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II.Physik-UniGö-Dipl-2009/02
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1 Introduction

The Large Hadron Collider (LHC) at CERN with its unprecedented center of mass energies will
allow physicists to test the current Standard Model and search for new physics, both seen and
unforeseen by current theory. The ATLAS detector, positioned at one of the four interaction
points of the LHC, will provide a window into the sub-atomic interactions being explored.
Before any discoveries of new physics can be claimed however, the detector must be validated
and calibrated by observing already known physics.

One particle that provides a handle on many known physics processes, such as Z and W
boson decay, along with playing an important role in possible new physics, is the τ lepton,
heaviest of the three Standard Model leptons. Many searches for both the Standard Model
and the Minimal Supersymmetric Model Higgs bosons rely heavily upon reconstruction and
identification of τ leptons.

To facilitate such searches along with verifying currently known physics, this paper explores
the reconstruction and identification of τ leptons within the ATLAS detector using Monte Carlo
simulation. The decay of the Z boson into a τ lepton pair is a known Standard Model process, but
kinematically similar to possible decays from Higgs bosons. Subsequently, this paper examines
simulated τ leptons from such decays, and their underlying kinematics along with possible
backgrounds.

Chapter 2 begins by introducing the Standard Model and the theory behind the τ lepton. A
detailed account is given on the various production mechanisms of the τ lepton from both known
processes and hypothesized physics. Special attention is given to the Higgs boson sector, as the
τ lepton plays an important role in both standard and supersymmetric models. Additionally,
the theory behind τ lepton decay is explored.

Both the LHC and ATLAS detector are outlined in Chapter 3. A general explanation of the
LHC is given, focusing on the basic design of the collider and the relevant operating parame-
ters such as luminosity and beam energy. Summaries of the inner tracker, calorimeters, muon
chambers, and trigger systems of the ATLAS detector are also given following the design of the
LHC. Each of these sub-detectors is critical for the analysis performed within this paper.

After Chapter 3, a comprehensive description of the current methods used by ATLAS for
reconstruction of hadronic τ leptons is provided in Chapter 4. Special focus is given to the
definition of the signal and isolation cones used for reconstruction. The kinematics of τ lepton
decays and how they relate to reconstruction through both the signal and isolation cone is
explored. Efficiencies and fakerates are found for reconstructed hadronic τ leptons using a
variety of definitions for signal and isolation cones.

While reconstruction and identification are interrelated and combined in many experiments, a
distinct separation is made within ATLAS. Chapter 5 details the current identification methods
being used by ATLAS for hadronic τ lepton identification along with the general variables used
to distinguish τ leptons from other objects within the event. Current multivariate methods such
as likelihoods, artificial neural nets, and boosted decision trees are investigated and compared
against each other using efficiencies and fakerates.

Chapter 6 combines the results of Chapters 4 and 5 to calculate the total efficiency of hadronic
τ leptons using a data driven method. Methods such as this will prove important in new physics
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1 Introduction

searches when the efficiencies of hadronic τ leptons are required to calculate cross sections.
Finally, a conclusion is given in Chapter 7, discussing the results presented within this paper.
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2 Theory

The theory behind high energy particle physics is one of the most successful scientific theories
ever, yet still remains incomplete. The Standard Model describes the interactions of potentially
fundamental half integer spin particles, fermions, and integer spin force carriers or bosons. A
summary of the fundamental particles and forces of the Standard Model is given in Figure 2.1.
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Figure 2.1: Summary of the fundamental particles of the Standard Model. Half integer spin
particles, or fermions are outlined in blue, being further broken down into leptons and quarks.
Both the leptons and quarks are split by charge, and arranged by generation from lightest to
heaviest, with the mass given below the symbol for each particle, excluding the neutrinos. The
integer spin bosons are outlined in red and matched with the corresponding force they carry.
Figure adapted from Reference [1].

The three fundamental forces of the Standard Model are the electromagnetic force, the weak
force, and the strong force. At higher energies the weak and electromagnetic forces unify to the
electroweak force. The photon is the force carrier for the electromagnetic force, while the carriers
of the weak force are the W± and Z bosons. Both the photon and Z boson are neutral while
the W± bosons are charged. The gluon mediates the strong force and is neutral, but carries a
color charge combination of red, blue, and green. The gravitational force is not explained by
the Standard Model, and is much weaker than the remaining three forces on the size scale of
fundamental particle interactions.

Fermions are grouped into leptons and quarks. The leptons interact through the electromag-
netic force, weak interactions, and the gravitational force and have an integer charge of either
one or zero. The charged leptons are split into three generations ordered both by mass and time
of discovery: the electron, the muon, and the τ lepton. Corresponding to each charged lepton
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2 Theory

is a light neutral lepton or neutrino with a neutrino flavor for each charged lepton, νe, νµ, and
ντ . Recent experiments have measured the relative mass differences between neutrino flavors,
indicating that neutrinos have mass, although no measurements of the absolute masses have yet
been made [2].

Quarks interact through the same forces as the leptons but with the inclusion of the strong
force. Because of the way in which the strong force acts, quarks are confined; they cannot exist
without a partner in nature. This color confinement makes measuring individual quark masses
difficult and explains why mass ranges are given in Figure 2.1. Just as the leptons are grouped
in three generations, so are the quarks: u/d, c/s, and t/b. Each generation has a quark with
charge +2/3 and another with charge −1/3. Quarks of either charge also must carry a color
charge of either red, blue, or green.

All fermions have associated antiparticles with opposite charge and color charge. Combina-
tions of quarks and anti-quarks generate hadrons. Currently, quarks have only been seen to
combine in pairs or triplets. Quark pairs are mesons while quark triplets, such as the proton
and neutron, are baryons.

The following two sections provide a more detailed examination of the above particles and their
interactions. First an introduction to the formalism of the Standard Model is given, highlighting
the Higgs mechanism, current shortcomings, and possible solutions and extended models such
as supersymmetry. Following this underlying physics motivation, the properties and significance
of the τ lepton are explored.

2.1 The Standard Model

The formalism of the Standard Model (SM) is local time dependent relativistic quantum field
theory and is derived from classical field theory. The Lagrangian for a system, given by Equation
2.1 is the kinetic energy T less the potential V .

L = T − V (2.1)

For a system of position and time dependent fields, the Lagrangian for the system can be defined
as the integral of the Lagrangian density, L(φ, ∂µφ, xµ), over all space. Here the Lagrangian
density is dependent upon the fields of the system, φ(~x), their subsequent derivatives ∂φ(~x)/∂xµ,
and the components xµ of the time and space vector ~x. The action of the system is the time
integral of the Lagrangian,

S =
∫
Ldx0 =

∫
L(φ, ∂µφ, xµ) d4~x (2.2)

which in turn is the time and space integral of the Lagrangian density. Here, ~x represents the
standard four vector of time and space, although Lagrangian formalism can be expanded to
n-dimensions.

The equations of motion for the system are found by applying the “principle of least action” to
the system: the evolution of a system over time is accomplished by an extremum of the action.
Such a condition yields the Euler-Lagrange equation, Equation 2.3, which in turn provides the
equations of motion for the system.

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (2.3)

The field theory behind the Standard Model, however, is not classical, and modifications
must be made accordingly to accommodate the relativistic and quantum nature of the Standard
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2.1 The Standard Model

Model. Relativity is accounted for by requiring the Lagrangian density to remain Lorentz
invariant, as this will lead to a Lorentz invariant system. To obtain a quantum theory, fields are
recast as operators, and interactions are calculated from the Lagrangian density.

The recasting of fields as operators introduces an interesting side effect. Evolution in time
of interacting fields which produces particle interactions, cross sections, etc. can no longer be
calculated exactly but must be found using perturbative theory. Here the Lagrangian density
plays a crucial role by defining the Feynman rules of the system. Once the rules for a spe-
cific Lagrangian have been defined, quantities can be calculated by drawing the corresponding
Feynman diagrams, and pertubartively adding the quantities from each diagram.

The underlying field theory of the Standard Model is rarely seen, and indeed the Feynman
diagrams necessary for theoretical predictions are the primary instruments of particle physicists.
However, the underlying symmetries of the Lagrangian densities define the Feynman rules, and
it is from this underlying structure that it is easiest to understand the current short comings of
the Standard Model [3].

2.1.1 Quantum Electrodynamics and Chromodynamics

The Dirac equation dictates the motion of an electron, and is the necessary stepping stone to
create a Lagrangian density for electrodynamic theory. The Lagrangian density that satisfies
the Dirac equation is given by,

LDirac = iψ†γµ∂
µψ −mψ†ψ (2.4)

where γµ corresponds to the four Dirac matrices. This Lagrangian density is invariant under a
phase shift ψ → eiαψ where α is some constant, but the density is not locally gauge invariant,
when α(~x) is dependent on time and space. By requiring LDirac to be locally gauge invariant,
theory is elegantly matched to experimental observation, and so the Lagrangian is modified by
replacing ∂µ with the covariant derivative Dµ defined in Equation 2.5.

Dµ ≡ ∂µ − ieAµ (2.5)

The field ~A is introduced to maintain the local gauge invariance of the Lagrangian density,
and physically corresponds to the field of the photon. However, as a potential for the photon
is added to the Lagrangian density by the covariant derivative, a kinetic term for the photon
must also be added in the form of one half the square of the field strength tensor matrix F for
~A defined by Equation 2.6.

Fµν ≡ ∂µAν − ∂νAµ (2.6)

Substituting the covariant derivative of Equation 2.5 into Equation 2.4 with the addition
of the photon kinetic energy of Equation 2.6 yields the full Lagrangian density of quantum
electrodynamics (QED) given by Equation 2.7. Here the charge operator Q is introduced, which
produces an eigenvalue of −1 when acted upon the field of an electron. Notice that the mass of
the electron m must be given, and is not a prediction of the Lagrangian. However, the photon
field ~A must remain massless. Introducing a mass term for ~A would spoil the gauge invariant
nature of the Lagrangian density obtained by the introduction of ~A.

LQED = ψ† (iγµ∂µ −m)ψ︸ ︷︷ ︸
electron

KE/mass

− eψ†γµQψAµ︸ ︷︷ ︸
interaction

− 1
4
FµνF

νµ︸ ︷︷ ︸
photon

KE

(2.7)
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2 Theory

Note that the group of this Lagrangian density is U(1). In this case the basis for the unitary
transformation is chosen to be the gauge transformation,

U (α (~x)) ≡ eiα(~x) (2.8)

where α(~x) is a scalar infinitesimal generator of U(1). This group is Abelian, commutative under
multiplication, and results in an invariant charge current density that does not change under
transformation.

A similar process can be performed for quantum chromodynamics (QCD), which governs the
interactions of quarks, by also assuming a gauge invariant Lagrangian density. However, quarks
may assume a current of three different colors, and subsequently three color fields must be
considered. The free Dirac Lagrangian density of Equation 2.4 now must accommodate three
fields ψj , where j runs from 1 to 3 and represent the red, blue, and green color fields respectively.

LDirac = iψ†i γµ∂
µψj −mψ†iψj (2.9)

Equation 2.9 provides the Dirac Lagrangian density for QCD, taking into account only one
quark flavor for simplicity and without loss of generality. Requiring that the Lagrangian density
maintain gauge invariance is more complicated than for QED as the unitary matrix must now
be of dimension three as defined in Equation 2.10.

