
¬Prog(X,≺), n1 /∈ X, . . . , nk /∈ X,∆ ⇒ N |=

∨
∆[≺�β] (i)

for a finite set ∆ of X–positive formulas where ≺�β = {n otyp≺(x) < β} for β =
max{otyp≺(n1), . . . , otyp≺(nk)}+ 2α.

If the last inference in (i) affects ∆. we get the claim from the induction hypothesis,
the semantical correctness of the inference rules and the monotonicity of X–positive
sentences.

If the last inference affects

¬Prog(X,≺) ≡ (∃x)[(∀y)[y ≺ x→ y ∈ X] ∧ x /∈ X]

we have the premise
α0

0
¬Prog(X,≺), (∀y)[y ≺ n→ y ∈ X] ∧ n /∈ X,n1 /∈ X, . . . , nk /∈ X,∆ (ii)

for some numeral n. By ∧ –inversion we thus have
α0

0
¬Prog(X,≺), (∀y)[y ≺ n→ y ∈ X], n1 /∈ X, . . . , nk /∈ X,∆ (iii)

and
α0

0
¬Prog(X,≺), n /∈ X,n1 /∈ X, . . . , nk /∈ X,∆ . (iv)

Towards a contradiction assume

N 6|=
∨

∆[≺�β].

Then we also have N 6|=
∨

∆[≺�β0] for β0 := max{otyp≺(n1), . . . , otyp≺(nk)} +
2α0 . The induction hypothesis for (iii) then yields (∀y)[y ≺ n → otyp≺(y) < β0].
i. e., otyp≺(n) ≤ β0. By induction hypothesis for (iv) we thus get N |=

∨
∆[≺�β1] for

β1 = max{otyp≺(n), otyp≺(n1), . . . , otyp≺(nk)}+ 2α0

≤ max{otyp≺(n1), . . . , otyp≺(nk)}+ 2α0 + 2α0

= max{otyp≺(n1). . . . , otyp≺(nk)}+ 2α0+1

≤ max{otyp≺(n1), . . . , otyp≺(nk)}+ 2α.

Contradiction. Setting k = 0 and ∆ = {(∀x)[x ∈ X]} in (i) we obtain the theorem.
�

Solution to Exercise 3.26

We prove the claim by induction on ≺. Let m ≺ n and α = otyp≺(m). Then we have

18

4·α
0
¬Prog(X,≺),¬(m ≺ n),m ∈ X

for all m either by induction hypothesis or by an
∧

–rule with empty premise. Hence
4·α+2

0
¬Prog(X,≺), (∀y)[y ≺ n→ y ∈ X]

From Lemma 3.15 we have
0

0
n /∈ X,n ∈ X

and obtain
4·α+3

0
¬Prog(X,≺), (∀y)[y ≺ n→ y ∈ X] ∧ n /∈ X,n ∈ X,

hence
4·α+4

0
¬Prog(X,≺), n ∈ X

and 4 · α ≤ otyp≺(n).
For everyα < ωCK

1 there is a primitive recursive well–ordering≺ such that otyp(≺) = α.
W. l. o. g we may assume α ∈ Lim. Hence

otyp(≺)

0
¬Prog(X,≺), (∀x)[x ∈ X]

which implies α ≤ πN. Since we already have πN ≤ ωCK
1 it follows πN = ωCK

1 . �

Section 4

Proof of Lemma 4.4

W. l. o. g. we assume that the language of first order logic is in Tait style. For a formula
F we define its Boolean decompositions

∆(F) :=

{
∆(A) ∪∆(B) if F ≡ A ∨ B
{F} otherwise

and its Boolean degree

Bdeg(F) :=
{

max{Bdeg(A),Bdeg(B)}+ 1 if F ≡ A ∧ B
0 otherwise.

For a finite set ∆ of formulas we define Bdeg(∆) as the sum of the Boolean degrees of
the formulas in ∆.
We observe:

• A formula F is Boolean valid iff
∨

∆(F) is Boolean valid.

• If Bdeg(F) = 0 and F is Boolean valid then ∆(F) = ∆0, A,¬A for a Boolean
atom A.

• If Bdeg(F) > 0 then ∆(F) = ∆0, A ∧ B for some formulas A and B. F is
Boolean valid iff

∨
(∆0, A) and

∨
(∆0, B) are Boolean valid.

The claim now follows from Lemma 3.15 by induction on Bdeg(∆(F)). �

19

Proof of Theorem 4.5.

We prove the theorem by induction on the length of a derivation in the Hilbert calculus.
If F (x1, . . . , xn) is Boolean valid so is F (t1, . . . , tn) and we obtain

α

0
F (z1, . . . , zn)

by Lemma 4.4.
By Lemma 3.15 we have

α

0
¬F (t), F (t) for α = 2 · rnk(F) < ω and obtain

α+2

0
¬(∀x)F (x) ∨ F (t) by inferences (

∨
). Symmetrically we obtain

α+2

0
¬F (t) ∨ (∃x)F (x) .

Since t = t is true atomic we obtain
0

0
t = t for all terms t by (

∧
) with empty

premise. Hence
1

0
(∀x)[x = x] .

Similarly we obtain
0

0
s 6= t, t = s for all terms s and t by and inference (

∧
).

Hence
3

0
(∀x)(∀y)[x 6= y ∨ y = x] by (

∨
) and two inferences (

∧
).

Similarly we have
0

0
r 6= s, r 6= t, s = t by (

∧
) and obtain

4

0
(∀x)(∀y)(∀z)[x 6= y ∨ y 6= z ∨ x = z] by two (

∨
)– and three (

∧
)–inferences.