U (α (~x)) ≡ eiαa(~x)Ta (2.10)

The generators Ta are color operators and represent a basis for the possible color combinations
carried by the gluon, corresponding to eight traceless matrices of dimension three. The operator
T is the QCD equivalent of the charge operator of QED and and the algebra of T is the Lie
algebra of Gell-Mann matrices. The gauge transformations defined by Equation 2.10 provide
a unitary basis of dimension three, or an SU(3) group. One of many possible representations
of the eight possible T matrices is given in the compact form of Equation 2.11. Each linearly
independent equation corresponds to a Gell-Mann matrix with r, b, and g representing the
columns and r̄, b̄, and ḡ the rows respectively [4].

T1 =
1√
2

(
rb̄+ br̄

)
T5 =

−i√
2

(rḡ − gr̄)

T2 =
−i√

2

(
rb̄− br̄) T6 =

1√
2

(
bḡ + gb̄

)
T3 =

1√
2

(
rr̄ − bb̄) T7 =

−i√
2

(
bḡ − gb̄)

T4 =
1√
2

(rḡ + gr̄) T8 =
1√
6

(
rr̄ + bb̄− 2gḡ

)
(2.11)

Just as with QED, a vector field ~G is introduced in order to preserve gauge invariance. Now
however, eight fields, ~Ga, must be introduced, one for each generator corresponding to the basis
representation of the eight possible color combinations given by Equation 2.11. To obtain gauge
invariance under local SU(3) transformations given by Equation 2.10, ~G must be transformed
as,

Gaµ → Gaµ −
1
g
∂µα(~x)a − fabcα(~x)bGcµ (2.12)

where g is an arbitrary coupling constant, and fabc are the structure constants of SU(3).
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2.1 The Standard Model

The covariant derivative is,
Dµ ≡ ∂µ + igTaG

a
µ (2.13)

and the full Lagrangian density for QCD is given by Equation 2.14.

LQCD = ψ†i (iγµ∂µ −m)ψj︸ ︷︷ ︸
quark

KE/mass

− gGaµψ†i γµT aijψj︸ ︷︷ ︸
interaction

− 1
4
GaµνG

µν
a︸ ︷︷ ︸

gluon
KE

(2.14)

Again, introducing a mass term for the gluon would break the gauge symmetry of the La-
grangian density, just as it would for QED. However, the kinetic energy term of the gluon field
is a self-interacting term. Gluons are allowed to couple to other gluons, unlike photons which
cannot self-interact. Gluons carry color charge, and this is reflected in the non-commutative
nature of the SU(3) group [5].

2.1.2 The Weak Interaction and the Higgs Mechanism

While the previous section demonstrated that both QED and QCD can be represented by gauge
invariant Lagrangian densities, a problem occurs when attempting to provide a Lagrangian
density for the weak force. Prior to the discovery of the W± and Z bosons, it was known that
the weak force must exist by the experimental observation of the neutron decaying to a proton,
electron, and at the time, unobserved electron neutrino through β decay. However, at the energy
levels of the available experiments, the presence of the weak force was not observed, prompting
the conclusion that the weak force carriers must be massive on a scale above the attainable
energy regime.

Requiring the weak force carriers to have mass would however, at first glance, eliminate the
possibility of constructing a gauge invariant Lagrangian density for the weak force. However,
through the introduction of the Higgs mechanism to a local SU(2) symmetry, representing
the charged and neutral currents of the weak force, massive bosons can be produced while
maintaining the symmetry of the group. The following is a brief outline of the Higgs mechanism
as first proposed by Peter Higgs [6].

Consider first a field φ(~x) given by Equation 2.15 and a Lagrangian density given by Equation
2.16. Here µ is an arbitrary mass term and λ a self-coupling term.

φ(~x) =
1√
2

(
φ1(~x) + iφ2(~x)
φ3(~x) + iφ4(~x)

)
(2.15)

LGoldstone = (∂µφi)
† (∂µφj)︸ ︷︷ ︸

KE

−µ2φ†iφj − λ
(
φ†iφj

)2

︸ ︷︷ ︸
potential

(2.16)

The Lagrangian density must be invariant under gauge transformations given by Equation 2.17,
where τa are the unitary matrices of dimension two which are the infinitesimal generators of
SU(2). These operators correspond to the Q operator of QED and the T operator of QCD. For
consistency the basis for τ is chosen to be the three Pauli matrices.

U (α (~x)) ≡ eiαa(~x)τa (2.17)

Again, just as in QCD and QED a field ~W a is introduced, this time allowing the index a to
run from one to three, corresponding to the chosen basis representation of the SU(2) group. To
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2 Theory

maintain gauge invariance the following transformation to ~W a must be made,

W a
µ →W a

µ −
1
g
∂µα(~x)a − fabcα(~x)bW c

µ (2.18)

where the same notation as 2.12 is used. The covariant derivative is also defined,

Dµ ≡ ∂µ +
ig

2
τaW

a
µ (2.19)

which when substituted into the Lagrangian density of Equation 2.16 provides the locally gauge
invariant Lagrangian density for the weak force.

LWeak =
(
∂µφi +

ig

2
τ aijW

a
µφi

)†(
∂µφj +

ig

2
τ aijW

a
µφj

)
︸ ︷︷ ︸

interaction and mass

− V (φi,j)︸ ︷︷ ︸
potential

− 1
4
W a
µνW

µν
a︸ ︷︷ ︸

weak KE

(2.20)

When the potential is minimized,

∂V (φ)
∂φ

= µ2 + 2λφ†φ = 0 (2.21)

there exist infinite solutions to the four fields contained in φ. Arbitrarily, the fields φ1, φ2, and
φ4 can be set to zero and φ2

3 to −µ2/λ ≡ v2. The field φ expanded around this minima for the
potential is given in Equation 2.22 where h(~x) is the Higgs field.

φ(~x) =
1√
2

(
0

v + h(~x)

)
(2.22)

Assuming that µ2 < 0 the three fields ~W a acquire mass, corresponding to the three weak
bosons, and a neutral massive scalar H, the Higgs boson, is created. The mass of the Higgs is
uniquely determined by the quartic self-coupling parameter λ and given in Equation 2.23.

MH = v
√

2λ (2.23)

The value v, vacuum expectation of the Higgs field, has been experimentally determined to
be 246 GeV from the Fermi coupling, v = (

√
2GF )−1/2, where the Fermi coupling is determined

from precision measurements of muon decay [7].
The above exposition does not provide a full Lagrangian for electroweak unification theory,

nor is it intended to. The intention is merely to provide a conceptual idea of how spontaneous
symmetry breaking through the Higgs mechanism allows for massive vector bosons while main-
taining local gauge invariance. The necessary byproduct of a massive scalar boson allows for a
testable hypothesis of the Standard Model with a single free parameter.

An electroweak unification theory is provided by Weinberg and Salam [8, 9] in SU(2)L⊗U(1)Y
theory where L is weak isospin and Y hypercharge. The theory was proven to be renormalizable
by ’t Hooft [10] and lead to the experimentally verified prediction of masses for the W± and Z
bosons. The current Standard Model is a SU(3)C ⊗ SU(2)L ⊗ U(1)Y theory where the Higgs
mechanism has been introduced to the full Lagrangian density, coupling to both fermions and
the massive gauge bosons. The Standard Model however is is not unified; just as the coupling
constants of the SU(2) and U(1) components of electroweak theory are independent, so is the
coupling constant of SU(3). This separation of coupling constants has lead to the proposal of
various unified theories of a higher order. Glashow and Georgi proposed that SU(5) is the gauge
group of such a unified theory [11], which has since been ruled out, and more recent attempts
at unification theory have lead to supersymmetric models.
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2.2 The Tau Lepton

2.1.3 Beyond the Standard Model

One possible extension of the Standard Model, supersymmetry (SUSY), proposes an operator
that transforms fermions to bosons, and bosons to fermions. Such an introduction allows for
the unification of the three SM gauge coupling constants at the Plank energy scale of 1019 GeV.
Additionally, the intrinsic instability of the SM through the gauge hierarchy problem, where
incredibly precise fine-tuning of the cancellation between quadratic radiative corrections for the
Higgs and the Higgs bare mass result in a Higgs much lighter than the Planck energy scale, can
be resolved with a natural explanation [12]. Furthermore, the minimal supersymmetric model
(MSSM) provides possible explanations for the large amounts of dark matter observed to exist
within the universe [13].

A detailed explanation of MSSM will not be given here, as it is not within the scope of this
paper. However, excellent reviews are available from Reference [13] and Reference [14]. Within
the MSSM, two Higgs fields are required to maintain local gauge invariance, hd and hu, which
couple exclusively with the down-type/up-type quarks and leptons respectively. Each field has a
corresponding vacuum expectation value specified by Equation 2.24 where v is defined in Section
2.1.2.

v2
d + v2

u = v2 (2.24)

The result of two Higgs fields leads to five Higgs bosons: a charged pair H±, a CP-even
light neutral h0, a CP-even heavy neutral H0, and a CP-odd neutral A0. The quantity tanβ
given by Equation 2.25 is a free parameter of the model and defined by the ratio of the vacuum
expectation value for hu to the vacuum expectation value for hd. An additional free parameter,
the mass of the CP-odd neutral must also be specified.

tanβ =
vu
vd

(2.25)

Further supersymmetric models exist, including minimal supergravity (mSUGRA), gauge me-
diated supersymmetry (GMSM), and anomaly mediated supersymmetry (AMSM). All such su-
persymmetric models have advantages and disadvantages, and no particular model is considered
the definitive model. Both MSSM and mSUGRA have larger support than other models, but
neither remains problem free.

2.2 The Tau Lepton

The identification of tau leptons is crucial for the discovery of many proposed new physics
processes. The following two sections highlight the possible productions of τ leptons, along with
the subsequent decay of the τ lepton. A special emphasis is placed on the SM Higgs boson, as
the τ lepton will play a critical role in searches for the SM Higgs at the LHC.

2.2.1 Decay

The τ lepton is the most massive of the three leptons, as shown earlier in Figure 2.1, with a
mass of 1777 MeV. In 1975 at the Stanford Linear accelerator, 64 events were observed to have
the detected form of e+ + e− → e± + µ∓, but with a momentum and energy that could not be
conserved if the decay was only through two bodies. The hypothesis set forth in the original
paper [15], postulated that the undetected particle was either a heavy lepton or charged boson.
The paper states that the undetected particles either escaped the fiducial region of the detector,
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or, were “particles very difficult to detect”. While much has been learned about the τ lepton
over the years, the initial statement of the τ lepton being “very difficult to detect” remains true.

The mean lifetime of the τ lepton is given by Equation 2.26,

ττ =
(
G2
Fµ

5

192π3

)(
mµ

mτ

)5

BR(τ → µ) (2.26)

where the first term corresponds to the mean lifetime of the muon. The branching ratio of the
τ lepton to a muon can also be calculated from theory, as will be shown shortly. Measurements
of the τ lepton lifetime have placed it at 290.6 ± 1.0 × 10−15 seconds, which in comparison to
the muon lifetime is very short, as expected due to the large mass difference [16].

This short lifetime of the τ lepton makes identification difficult. Due to the τ lepton’s high
mass, all remaining leptons and a variety of lighter hadrons, are available as decay products,
providing a large variety of decay channels. This variety in turn makes proper identification even
more difficult. Figure 2.2 gives the three possible τ lepton decay channels: leptonic, radiative
leptonic, and hadronic.

�
τ W

ντ

`

ν`

�
τ

W

ντ

`

γ

ν`

�
τ W

hadrons

ντ

(a) (b) (c)

Figure 2.2: The three possible decay modes of the τ lepton: (a) leptonic, (b) radiative leptonic,
and (c) hadronic.

Leptonic

The first two diagrams of Figure 2.2 depict leptonic decays of the τ lepton which account for
approximately 35% of all decays. Pure leptonic decay consists of two weak vertices which can
be determined from electroweak theory and complete calculations for decay widths, momenta
spectra, and angular distributions can be performed. Furthermore, radiative corrections can be
applied to determine the decay width for leptonic and radiative leptonic decays. Equation 2.27
provides the decay width for muon and electron decay with radiative corrections included [17].

Γ (τ → ντ `ν`(γ)) =
G2
Fm

2
τ

192π3

(
m2
`

m2
τ

)(
1 +

3
5
m2
τ

m2
W

)(
1− 8x` + 8x3

` − x4
` − 12x2

` lnx`
)

(
1 +

α(mτ )
2π

(
25
4
− π2

)) (2.27)

Here the quantity x` is defined as m2
`/m

2
τ and the constant α(mτ ) is the fine structure constant

at the mass of the τ lepton where α−1(mτ ) ≈ 133.3.
From the form of the above equation it is apparent that the decay widths for both the electron

and muon products should be similar, with the electron width slightly larger due to the electron’s
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2.2 The Tau Lepton

lighter mass. This is the case and experiment closely matches the theory with the τ lepton decay
to electrons measured to be 17.85±0.05% and the decay to muons measured to be 17.36±0.05%
[18].

Hadronic

Due to the QCD nature of the hadronic decay channels of the τ lepton, no general theoretical
form for the decay width can be given. However, a hadronic decay can be generalized to the
form of τ± → ντh±. Here, h− corresponds to all hadronic decay products with a total negative
charge. Equation 2.28 provides a decay width for this generalized decay process [19].

Γ (τ → ντh) =
GFm

2
τ

32π2

∫ m2
τ

0
dq2

(
1− q2

m2
τ

)[
cos2 θc

((
1 + 2

q2

m2
τ

)
(
v1(h , q2) + a1(h , q2)

)
+ a0(h , q2)

)
+ sin2 θc

((
1 + 2

q2

m2
τ

)
(
vs1(h , q2) + as1(h , q2)

)
+ vs0(h , q2) + as0(h , q2)

)]
(2.28)

In Equation 2.28, q is the invariant mass of the hadronic system, h , while vJ and aJ designate
continuous spectral functions in q. The a function corresponds to the axial part of the weak
charged current while v is given by the Lorentz vector part of the current. Each spectral function
is broken into parts by the spin subscript J while the superscript s denotes a strange state of h .
The normal definition for the Cabbibo mixing angle θc ≡ tan−1 |Vus/Vud| is used.

In the case of a single charged pion decay, the spectral functions are represented by a delta
distribution due to the the decay of π+ → µ+νµ and its corresponding charge conjugate. The
low mass of both the neutral and charged pion in conjunction with the general representation of
the hadronic decay width of Equation 2.28 favors pions in the final decay state of the τ lepton.
Experiment agrees with theory and pion decays are indeed favored with BR(τ− → ντπ

−) ≈ 12%,
BR(τ− → ντπ

−π0) ≈ 25%, BR(τ− → ντπ
−2π0) ≈ 11%, and BR(τ− → ντπ

−π+π−) ≈ 10%
with the corresponding ratios for the τ+ lepton [18]. Including small contributions from channels
involving kaons and other heavier hadrons along with the two leptonic channels accounts for all
known τ lepton decays.

For purposes of identification within a particle detector the τ lepton decays are grouped
by number of charged particles and are refered to as one, three, and five prong decays which
correspond to one, three, and five charged particles respectively. Table 2.1 gives a general
overview of the branching ratios grouped with respect to number of charged particles. Within
this paper for notational purposes, ` is either an electron or muon, while h is a hadron.

2.2.2 Production

The τ lepton can be produced from a variety of processes, including known SM processes,
hypothetical SM Higgs decays, hypothetical MSSM Higgs decays, and hypothetical superparticle
(sparticle) decays. The following outlines these possible channels of τ lepton production within
the LHC.
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Channel Percent
one prong decays
⇒ ντh− + h0 ≥ 1
⇒ ντ `

−ν̄`
⇒ ντh−

37%
35%
12%

85%

three prong decays
⇒ ντh−h−h+

⇒ ντh−h−h+ + h0 ≥ 1
10%
5%

}
15%

five prong decays < 1%

Table 2.1: Table of primary decay channels for the τ lepton adapted from Reference [1]. Data
taken from Reference [18].

Standard Model Processes

The two primary SM processes contributing to τ lepton production at the LHC are W± decay
and Z decay. The W± is experimentally measured to have a branching ratio of 11.25 ± 0.20%
to a τ lepton and corresponding τ neutrino and is expected to be produced in large quantities
by top and bottom quark decays from top and bottom pair production at the LHC. The Z
decays to a τ lepton pair in 3.370± 0.008% of all decays [18]. The Drell-Yan Z production and
decay has been well observed by previous experiments and will provide a standard candle for
the LHC detectors. The process itself, while used as the signal for this paper, is not of interest
for new physics and is considered a background for new physics searches as the process will be
kinematically similar to that of a Higgs decay. Details on expected cross sections for both W
and Z production at the LHC can be found in Reference [20] and the Z → τ+τ− process is
examined more closely in Section 4.2.1.

Additionally, τ leptons can be formed through the decay of charged B mesons, B± → D̄0τ±ντ ,
or charged D mesons, D± → τ±ντ . In the case of the charged B meson, 2.2± 0.6% of all decays
result in a τ lepton and neutrino with an additional neutral D meson. Further decays for the
charged B meson have been observed but are less than 0.7 ± 0.4% of decays. The D meson
decay is negligible with an upper limit of < 0.21%.

The SM Higgs Boson

The SM Higgs boson can be produced through a variety of mechanisms at the LHC, as shown in
the Feynman diagrams of Figure 2.3. The upper left diagram demonstrates gluon gluon fusion,
the leading production mechanism for the SM Higgs at the LHC as shown in the right plot of
Figure 2.4. The next to leading order production mechanism is weak boson fusion, shown in
the lower right diagram of Figure 2.3. The bottom left diagram demonstrates associated W
production, and the top right gives associated top/bottom quark pair production.

Weak boson fusion is of special interest as it provides a much cleaner signal than gluon gluon
fusion. Since both quark jets maintain color flow preservation and are highly boosted, jet
activity within the central region of the detector is surpressed. The subsequent decay of the
Higgs occurs within the cleaner central region of the detector, allowing for better identification
of the decay products. The two quark jets also provide a means for eliminating background. An
ATLAS study on weak boson fusion using fully simulated signal and backgrounds can be found
in Reference [21].
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Figure 2.3: Production mechanisms of the SM Higgs boson at the LHC: (a) gluon gluon fusion,
(b) top/bottom associated production, (c) W/Z associated production, (d) weak boson fusion.

The leading order decay width of the SM Higgs boson to fermion pairs is given by Equation
2.29 [22]. Here NC specifies the number of colors available, Mf the mass of the fermion, MH

the mass of the SM Higgs, and GF the Fermi coupling constant.

Γ(H → f̄f) =
NCGFM

2
fMH

4
√

2π

(
1− 4M2

f

M2
H

)3/2

(2.29)

The form of Equation 2.29 arises from the stronger coupling of more massive particles with
the Higgs field. As can be seen, both the b quark and τ lepton will have distinct advantages
as decay products over the remaining fermions for a Higgs mass less than twice the top mass.
Similar leading order decays for the decay width of the SM Higgs to W+W− and ZZ pairs is
written in Equations 2.30 and 2.31 respectively [23].

Γ(H →W+W−) =
GFM

2
W

8π
√

2

√
1− xW
xW

(
3x2

W − 4xW + 4
)

(2.30)

Γ(H → ZZ) =
GFM

2
W

16π
√

2

√
1− xZ
xW

(
3x2

Z − 4xZ + 4
)

(2.31)

The value xW is defined as 4M2
W /M

2
H and xZ as 4M2

Z/M
2
H which can also be written in terms

of xW and the W mixing angle, xW / cos2 θW . The left plot of Figure 2.4 shows the branching
ratios for the SM Higgs decay versus Higgs mass with next to leading order QCD corrections
included in the calculation [24].

From the above decay widths and Figure 2.4 it can be seen that for low masses of the SM
Higgs, MH < 140 GeV, the fermionic channels will dominate the Higgs decay with the most
massive available fermionic pair, bb̄, contributing as leading order. However, separating Higgs bb̄
events from QCD backgrounds can be difficult leaving the next to leading order τ+τ− channel
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Figure 2.4: Branching ratios for the SM Higgs decay calculated using NLO QCD corrections
with HDECAY [25] are given in (a). Production cross sections for SM Higgs production within
the LHC environment at

√
s = 14 TeV with a final τ+τ− state are given in (b) with details

given in Appendix D.

as the preferred signal. Note that this decay channel is the channel of choice for low mass Higgs
searches and as such, hadronic τ lepton identification is of vital importance.

At higher Higgs masses, MH > 140 GeV, the W+W− and ZZ channels dominate the Higgs
decay. From these channels it is possible to identify a Higgs signal through a two lepton decay
in the case of the W+W− channel, and a four lepton decay in the case of the ZZ channel. While
the preferred identification of these two signals will be through electron and muon identification,
including hadronic τ lepton identification will increase statistics.

Specifically, the efficiencies for the ZZ and W+W− channels is given in Equation 2.32, as-
suming an identification criteria of four or two leptons respectively.

εH→ZZ =
∑

i=e,µ,τ

∑
j=e,µ,τ

δ2iBRiδ
2
jBRj

εH→WW =
∑

i=e,µ,τ

∑
j=e,µ,τ

δiBRiδjBRj
(2.32)

Here δi is defined by Equation 2.33 where δi(leptonic) considers only leptonically decaying τ
leptons, and δi(hadronic) includes hadronically decaying τ leptons. The quantity BRi is the
branching ratio of either the Z or the W to lepton i for the respective expressions and also the
branching ratio of the τ lepton in Equation 2.33. The value εi is the identification efficiency for
the corresponding lepton. In the case of the τ lepton, this efficiency is for hadronically decaying
τ leptons only.

δi(leptonic) =

{
εeBR(τ → e) + εµBR(τ → µ) i = τ

εi i 6= τ

δi(hadronic) =

{
εeBR(τ → e) + εµBR(τ → µ) + ετBR(τ → h) i = τ

εi i 6= τ

(2.33)
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Equation 2.34 presents the results for an efficiency of 91% (excluding trigger efficiencies and de-
tector acceptance) for muon identification, 77% for electron identification, and 30% for hadronic
τ lepton identification. The efficiencies above are taken from preliminary ATLAS studies [26]
and are only meant as rough estimates for a possible analysis.