An easy induction on rnk(F (x)) shows
2·rnk(F)

0
s 6= t,¬F (s), F (t) . By iteration

we obtain the translation of (Com).
The embedding of the inference rules follows directly from the induction hypothe-

ses and the variable conditions in the (∀)– and (∃)–rules. �

Proof of Lemma 5.1 by induction on n.

Let β := 2 · rnk(F). By Lemma 3.15 we have
β

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (0) . (i)

By induction hypothesis we have
β+2n

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (n) (ii)

and by Lemma 3.15
β

0
¬F (0),¬(∀x)[F (x)→ F (S(x))],¬F (S(n)), F (S(n)) . (iii)

From (ii) and (iii) we obtain by an inference (
∧

)

β+2n+1

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (n) ∧ ¬F (S(n)), F (S(n)) (iv)

and finally with an inference (
∨

).

β+2(n+1)

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (S(n)) . �

Section 5

Proof of Lemma 5.4

We induct on β. If the last inference is

20

βι

ρ Γι,¬F for ι ∈ I ⇒ β

ρ Γ,¬F

we obtain
α+βι

ρ ∆,Γι

for all ι ∈ I by induction hypothesis and thence the claim by the same inference.
If the last inference is
βι

ρ Γ,¬F,¬G ⇒ β

ρ Γ,¬F (i)

for G ∈ CS(F) we obtain by the induction hypothesis
α+β0

ρ ∆,Γ,¬G . By (
∧

)–

inversion and the structural rule (Str) we get
α

ρ ∆,Γ, G from the first premise and,

since rnk(G) < rnk(F) = ρ, obtain
α

ρ ∆,Γ by cut. �

Proof of Theorem 5.5.

We induct on α. If the last inference is not a cut of rank ρ the claim follows directly
from the induction hypothesis. If it is a cut

α0

ρ+1
∆, F ,

α0

ρ+1
∆,¬F ⇒ α

ρ+1
∆

with rnk(F) = ρ we obtain by induction hypothesis

ωα0

ρ ∆, F ,
ωα0

ρ ∆,¬F

and, since ωα0 + ωα0 < ωα, obtain
ωα

ρ ∆ by the Reduction Lemma . �

Proof of Theorem 5.6

If NT F we obtain
ω+ω

r F for r < ω. By r–fold application of the Elimination
Theorem we thus obtain

α

0
F for α < ε0. Hence tc

(
F
)
< ε0. �

Proof of Corollary 5.8

NT 0 = 1 entails
α

0
0 = 1 ,i.e.,

α
0 = 1 which is impossible since 0 = 1 is false in

N. �

Section 6

Proof of Corollary 6.2

For α < ε0 we define by simultaneous course–of–values recursion.
The codes:

0 = 〈0, 0〉, ωα1 + · · ·+ ωαn := 〈1, α1 , . . . , αn 〉,

The set On:

0 ∈ On

α1 � α2 � · · · � αn ⇒ ωα1 + · · ·+ ωαn ∈ On

21

The ≺–relation on On .

α 6= 0 ⇒ 0 ≺ α

0 6= α ≺ β ⇔ (∃z < max{lh(α), lh(β)})[0 < z

∧ (∀i < z)[(α)i = (β)i ∧ (α)z ≺ (β)z]]. �

Proof of Lemma 6.3

We work in NT. Under the hypotheses

Prog(X) (i)

ξ ⊆ J (X) (ii)

we want to prove ξ ∈ J (X), i.e.

(∀η)[η ⊆ X → η + ωξ ⊆ X]. (iii)

So let

η ⊆ X (iv)

ν < η + ωξ. (v)

If ν ≤ η we get ν ∈ X by (iv) and (i). So assume

η < ν < η + ωξ.

Then ξ 6= 0 and we get

η < ν = η + ων1 + · · ·+ ωνn < η + ωξ (vi)

with νi < ξ. Since η ∈ X by (iv) and (i) and ν1 < ξ ⊆ J (X) we get η + ων1 ∈ X
by (ii). By induction on n (which is a formal induction on lh(ν) in NT!) we finally
obtain ν ∈ X . �

Proof of Lemma 6.4

We work in NT. Assume Prog(X) → α ⊆ X . Substituting J (X) for X entails
Prog(J (X)) → α ⊆ J (X), hence Prog(J (X)) → ωα ⊆ X . Together with
Lemma 6.3 we thus get Prog(X)→ ωα ⊆ X . �

Proof of Theorem 6.5.

For α < ε0 there is a finite n such that α < ω(n)(0). We trivially have TI (0) and
obtain TI (ω(n)(0)), hence also TI (α) by n–fold application of Lemma 6.4. (This
time it is an induction from outside). �

Proof of Theorem 6.7

We have N |= (∀X)(∀x)[Prog(X) ∧ x ∈ On → x ∈ X] and NT Prog(X) ∧ n ∈

22

On → n ∈ X by (the proof of) Theorem 6.5. But NT (∀x)[Prog(X) ∧ x ∈ On →
x ∈ X] would imply otyp(≺) < ε0 by Theorem 5.6 while otyp(≺) = ε0 holds true
by the construction of the relation ≺. �

References
[1] G. GENTZEN, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematis-

che Annalen, vol. 112 (1936), pp. 493–565.

[2] , Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten In-
duktion in der reinen Zahlentheorie, Mathematische Annalen, vol. 119 (1943),
pp. 140–161.

[3] W. POHLERS, Proof theory. The first step into impredicativity, Universitext,
Springer-Verlag, Berlin/Heidelberg/New York, 2009.

23