εH→ZZ(hadronic)
εH→ZZ(leptonic)

≈ 1.21
εH→WW (hadronic)
εH→WW (leptonic)

≈ 1.22 (2.34)

As can be seen, including hadronic τ leptons, even with a diminished efficiency increases the
signal by nearly 20% for both the ZZ and W+W− cases. However, the analysis is not as
simple as outlined above. Including both leptonic and hadronic τ lepton channels significantly
complicates the analysis with larger missing transverse energy, triggering issues, introducing new
backgrounds, etc. Despite these complications, it is clear that the τ lepton is important for high
mass SM Higgs searches and critical for low mass SM Higgs searches.

The MSSM Higgs Bosons

The τ lepton also plays a vital role in searches for the MSSM Higgs bosons. The decay channels
for h0 of a significance greater than 10−4% are the same channels as those shown for the SM
Higgs in Figure 2.4. Significant decays for the H0 include b quark, τ lepton, muon, and s quark
pair production along with decays to the lighter MSSM Higgs: h0h0, A0A0, A0Z, and W±H∓.
For the CP-odd A0 the same fermion pair production as the H0 is significant along with the gg,
γγ, γZ, and h0Z channels. For the charged H+ cb̄, τ+ντ , µ+νµ, us̄, cs̄, tb̄, h0W+, and A0W+

are all significant decay channels, with the subsequent charge conjugates for the H−. In general,
larger tanβ enhances coupling of the Higgs bosons to the heavier fermions.

As the decay widths for each MSSM Higgs boson change with respect to the free parameters,
tanβ and MA0 , and due to the large number of possible channels, an attempt to demonstrate
the percentages of each channel is not made. However, the plots of Figure 2.5 demonstrate
the relevant τ lepton decay channels for each MSSM boson versus MA0 for tanβ = 3 and 30,
while assuming the mmax

h0 scenario. This scenario ensures conservative exclusion of tanβ by
choosing the free parameters such that the Higgs boson masses are at a maximum for a specified
tanβ; more details are outlined in Reference [27]. Current ATLAS studies place the maximum
discoverable MA0 within the ATLAS detector at 500 GeV [28] and searches at LEP have placed
the bounds mh0 > 92.8 and MA0 > 93.4 GeV with a 95% confidence level [18].

For MH+ < 180 GeV (MA0 < 142 GeV) and a low tanβ of 3 the H+ decay products are
τ+ντ for over 50% of decays. Note, however, that this corresponds to Mh0 < 94, indicating that
the discovery of a H+ through the τ+ντ for low tanβ is unlikely as it is places mh0 close to
the current excluded range. As tanβ increases so does the probability of the τ lepton channel,
and for tanβ = 30, at least 90% of decays are τ+ντ up to MH+ < 180 GeV corresponding to
MA0 < 165 GeV and Mh0 ≈ 118 GeV. This occurs from the larger Yukawa couplings of the third
generation of fermions. From this it is clear that the τ+ντ channel is important for identification
of the H+ decay for high tanβ.

Both the A0 and H0 have significant τ lepton decays for both low and high tanβ although
the branching ratios for τ lepton channels increase for higher tanβ, as expected. While not on
the order of the H± decay, rates remain constant near 10% for both A0 and H0 at tanβ = 30.
For low tanβ the A0 decay to τ leptons remains near 10% for MA0 < 340 GeV. The H0 decay
channel for low tanβ is not as promising as the A0, with a branching ratio of 8% for MA0 < 140
GeV. For masses above this, the H0 τ lepton branching ratio remains below 3%.
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The light MSSM Higgs, h0 also has a significant branching fraction to a τ+τ− final state.
From both plots of Figure 2.5 it can be seen that for nearly all tanβ and MA0 a τ lepton pair
is produced in approximately 8% of decays from the h0.
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Figure 2.5: Branching ratios for the five MSSM Higgs bosons decaying to final products
containing τ leptons. The parameter tanβ is fixed at 3 (a) and 30 (b) while the ratios are plotted
with respect to the remaining free parameter, MA0 . Note Mh0 > 92.8 GeV given MA0 > 134.6
GeV for tanβ = 3 while Mh0 > 92.8 GeV given MA0 > 93.9 GeV for tanβ = 30. The plot was
made neglecting LSP decay using HDECAY [25] with full details given in Appendix D.

Full Higgs Sector

In order to fully emphasize the importance of the τ lepton for a Higgs discovery and exploration,
Figure 2.7 shows the cross sections for MSSM Higgs events with final states containing τ leptons.
The right plot of Figure 2.4 shows the same cross sections, but for the SM Higgs. Here H
corresponds to the SM Higgs, h0 to the light MSSM Higgs, H0 to the heavy MSSM Higgs, A0

to the CP-odd MSSM Higgs, and H± to the charged Higgs. A mmax
h0 benchmark scenario is

assumed, just as in Figure 2.5.
Note that the number of events for a specific process with a given integrated luminosity, shown

by Equation 2.35, is directly proportional to the cross section of that process.

Nevents = Lint ·BR(X → τ+τ−) · σ(X) (2.35)

The variable X represents one of the neutral SM or MSSM Higgs bosons, while BR(X → τ+τ−)
is the branching ratio of that specific Higgs into a τ lepton pair. The integrated luminosity, Lint,
is highly dependent upon operational parameters during data taking and is explained further in
Section 3.1.

The production mechanisms are broken into the diagrams of Figure 2.3 with bb̄ and tt̄ asso-
ciated production corresponding to (b), gg fusion production corresponding to (a) with next to
leading order gq and qq production included, associated W and Z production corresponding to
(c), and V V fusion corresponding to (d). For the SM Higgs, leading order production through
the gg channel begins with σ(H → τ+τ−) ≈ 4.7 pb at a mass of MH ≈ 115 GeV and drops
off below 0.05 pb for masses above ≈ 165 GeV. The remaining mechanisms for the SM Higgs
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also produce a similar curve, but beginning at σ(H → ττ) ≈ 0.7 pb for MH ≈ 115 GeV and
dropping below 0.05 pb for MH > 155 GeV.

For MSSM Higgs productions, leading order production is primarily through gg fusion for low
tanβ and bb̄ associated production for high tanβ. Beginning at a mass of MA0 = 135 for tanβ =
3 the leading order production cross section for the light MSSM Higgs is σ(h0 → τ+τ−) ≈ 5.7
pb and dominates the production cross sections for both H0 and A0 for nearly all MA0 . The
production of H0 and A0 is significantly lower than that of h0 with the leading order production
starting at σ(H0 → τ+τ−) ≈ 1.5 pb and σ(A0 → τ+τ−) ≈ 1.5 for MA0 = 135.

At tanβ = 30 the production cross sections for all MSSM Higgs bosons increases by nearly
two orders of magnitude for τ final products, as expected from Figure 2.5. For the minimum
excluded mass of MA0 = 93.9 the leading order production for the light h0 is both gg fusion
and associated bottom production, while for the A0 and H0 the leading order production is gg
fusion. For MA0 > 115 GeV associated bottom production becomes leading order for A0 and
H0 production. Gluon gluon fusion becomes the dominating production for h0 at MA0 > 130
GeV.

For luminosities on the order described in Section 3.1 these cross sections translate into over
500, 000 observable Higgs events with a τ lepton final state at the LHC within a year of nominal
activity. While nominal activity is not expected within the near future, the significance of τ
lepton channels for Higgs searches is apparent.

Sparticles

For a SUSY parameter space detectable at the level of the electroweak scale, large numbers of
squarks and gluinos will be produced within the LHC environment. The final states of such
particles will be currently undetected lightest supersymmetric particles (LSP) or fermions, in
an R-parity conserving scenario. For mSUGRA the τ̃ is predicted to be the lightest slepton,
and expected to decay into τ lepton final states. With the parameter space m0 < m1/2 and
tanβ = 35, nearly 80% of all events at the LHC are expected to contain at least one τ lepton
[29].

The decay chains of squarks and gluinos are mediated by neutralinos which for moderate to
high tanβ will have a decay largely dominated by τ leptons. Such a possible decay chain is
shown in the Feynman diagram of Figure 2.6 [30]. One of the primary sources of this decay
chain will be from a gluino decay, g̃ → bb̃→ bbX̃ 0

2 → bbτ τ̃ → bbττ X̃ 0
1 , and while searches using

τ leptons in early data will be difficult, such searches will prove to be important over time.

�
X̃ 0

2

τ̃

τ

τ

X̃ 0
1

Figure 2.6: Decay chain of a neutralino to τ− lepton and τ̃ followed by a τ+ lepton and another
neutralino. Such a decay chain could occur in a gluino decay chain.
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Figure 2.7: Theoretical MSSM Higgs cross sections with a τ+τ− final state for h0 (upper), H0

(middle), and A0 (lower) at tanβ = 3 (left) and tanβ = 30 (right). The production processes
are given by Figure 2.3 where gg fusion includes next to leading order gq and qq not shown in
Figure 2.3. Note that H± is not included as it is not produced by the mechanisms of Figure 2.3.
Further details on the production of the plots are given in Appendix D.
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To further explore the Standard Model, it is necessary to develop more advanced detectors
and colliders. While LEP has excluded the existence of a Higgs boson up to masses of ≈ 115
GeV, the search is far from over, and further experiments are required. Even neglecting the
search for the Higgs, higher energies are necessary to further understanding of the Standard
Model through new physics. A world wide collaboration of scientists and engineers at CERN
is providing such an opportunity to investigate the Standard Model through the LHC and its
subsequent detectors.

3.1 Large Hadron Collider

The LHC is a proton-proton collider located in Geneva, Switzerland at CERN. Shown in Figure
3.1, the LHC is 27 km in circumference with a 14 TeV center-of-mass energy. The accelerator
supports two multipurpose detectors, ATLAS and CMS, along with a dedicated heavy ion de-
tector ALICE, and LHC-b, designed specifically for the detection of hadrons containing bottom
quarks. Two additional detectors, TOTEM and LHCf, share facilities with ATLAS and CMS.
The LHCf is located in the same cavern as the ATLAS detector and is designed to explore the
forward regions of proton-proton interactions not covered by ATLAS. TOTEM shares a cavern
with CMS and measures total cross sections, elastic scattering, and diffraction dissociation.

The LHC itself is an extraordinarily complex machine and the result of decades of planning.
The following is not intended as a full technical description of the machine, but rather a brief
overview of the underlying concepts important to this paper. As for any particle physics exper-
iment, the luminosity of the accelerator is critical to the design and discovery potential of the
associated detectors. The injector chain also plays a critical role in the operation time of the
accelerator, and determines the total integrated luminosity for a specified time period. Finally,
the collider layout determines the beam parameters necessary to calculate the luminosity, and
provides a general impression of the physical design of the detector. A full review can be found
in Reference [31].

3.1.1 Luminosity

The rate of events generated, Revent, for a specific process with cross section σevent and instan-
taneous beam luminosity L is given in Equation 3.1.

Revent = L σevent (3.1)

As many of the processes being searched for at the LHC have low cross sections, it is necessary
for the LHC beam to have a high luminosity to provide a detectable number of events.

L = F

(
n2
pnbfγr

4πεβ∗

)
(3.2)

The luminosity, as given in Equation 3.2 [31], is dependent upon the collision frequency f , the
number of particles colliding in each beam np, the number of bunches nb, the relativistic factor
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Figure 3.1: Schematic of the LHC including the injection chain and layout of the collider.
Beam 1 is shown in blue and circulates clockwise, as seen from above. Beam 2 is in red and
circulates counter-clockwise. Four beam crossings are depicted at Points 1, 2, 5, and 8. Beam 1
is injected at Point 2 while Beam 2 is injected at Point 8.

γr of the beam, a geometric reduction factor F , the normalized transverse emmitance function
εn, and the transverse betatron function at the interaction point, β∗. The geometric reduction
factor is given in Equation 3.3.

F =

[
1 +

(
θcσz
2σ∗

)2
]−1/2

(3.3)

The beam is assumed to have a Gaussian shape with a known width at the interaction point,
σ∗, and length, σz, determined by the preparation of the beam. The angle θc is the full beam
crossing angle and is determined from the geometry of each interaction point.

The transverse beam emmitance is defined as the maximum amplitude of an average particle
within a bunch. Equation 3.4 defines the beam emmitance in terms of the betatron function
and transverse beam size. The normalized transverse beam emmitance is εnγrβr where βr is the
relativistic β factor of the beam.

ε ≡ σ(s)2

β(s)
(3.4)

The betatron is a periodic function with respect to position s within the collider ring and de-
pendent upon the the placement and strength of the LHC quadrapole magnets, fully determined
by the lattice arrangement of the LHC [32].

The parameters of Equations 3.2 and 3.3 for the LHC at Point 1 where the ATLAS detector
is located are given in Table 3.1 for a goal peak luminosity of L ≈ 1034 cm−2 · s−1. Limits on
the parameters place this luminosity as a maximum. The number of bunches and frequency of
the accelerator are dictated by a necessary bunch spacing of 25 ns due to the time resolution of
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Beam Parameters Value Point 1 Parameters Value

np 1.5× 1011 particles εn 3.75 µm
nb 2808 bunches σ∗ 16.7 µm
f 21.4 Hz β∗ 74.4 µm
γ 7461 θc 142.5 ◦

σz 7.55 µm

Table 3.1: Relevant parameters of Equations 3.2 and 3.3 for an LHC operation of L ≈
1034 cm−2 · s−1 at Point 1 [31].

the LHC detectors. From the geometry of the LHC beam screens, a maximum transverse beam
emittance of ε = 3.75 µm is allowed. The sum of the linear tune shift over all interaction points,
defined in Equation 3.5, should not exceed 0.015 as determined by previous experiments. Here,
mp is the mass of the proton.

ξ ≡ npe
2

16π2c2mpε0εn
(3.5)

With three experiments requiring head on proton collisions (ATLAS, CMS, and LHC-b), the
linear tune shift must remain below 0.005. As the transverse beam emmitance is already limited
by the beam screen, this requires the number of protons per bunch to be less than 1.15× 1011.

The relativistic factors γr and βr are both limited by the energy of the beam, which is sub-
sequently limited by the maximum attainable strength of the dipole magnetic field of 8.33 T.
Restrictions on beam dump capacity also limit the energy of the beams. The final parameters,
beam width and length, are limited by the timing and accuracy of the magnetic fields.

Due to beam collisions, elastic scattering, and Touschek scattering, beam luminosity lifetime
is limited. If the beam vacuum is well maintained, elastic scattering is minimized, but both
beam collisions and Touschek scattering remain. Touschek scattering occurs if protons within
the beam collide and produce a longitudinal momenta outside the limits of the accelerator [33].
Taking all effects into account, the beam luminosity mean lifetime is estimated to be τL ≈ 14.9
hours [31].

3.1.2 Injector Chain

The injection chain is shown in Figure 3.1 and is a critical aspect in the integrated beam
luminosity of the LHC. Beams begin within an Alvarez linear accelerator (LINAC 2). Here a
duoplasmatron creates a plasma from a highly ionized gas. The plasma is accelerated into a
proton beam and fed through a 750 keV radio frequency quadrapole into three Alvarez tanks.
The protons are accelerated to an energy of 50 MeV, frequency of 0.8 Hz, and maximum pulse
length of 150 µs and fed to the Proton Synchrotron Booster (PSB) [34].

The PSB was first built in 1968 and has since been upgraded through various projects to meet
the needs of the current experiments at CERN. Four rings with a radius of 25 m are filled from
the LINAC 2 by means of an electrostatic deflector with each ring holding one bunch. After
the beams are simultaneously accelerated to 1.4 GeV they are recombined and ejected to the
Proton Synchrotron (PS) by kicker magnets [35].

Two batches from the PSB are required to fill the PS in a scheme designed to maintain
sufficient brightness of the beam. The beam within the PS is designed to hold 84 bunches with
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a bunch spacing of 25 ns. The beam is accelerated to 26 GeV where an 80 MHz cavity reduces
the bunch lengths to 4 ns such that they can fit within the 200 MHz RF cavities of the Super
Proton Synchrotron (SPS). The bunches are kicked into the SPS with 3 bunches lost due to
kicker magnet rise times [36].

The SPS with a radius of 1.1 km accelerates the beam from an energy of 26 GeV to 450
GeV using two RF cavities operated at a frequency of 200 MHz. The beam is then fed into
the main LHC ring at Point 2 or Point 8 as shown in Figure 3.1 [37]. The beam traveling in
a clockwise direction, as viewed from above, enters at Point 2, while the beam traveling in the
counterclockwise direction is inserted at Point 8.

The main LHC ring requires 12 cycles from the SPS to fill completely. Each SPS fill takes
21.6 seconds and requires 4 cycles of 3.6 seconds each from the PS. An additional 4 SPS cycles
are assumed for an initial setup, with a 2 minute calibration period between each injection cycle.
This brings the total injection time to approximately 16 minutes for the complete filling of both
beams for the LHC. An additional 60 minutes is required to ramp the beam energies from 450
GeV to the full energy of 7 TeV for each beam. A planned system check of 10 minutes brings
the complete injection cycle to approximately 86 minutes under ideal conditions.

The optimal run time trun is given by Equation 3.6 where τL is the luminosity lifetime and
tturn is the average turnaround for each injection cycle.

trun = τL ln
(
trun + tturn

τL
+ 1
)

(3.6)

Using τL ≈ 894 minutes as previously mentioned in Section 3.1.1, and tturn ≈ 86 minutes yields
an optimal run time of trun ≈ 366 minutes.

Integrating the instantaneous luminosity of the accelerator over the run time is given by
Equation 3.7. Plugging the optimal run time obtained from Equation 3.6 and the optimal
instantaneous luminosity from Section 3.1.1 into Equation 3.7, the integrated luminosity for one
run is found to be 1.5× 1031 cm−2 · s−1.

Lrun = L τL

(
1− e−t/τL

)
(3.7)

Assuming the LHC is constantly operated 200 days out of the year, the maximum integrated
luminosity for a year is given by Equation 3.8.

Lyear =
(200)(24)(60)
trun + tturn

Lrun (3.8)

Using the previously calculated values for trun and tturn a value of Lyear ≈ 69 fb−1 is found [31].

3.1.3 Collider Layout

The collider ring contains three types of sections, long straight sections (LSS), arcs, and disper-
sion suppressors (DS). Figure 3.1 diagrams the locations of each section type within the collider
ring. The ring is divided into octants, and contains eight arcs alternated with eight long straight
sections. Each long straight section provides an access point to the surface, with the ability of
additional infrastructure to be added at each access point.

Point 1, corresponding to LSS1 in Figure 3.1, houses the ATLAS experiment, while Point 5
houses the CMS experiment. Both interaction regions contain identical hardware. However, the
crossing angle at Point 1 is perpendicular to the surface, and the crossing angle at Point 5 is
horizontal. On either side of the interaction point a free space of 23 m is maintained, dictating
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Figure 3.2: Simplified half schematic of the magnet layout of LSS1 and LSS5 surrounding the
ATLAS and CMS detectors. Dark blue indicates a cryostat kept at 1.9 K, light blue a cryostat
maintained at 4.5 K, and red a warm cryostat.

the maximum length of either experiment. Figure 3.2 shows a simplified schematic of the LSS’s
surrounding both Point 1 and Point 5.

Following along the beam line from the interaction point at Point 1 and 5 in both directions
is located a 31 m triplet assembly of magnets with an operational gradient of 205 T/m. The
triplet assembly is proceeded by the separation and recombination dipoles. The first dipole is
a 20.4 m assembly of six warm magnet modules with operating fields of 1.38 T. The second
dipole is a a single 9.4 m superconducting magnet with a field of 3.8 T. A matching section
consisting of four quadrapole magnets is adjacent to the separation dipole. The first quadrapole
provides a gradient of 160 T/m while the following three quadrapoles provide gradients of 200
T/m. Standard dispersion suppressor and arc sections follow the matching quadrapoles.

Point 2 houses both the ALICE experiment and the injection system for Beam 1, shown in
blue of Figure 3.1. The magnet configuration is similar to that of Point 1 and 5 in layout,
but the hardware parameters must fulfill the more stringent requirements necessary for the
beam injection system. The injection system is inserted within the matching section left of the
interaction point (as viewed from the center of the ring) from below the plane of the LHC ring.
Similar constraints are placed on Point 8 which houses both the LHC-b experiment and the
injection system for Beam 2, shown in red in Figure 3.1.

Points 3, 4, 6, and 7 do not contain beam crossings but house various beam monitoring and
cleaning equipment. Momentum cleaning occurs in LSS3 while betatron cleaning is performed
in LSS7. RF and feedback services are housed in the old ALEPH cavern of LSS4. Finally, LSS6
houses the beam abort systems for both Beam 1 and Beam 2. In the case of a beam extraction,
the beams are horizontally kicked into iron septum magnets which vertically deflect the beams
into separate tunnels terminated by absorbers. Each dump system must be able to dissipate
over 362 MJ.

Each LSS section is followed by a dispersion suppressor responsible for adapting the orbit of
the LHC beams to the geometry of the LEP tunnel. Additionally, the suppressors eliminate
horizontal dispersion caused by the separation and recombination of the beam by the dipoles.
Both the DS and arc cells are similar in design, with the DS cells having the dipole units of the
arc cell removed. Each arc is made of 23 cells containing 6 dipoles, a short straight section, and
two cold masses [31].
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3.2 ATLAS Detector

The ATLAS detector is a multi-purpose detector designed to explore the wide range of known
and unknown physics available at the energy scale of the LHC. The detector, shown in Figure
3.3, consists of six primary systems: the magnet system, the inner detector, the electromagnetic
calorimeter, the hadronic calorimeter, the muon system, and the trigger system. All six systems
are specifically designed to compliment each other in order to provide a comprehensive detector.

Figure 3.3: The ATLAS detector as taken from Reference [38].

Located at Point 1 on the LHC ring 100 meters below the surface, ATLAS resides in a cavern
approximately 45 by 25 meters, and weighs 6.4×106 kg. ATLAS uses a right-handed coordinate
system with the x-axis directed to the center of the LHC ring, the y-axis pointing towards the
surface, and the z-axis pointing along the direction of the beam such that x̂×ŷ = ẑ. Furthermore,
the angle φ, always given in radians, is defined to be an azimuthal angle perpendicular to the
z-axis, such that φ = 0 corresponds to the x-axis. The range of φ is −π ≤ φ ≤ +π and the angle
increases in a clock-wise direction around the z-axis. The angle θ is defined to be a polar angle
perpendicular to the x-axis with the z-axis corresponding to θ = 0.

However, due to the highly relativistic nature of the collisions occurring within the detector,
particle production is approximately constant with respect to rapidity, the quantity invariant
under Lorentz boosts defined in Equation 3.9.

y ≡ 1
2

ln
(
E + pz
E − pz

)
(3.9)

Here E is the energy of a particle and pz the longitudinal momentum along the z-axis. As
energy is much greater than mass for collisions within the LHC, energy can be approximated
by momentum, E ≈ |~p|. This approximation yields pseudorapidity, as defined in Equation
3.10, which can be written in terms of the polar angle θ. Because of its near Lorentz invariant
properties, pseudorapidity is often favored over θ.

η ≡ −1
2

ln
( |~p|+ pz
|~p| − pz

)
= − ln

(
tan

θ

2

)
(3.10)

A pseudorapidity of η = 0 corresponds to the y-axis while a pseudorapidity of η = ±∞
corresponds to the ±z-axis.
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3.2.1 Magnet System

The magnet system, as shown in Figure 3.4 consists of a central solenoid, a barrel toroid, and
two end-cap toroids. Because the central solenoid is located between the inner detector and
electromagnetic calorimeter the solenoid is designed to be as thin as possible while maintaining
reliability. A particle incident to the normal of the solenoid passes through approximately 0.7
radiation lengths. The solenoid is one coil with 1154 turns of a niobium-titanium (Nb-Ti) alloy
with aluminum and copper added for stabilization. To maintain super-conducting properties,
the coil must be kept at 4.5 K, which is achieved by a cryostat shared with the electromagnetic
calorimeter. While operating at an operational current of 7.73 kA, a maximum magnetic field of
2 T is provided by the solenoid, with a field of 2.6 T achieved within the coil itself. The coil has
an outer diameter of 2.6 m and a length of 5.3 m, covering a pseudorapidity range of |η| < 2.7
[39].

Figure 3.4: The ATLAS magnet system is shown in red with the four layers of the calorimeter.
The outermost cylinder, in dark blue, is the return yolk for the central solenoid, represented by
the centrally located red cylinder. The barrel toroid is shown by the six long red coils about the
center of the detector, while the end-cap toroids correspond to the eight small loops on either
side of the detector. Image adapted from Reference [38].

The barrel toroid is located outside the calorimeters and provides a variable magnetic field for
the muon system. Eight coils of an Al/Cu/NbTi alloy, similar to the central solenoid alloy, make
up the barrel toroid, with 120 turns per coil. The operating temperature of the barrel toroid
is 4.5 K with a nominal current of 20.5 kA. As the barrel toroid does not provide a constant
magnetic field, the bending power, as defined in Equation 3.11, is measured instead.

P ≡
∮
R
Bz · dl (3.11)

Here Bz is the component of the magnetic field along the z-axis, and R is a radial path in the
xy-plane through the magnetic field. The barrel toroid provides a bending power of 2− 6 T·m
and covers a pseudorapidity range of 0 ≤ |η| ≤ 1.3. This range corresponds to a physical length
of 25.3 m, with an inner diameter of 9.4 m and an outer diameter of 20.1 m [40].
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The two end-cap toroids each consist of eight coils each with 116 turns of the same Al/Cu/NbTi
alloy used in the barrel toroid. These coils also operate at a temperature of 4.5 K and nominal
current of 20.5 kA. A bending power of 4 − 8 T·m is provided by each end-cap and covers
1.6 ≤ |η| ≤ 2.7 in each hemisphere of the detector. The length of the coils for each end-cap is 5
m while the outer diameter is 10.7 m and the inner diameter is 1.65 m [41].

The entire magnet system is supported with a vacuum and cryogenic system controlled by a
complex electronic system. A measurement and calibration of the fields was performed in August
of 2006 by a machine with 12 moveable Hall cards [42]. A full field map has been reconstructed
using both theory and empirical measurements.

3.2.2 Inner Detector

The ATLAS inner detector, shown in Figure 3.5 with a detailed schematic in Figure 3.6, consists
of three sub-detectors: the pixel detector, the silicon microstrip tracker (SCT), and the transition
radiation tracker (TRT). Both the pixel detector and the SCT operate on the principles of a
doped semiconductor. A particle passes through the silicon of the detector and creates a series
of electron-hole pairs. A bias voltage is run across the silicon and the electrons created from the
passing particle flow to the anode of the detector. A measured current signals that a particle
has been detected.

Figure 3.5: The ATLAS inner detector as taken from Reference [38].

The TRT consists of straw tubes, which differ in first principles from silicon based detectors.
A straw tube consists of a long gas filled cylinder with an anode wire running down the center.
As a particle passes through the cylinder the gas is ionized. The ions flow to the anode and
trigger a change in current, signaling a detected particle. Additionally, as relativistic charged
particles pass between material interfaces of different dielectric constants, transition radiation is
produced in the direction of the particle trajectory. The additional radiation is detected by the
straw tubes producing an increased current. Due to the large mass difference between electrons
and hadrons, electrons with a momentum greater than 1 GeV produce transition radiation
while hadrons such as pions begin to produce transition radiation only when their momentum is
greater than 100 GeV. This difference allows for the separation of electrons from hadrons using
the TRT.

The pixel detector barrel is composed of three layers: Layer-0 critical for vertexing located at
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r = 50.5 mm, Layer-1 at r = 88.5 mm, and Layer-2 at 122.5 mm. Six end-caps are located at
±z = 495, 580, and 650 mm. Layer-0 contains 13.2 × 106 pixels while Layer-1 has 22.8 × 106

pixels and Layer-2 has 31.2 × 106 pixels. Each end-cap contains 2.2 × 106 pixels bringing the
total number of pixels within the pixel detector to 80.4× 106. Each pixel has a physical size of
19× 63 mm with an intrinsic accuracy σx of 10× 115 µm [43].
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Figure 3.6: A detailed schematic of one quadrant of the ATLAS inner detector, as taken from
Reference [44].

The SCT barrel consists of four layers at r = 299, 371, 443, and 514 mm. Each layer consists
of two strips to provide a single stereo hit. A total of 18 end-caps, 9 in either hemisphere,
are located at ±z = 847.5, 934, 1084, 1262, 1377, 1747, 2072, 2462, and 2727 mm. The SCT
contains 15912 sensors each with σx = 17× 580 µm [44].

The TRT is made up of 37 (end-cap) and 144 mm (barrel) straws manufactured from a
polyimide film and filled with a Xe/CO2/O2 gaseous mixture. The electron collection time for
each straw is approximately 48 ns which provides a drift time accuracy of σx = 130 µm with a
position given only in the radial φ direction. The TRT spans from a radius of 544 to 1082 mm
[45].

The entire inner detector covers a range of |η| < 2.5 with a required track resolution of
σpT /pT = 0.05% pT ⊕ 1%. An average number of 43 hits for a track with pT > 0.5 GeV is
provided by 3 hits from the pixel detector, 4 from the SCT, and 36 from the TRT. Detailed
tests of the pixel detector, SCT, and TRT at various stages of assembly were performed. After
integration of the SCT with the TRT, an average of 0.23% of the channels from the SCT were
found to have defects. Similarly the pixel detector was found to have an average of 0.33%
channels defective. After the entire inner detector was lowered from the surface and integrated
into the full ATLAS detector, the TRT was found to have an average of 1.8% of the channels
defective [38].

The material budget within the inner detector is significant and leads to serious consequences.
Specifically, for a particle with |η| ≈ 0 a total of 0.469X0 is traversed within the inner detector
while for a particle with |η| ≈ 1.8 a total of 1.126X0 is traversed. These high radiation lengths
result in a large number of electrons losing the majority of their energy through bremsstrahlung
before entering the electromagnetic calorimeter. Nearly 40% of photons are absorbed by pair
production prior to entering the electromagnetic calorimeter and a large number of charged
pions undergo inelastic hadronic interaction within the inner detector [38].

27



3 Experiment

3.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter, shown in light brown in Figure 3.7, consists of two half-barrels
around the central region, two end-caps, one on either side of the detector, and a presampler.
Charged particles pass into the calorimeter and are rapidly decelerated as they pass through
the electric fields of the absorber material. As the particles decelerate through bremsstrahlung
radiation, virtual photons are emitted which subsequently initiate electron-positron showers.
The shower passes into the sampling portion of the calorimeter where the gas is ionized and
drifts to the cathodes of the calorimeter cell producing a detected current. The electromagnetic
calorimeter is able to detect photons which also initiate electron-positron showers.

The barrel calorimeters each cover one hemisphere of the detector with 0 < |η| < 1.475 and
are lead and liquid argon (LAr) sampling calorimeters. Argon was chosen as the active medium
due to its linear behaviour, stable response time, and radiation hardness while lead was chosen
as the absorber due to its high radiation length. Each barrel has an accordian geometry to
ensure full coverage in φ, consisting of 1024 absorber plates interleaved with readout electronics.
A LAr presampler is located just before the two barrels, within the barrel cryostat, and consists
of an 11 mm layer of liquid argon split into 64 sectors.

Each barrel is split into three active sampling layers with varying granularities. The first
sampling layer has a very fine granularity of ∆η×∆φ = 0.0031×0.0982 designed to differentiate
between single photons and π0 decays. The second sampling layer is coarser with a granularity
of ∆η × ∆φ = 0.025 × 0.0245 and absorbs most of the energy from particle showers. The
third sampling layer absorbs the remainder of the energy from the particle showers and has a
granularity of ∆η ×∆φ = 0.050× 0.0245 [46].

Figure 3.7: The ATLAS calorimeters as taken from Reference [38].

The end-caps of the electromagnetic calorimeter are also lead-LAr sampling calorimeters with
an accordian design similar to the barrel calorimeters. Each end-cap covers a region of 1.375 <
|η| < 3.2 and provides a thicknes of greater than 24X0. However, as the end-caps are composed
of two co-axial wheels, a coverage gap of 3 mm does exist at |η| = 2.5. A LAr presampler,
similar to the barrel presampler, is located just before the end-caps [38].

In 2006 a section of the barrel calorimeter was subjected to the CERN H8 electron test
beam to determine the energy resolution and response properties of the calorimeter. Test data
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was fit to Equation 3.12 and the constants were found to be a = 10.1 ± 0.1% · √GeV and
b = 0.17± 0.04%. Both the stochastic and sampling terms were found to be in agreement with
Monte Carlo simulations of the calorimeter resolution [47].

σE
E

=
a√
E
⊕ b (3.12)

After the calorimeter was inserted into the full detector and cooled to operational tempera-
tures, a full test of all calorimeter readout channels was performed. For the barrel presampler
no defective channels were found, while for the remaining barrel calorimeter only 24 defective
channels were found out of 109952 channels, with a fault rate well below the required 0.05%
[48]. A similar test was performed on the end-cap calorimeters with 1 of 1536 channels found to
be defective for the presampler and 15 of 68160 channels for the end-caps [49].

3.2.4 Hadronic Calorimeter

The hadronic calorimeter, highlighted in grey and dark brown in Figure 3.7, has three com-
ponents, a tile calorimeter, a LAr end-cap calorimeter, and a LAr forward calorimeter. Both
LAr components work on the same principles as the electromagnetic LAr calorimeter. The tile
calorimeter also utilizes a similar principle of measuring electron-positron showers, but rather
than ionizing a gas, a scintillator is luminesced by the shower. Photomultiplier tubes are struck
by the photons from the scintillator and produce a current that signals a detected particle
shower.

The tile calorimeter is located behind the electromagnetic barrel calorimeter and covers a
pseudorapidity of |η| < 1.7. A steel absorber is used, rather than lead, as the steel not only acts
as an absorber but also provides the structural support for the tile calorimeter. The scintillator
tiles are 3 mm thick and range in widths of 97 to 187 mm and 200 to 400 mm. The scintillating
material used is polystyrene which produces ultraviolet light. Fluors of polystyrene doped with
PTP and POPOP elongate the wavelength of the scintillated light before passing the light to
wavelength shifting collection fibers placed at the edges of the tiles. The wavelength shifting
fibers again increase the wavelength before passing the light to the photomultiplier tubes where
the photonic signal is converted to an electric signal [50].

Just as the electromagnetic barrel calorimeter, the tile calorimeter barrel has three active
sampling layers. Each sampling layer has a time resolution of approximately 1 ns necessary for
the expected high luminosity of the LHC. The first two sampling layers have a granularity of
∆η ×∆φ = 0.1× 0.1 while the final layer has a granularity of ∆η ×∆φ = 0.2× 0.1 [51].

The hadronic end-cap calorimeter (HEC), uses a copper absorber and steel support frame
along with the sampling liquid argon. Each end-cap contains two wheels, and covers 1.5 < |η| <
3.2. The forward calorimeters (FCal) provide a coverage of 3.1 < |η| < 4.9. As the FCal is very
close to the beamline, high particle flux is expected, and smaller gaps filled with liquid argon
are used to increase the response time of the system [38].

In 1996 portions of the electromagnetic LAr calorimeter and the hadronic tile calorimeter were
exposed to the CERN H8 test beam. The combined energy resolution for hadronic processes
was estimated to be a = 52.0± 1.0% · √GeV and b = 3.0± 0.1% using Equation 3.12 [52].

3.2.5 Muon System

The muon system, shown in Figure 3.8 contains four primary components: monitored drift
tubes (MDT), cathode strip chambers (CSC), resistive plate chambers (RPC), and thin gap
chambers (TGC). The system is designed to provide high transverse momentum resolution of

29



3 Experiment

approximately 10% for muons with a pT of 1 TeV with a spacial resolution of 50µm while
maintaining a fast triggering system.

Figure 3.8: The ATLAS muon as taken from Reference [38].

The MDT’s operate in a similar fashion as the TRT. A narrow cylindar is filled with gas, and
a wire is passed down the center of the tube. A high voltage is applied between the shell of
the tube and the central wire. As a muon passes through the tube the gas within is ionized,
and if the particle is energetic enough, an ionization cascade is initiated, producing a current on
the anode. Calibration of drift times within tube allow for precise position measurement of the
ionizing particles.

The CSC system is made of multiwire proportional chambers, similar to the MDT’s on first
principle, but is constructed from flat chambers with multiple anode wires, rather than one anode
wire per tube. A series of cathode strips are layed perpindicular to the anodes, allowing for full
position determination, with additional position verification information from pulse timing. The
TGC system is the same as the CSC system, but the spacing of the anodes within the chambers
is smaller, providing better time resolution for triggering.

An RPC consists of two charged plates, with a gaseous layer seperating the plates. The electric
field within the chamber is maintained to trigger a cascade after an initial gas atom is ionized
by a passing charged particle. While such a system does not provide precise position location,
the fast response time and excellent time resolution of the chamber is favorable for triggering
operations.

The MDT’s are located centrally around the hadronic calorimeter, but also in wheels in
the forward regions of the detector for a coverage of |η| < 2.7. Used for tracking, the MDT
system contains 1088 chambers with 339000 output channels. In both the end-cap and barrel
20 measurements are performed per track with a resolution of 35 µm in the z-direction for
the barrel and the radial direction for the end-caps. The tubes are made of aluminum with a
diameter of 30 mm and a wall thickness of 0.4 mm. The anode wires have diameters of 50 µm
and are manufactured from rhenium and tungsten with a gold plating. Each tube is filled with
a gas mixture of Ar/CO2/H2O and maintained at a pressure of 3 bar [53].

For occupancy rates that exceed 150 Hz/cm2, corresponding to an |η| > 2 the MDT’s timing
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resolution is no longer adequate, and the CSC system must be used in conjuction with the MDT
system. Two end-cap wheels are used, covering a range of 2 < |η| < 2.7. The chambers contain
an ArCO2 gas mixture with an anode and cathode spacing of 2.5 mm [54].

Both the RPC and TGC system are designed specifically to provide muon triggering for the
full detector. Both systems are able to quickly provide an estimation of momentum and energy
information for passing muons. The RPC system is present around the central barrel of the
detector in three concentric layers. The layers are positioned in such a manner as to provide
a low trigger of 6 < pT < 9 GeV from the seperation between the first two layers, and a high
trigger of 9 < pT < 35 GeV from the seperation between the first and third layers. The chambers
provide a seperation of 2 mm filled with C2H2F4/Iso−C4H10/SF6 and provide an electric field
of 4.9 kV/mm. The RPC system has a 1.5 ns response time with 544 chambers and 359000
output channels [38].

The TGC system is located in the forward region of the detector in two end-cap wheels and
provides muon triggering for the higher pseudorapidity range of 1.05 < |η| < 2.4. The system
contains 3588 chambers with 318000 channels with a response time of 4 ns. The individual
chambers are similar to the CSC system but use smaller anode and cathod spacing along with
a gas mixture of CO2/n−pentane.

3.2.6 Trigger and Data Acquisition

Due to the high luminosity of the LHC as previously discussed in Section 3.1, a high event
rate on the order of 1 GHz is expected. Selecting relevant data from this high rate requires a
trigger and data acquisition system that is not only fast but also extremely efficient. While data
acquisition and the trigger are seperate systems, both are dependent upon each other and are
therefore presented together.

Muon System

Inner Detector

Calorimeters

Level 1
Trigger

Pipeline
Memory

Level 2
Trigger

Readout
Drivers

Event
Filter

Readout
Buffers

Data Storage

Figure 3.9: A simplified diagram of the ATLAS trigger and data aquisition system.

Figure 3.9 shows a simplified flow-chart of data movement through the ATLAS trigger and
data acquisition systems. Information is read directly from the detector systems into pipeline
memory. Here reduced granularity data from the RPC, TGC, and full calorimeter systems is
passed to the level one trigger (L1) where searches for regions of interest containing high ET
objects and large amounts of 6ET are performed. While the L1 is making a selection, the full
data from the detectors is held within the pipeline memory. If an event passes the L1 trigger
decision, the full data is passed from pipeline memomory to the readout drivers where it is then
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read by the level two trigger (L2) at a rate of no more than 75 kHz.
The L2 trigger and Event Filter (EF) are both fully implemented with software on commer-

cially available hardware unlike the custom hardware of the L1 trigger. The L2 trigger is seeded
by regions of interest passed from the L1 trigger while relevant data is held within the readout
buffers. However, the L2 trigger uses full granularity from all detectors along with inner detec-
tor information within the regions of interest passed from the L1 trigger. This full granularity
allows for more precise locations of the regions of interest. After passing the L2 selection, data
is sent at a rate of 3.5 kHz to the EF. The EF further reduces the rate of data flow to 200 Hz
and passes the data to be written to data storage. After data is stored it is made available to
the ATLAS community through the GRID for offline analysis [38].
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The reconstruction of hadronic τ leptons is challenging, but can be accomplished by taking
advantage of the unique kinematic properties of the hadronic τ lepton decay products. As
discussed earlier in Section 2.2.1, the products of a hadronic decay are primarily charged and
neutral pions, a signal very similar to jets created within generic QCD events. However, hadronic
τ leptons decay through the W boson, as depicted in Figure 2.2, and subsequently provide a
clean signal with no surrounding tracks. QCD jets are produced through strong interactions and
produce busy events with high track multiplicity. Additionally, the hadronic τ leptons of interest
in Higgs searches are produced from significantly more massive particles, mZ (91 GeV) �
mτ (1.8 GeV), and so the produced τ leptons are highly boosted. These two points provide the
key kinematics of hadronic τ leptons: highly collimated and isolated jets. The following sections
will outline how these two kinematic properties can be utilized, both within the official ATLAS
reconstruction algorithms, and proposed modifications to the current algorithms.

4.1 ATLAS Reconstruction

ATLAS τ lepton reconstruction is performed both on the trigger level and during offline recon-
struction. While reconstruction on the trigger level is not necessary, as hadronic τ leptons can
be reconstructed from offline events triggered on for example a single lepton, such a reconstruc-
tion allows for more robust triggering and an increase in efficiency for events where hadronic τ
leptons could be reconstructed in offline analysis.

4.1.1 Trigger

In the past many detectors have had no dedicated hadronic τ lepton trigger as the ability
to quickly perform the necessary algorithms was not available. However, with increases in
computing and hardware technology, ATLAS is able to implement a hadronic τ lepton trigger.

The ATLAS trigger system, as described in Section 3.2.6 consists of a hardware based level
one trigger (L1), and a software based high level trigger broken into a level two trigger (L2) and
event filter (EF). The L1 hadronic τ lepton trigger begins within the cluster processor modules
by assessing trigger towers of size ∆η×∆φ = 0.1× 0.1 from the EM calorimeter with |η| < 2.5.

The ET of all four towers within a 2 × 2 selected core, based on a local energy maxima, are
summed horizontally in pairs of 1× 2 and vertically in pairs of 2× 1. The maximum ET sum is
required to pass an energy cut, specified by the various available trigger menus. Additionally,
the entire ET of the 2× 2 core within the region of interest, along with the corresponding 2× 2
hadronic towers, must also pass an ET minimum. This process, depicted in Figure 4.1, ensures
that the identified jet is highly collimated, as is expected from a hadronic τ lepton decay.

Following the selection of a 2 × 2 core within the region of interest that meets the specific
requirements described above, an isolation requirement is imposed, also shown in Figure 4.1.
Here, the surrounding 4 × 4 trigger tower region in both the EM and hadronic calorimeter is
summed. Each sum must then pass a programmable maximum. If all the requirements for the
region of interest are met, the event is passed onto the L2 trigger for further analysis [55].
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Figure 4.1: Diagram of a region of interest from the L1 ATLAS hadronic τ lepton trigger.

The L2 trigger begins by refining the location passed from the L1 trigger using the second
layer of the EM calorimeter. After the region of interest location has been pinpointed, the EM
radius, defined in Equation 4.1 is calculated from calorimeter cell information and must fall
below a programmable maximum.

EM radius =
∑

cellsEi∆R
2
i∑

cellsEj
(4.1)

Here, the energy of each calorimeter cell within the 6 × 6 calorimeter towers surrounding the
region of interest is multiplied by the ∆R of that cell, where ∆R is defined in Equation 4.2.

∆R ≡
√

∆φ2 + ∆η2 (4.2)

This quantity is then divided by the sum of the energy of the cells. The final calorimetry step
of the L2 trigger is the summation of the ET within the region of interest for both calorimeters
[56].

Next the L2 trigger considers inner detector information from the SCT and pixel detectors.
Tracks within an area of ∆η × ∆φ = 0.6 × 0.6 around the calorimeter region of interest are
reconstructed, using a fast track finding algorithm specific to the L2 trigger. The tracks are
sorted by pT and the track with the highest pT is chosen as the signal track. A signal cone in
η−φ space of ∆RS = 0.15 is drawn around the signal track and an isolation cone with ∆RI = 0.3
is drawn around the signal cone as depicted in Figure 4.2.

¼-

¢RI = 0:3

¢RS = 0:15

Figure 4.2: Cones drawn in η−φ space around the leading pT track found within a ∆η×∆φ =
0.6 × 0.6 area about the L2 trigger region of interest for a hadronic τ lepton decay into a π−

with the τ neutrino not shown.
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From these cones four selection variables are defined. First, a minimum pT cut is made on
the leading track pT . Next, the pT sum of all tracks within the signal code is divided by the pT
sum of all tracks within the isolation cone but not within the signal cone. A minimum cut is
performed on this variable, ensuring isolation of the signal tracks. The final two variables used
are the total charge of tracks within the isolation and signal cones along with the total number
of tracks in the isolation and signal cones. The total number of tracks in the isolation and signal
cones are used as the number of incorrectly reconstructed tracks by the L2 track reconstruction
is relatively high, and implementing a strict cut on a single variable would significantly decrease
efficiency [56]. After an event passes both calorimeter and inner detector cuts from the L2
trigger, it is passed on to the EF.

The EF uses offline reconstruction methods for both the calorimeter and the tracker, but does
so only in a ∆η×∆φ = 0.8×0.8 area around the region of interest passed from the L2 trigger. A
topological jet is formed within the calorimeters and the energy is calibrated to ensure a quality
ET measurement. The EM radius of Equation 4.1 is calculated, but with the quantity ∆Ri
rather than ∆R2

i . Tracks are associated with the topological jet, and required to meet certain
pT requirements determined by the trigger menu. Final cuts are made on the invariant mass of
the reconstructed tracks associated with the τ lepton, the EM radius, the calibrated ET , and
the number of tracks in the case of a multi prong decay. If an event passes, it is passed to data
acquisition for storage.

A variety of trigger menus are available in association with a single hadronic τ lepton trigger,
as described above, and can be applied for specific physics processes. The following trigger
combinations are currently available with the ATLAS trigger menus [56]. For each trigger
combination an example is given for a specific physics process which could be selected by the
trigger. These examples are not intended to be inclusive, but merely provide a possible usage
scenario for the trigger.

• τh + 6ET : For W → τντ searches a hadronic τ lepton trigger is combined with a 6ET
requirement corresponding to the missing energy of the τ neutrino.

• τh + ` : A hadronic τ lepton trigger in conjunction with a single lepton is used for physics
processes creating τ lepton pairs where one τ lepton decays hadronically and the other
leptonically. These events correspond to many of the Higgs signals described in Section
2.2.2.

• τh + τh : This combination will trigger on the same processes as the τh + ` combination but
looks for a final state where both τ leptons decay hadronically.

• τh + jets : A hadronic τ lepton trigger plus associated jets provides an alternative trigger
for t quark pair production through the strong interaction. The t quark decays nearly
entirely into a W boson and a b quark. The b quark provides the jets to the signal, while
the W decay provides the hadronic τ lepton jet.

A maximum of eight regions of interest may be selected by the L1 trigger and carried through
to the EF. This requirement is made to keep the time in which each trigger executes at a
minimum. This is necessary to account for the 25 ns bunch crossings expected during nominal
LHC operation. Simulations performed in Reference [56] place the current total performance of
the L2 hadronic τ lepton trigger at 8 − 10 ms per event depending on the filtering thresholds
used. The EF hadronic τ lepton trigger was found to be 25 − 68 ms, also depending upon the
filtering thresholds. The study was performed on QCD background events with the generated
events in the transverse momentum range of 35 < pT < 70. The efficiencies for the combined
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L1, L2, and EF triggers vary greatly depending on the threshold cuts chosen, but can range
anywhere from an estimated 40% to 80% for W → τhντ and Z → τ+

h τ
−
h signals. Whether such

efficiencies can be maintained under actual detector conditions including pile-up and multiple
interactions remains to be seen.

4.1.2 Offline

The offline reconstruction of hadronic τ leptons is very similar to that of the EF reconstruction,
but is now performed with full detector information over the entirety of the event. Currently,
ATLAS uses a merged scheme between track seeded and calorimeter seeded reconstruction.

The track seeded algorithm begins by choosing the highest pT track within the event. This
track must have pT > 6 GeV with a maximum χ2 over number of degrees of freedom such that
χ2/NDOF < 1.7. Additional requirements are placed on the number of hits within the SCT
and TRT. A signal cone of ∆RS = 0.2 is drawn around the leading track, and any additional
tracks with pT > 1 GeV which fall within this cone are considered to be part of τ lepton.

The number of tracks that fall within the the signal must be of multiplicity one or three,
corresponding to the one or three prong hadronic decays of the τ lepton described in Section
2.2.1. Any calorimeter clusters which fall within the signal cone radius are added to the τ lepton
object. The η and φ of the object are defined by the line tangent to the perigee of the track, if
only one track is found. If the decay is three pronged, the direction of the object is defined by
the center of mass of the system of tracks.

The calorimeter seeded algorithm searches for jets within the calorimeter with ET > 10 GeV.
A cone of ∆R = 0.4 is drawn around the center of the jet and and the energy of the surrounding
cells are calibrated. Track association is performed by matching tracks of pT > 1 GeV with the
calorimeter hit within a cone of ∆R = 0.3.

The merged tracker and calorimeter seeded algorithm combines both methods. The seeding
for the algorithm begins with tracks, but for each seed track a calorimeter jet candidate is
searched for within a cone of ∆R = 0.2. If a jet candidate is found, the candidate is taken as a
jet seed and the tracker and calorimeter algorithms are run simultaneously. The position and all
track variables of the candidate are defined by the tracker seeded algorithm while the energy of
the object is defined by the calorimeter seeded algorithm. Notice that no isolation requirements
are made during offline reconstruction.

In the case of no calorimeter seed, the track algorithm constitutes the entirety of the τ lepton
candidate. After all tracker seeds are exhausted, the remaining jets within the calorimeter that
have not been associated with τ lepton candidates have the calorimeter seeded algorithm run
on them. This merged method provides traditional track based seeding while also utilizing the
fine granularity of the ATLAS calorimeters [57].

4.2 Proposed Reconstruction

While the current ATLAS algorithms provide adequate results for hadronic τ lepton reconstruc-
tion, various improvements can be made by studying the underlying kinematics of both a signal
and a background. This section proposes modifying current techniques by parameterizing cone
shapes with respect to relevant variables. First the signal and background used for the study
are introduced, then studies of both the signal and isolation cone are shown, and finally a track
based reconstruction algorithm is proposed.
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4.2.1 Signal and Background

The signal used for this study is Z → τ+τ− as depicted in the left Feynman diagram of Figure
4.3. Here a quark from one of the incoming protons annihilates with a sea quark, creating a
Z boson which subsequently decays into two τ leptons. This specific signal was chosen as the
production of a τ lepton pair is similar to the signals generated by the SM Higgs and MSSM
Higgs bosons. While the mass of the Z boson is below the masses of the particles being searched
for, the mass is high enough to provide kinematics similar to the Higgs processes. This signal is a
standard candle for high energy particle physics, and τ lepton identification and reconstruction
can be tuned specifically with early data involving these events. Such tuning will prepare the τ
lepton algorithms for identification and discovery of new physics.
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Figure 4.3: Signal (a) and background (b) used in studies. The background is meant only to
demonstrate the possible formation of a QCD dijet event.

The background used is a QCD dijet sample. This provides two or more jets formed through
QCD with a kinematic end product similar to that of the signal sample. Figure 4.3 also shows
a possible background event with the exchange of a W causing a flavor change between quarks
and triggering a hadronization process that produces two jets.

The background sample was generated using Pythia 6.418 and the signal was generated us-
ing MC@NLO 3.1 while both samples were reconstructed with ATLAS reconstruction software
Athena version 14.2.21 with further details given in Appendix A. The center of mass energy for
the proton proton collision was set at 10 TeV as this is the expected collision energy of the LHC
in 2009 and 2010.

4.2.2 Signal Cone

Nearly 70% of hadronic τ lepton decays are one prong, while only 30% are three prong decays.
These decays imply that for nearly 70% of reconstructed hadronic τ leptons, the shape or size
of the signal cone does not affect the track based reconstruction efficiency, assuming the lead
track is well isolated within the signal cone. However, for both backgrounds and three prong
hadronic decays, the signal cone has a significant effect. Placing a tight restriction on the signal
cone eliminates background, but also eliminates three prong signal. Conversely, a loose signal
cone will increase the three prong signal but also increase the background. Subsequently, an
ideal signal cone must take into account the kinematic shape and possible parameterizations of
the three prong decays.

Before parameterizations for the three prong decays can be analyzed, the general kinematic
shape of the decay must be taken into account to provide the best possible signal cone shape.
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From the physics of the hadronic τ lepton decay as discussed in Section 2.2.1, it is expected that
the three prong hadronic τ lepton decay products should be distributed symmetrically around
the axis of the τ lepton and an elliptical cone should fit the distribution well. Within a detector
environment two natural coordinate systems for the cone can be defined: η− φ space and θ− φ
space. The radius in η − φ space is given by ∆R defined by Equation 4.2. Similarly, in θ − φ
space the radius can be given by an absolute opening angle α as defined in Equation 4.3.

α ≡ cos−1 (cosφ cos θ) (4.3)

To determine the coordinate space in which the signal cone should be defined, the kinematics
of generator level information were explored. All generator level τ leptons with hadronic decays
were selected, and the final hadronic stable particles of the τ lepton were found. The momentum
four vector for the τ lepton, excluding all neutrino decay products, was then calculated. All
hadronic τ leptons with a visible transverse momentum below 6 GeV were discarded, as the
current ATLAS reconstruction requires a pT > 6 GeV for a seed track. Of the remaining τ
leptons, all with three or five prong decays were accepted, while the one prong decays were
removed. Each remaining visible τ lepton was assigned an η bin: |η| < 0.5, 0.5 ≤ |η| < 1.5, or
1.5 ≤ |η| < 2.5. Within each bin the angle between the stable, charged decay products, with
pT > 1 GeV and the center of the visible mother τ lepton, were found for ∆η, ∆θ, and ∆φ. The
results are shown in the top plot of Figure 4.4.

As can be seen, the decay product distribution of the one or three prong hadronic τ leptons
remains constant in η−φ space for all η, while it collapses in θ−φ space for high η. This behavior
can be understood from the underlying physics, as the higher η range will be dominated by τ
leptons from highly boosted Z bosons. This boosting causes the decay products of the τ lepton
to also be boosted. Rapidity is invariant under Lorentz boosts, and so the τ decay distribution
should remain approximately constant in ∆η for most particles.

A similar plot for the QCD background can also be seen in Figure 4.4. Here, stable generator
level particles with pT > 1 GeV and a charge of ±1 were matched against generator level jets
constructed using the standard ATLAS jet reconstruction algorithm applied to generator level
information. The matching was performed with a cone of ∆R = 0.7 as this is the standard cone
size for ATLAS jet reconstruction. The background was taken from four independent samples
binned by pT as explained in Appendix A. The four samples were normalized with respect
to cross section and combined to produce the background plot of Figure 4.4. The resulting
distribution, as expected, is also constant in η − φ space, while it collapses in θ − φ space.
However, it can be seen that the jets from the QCD background are much less collimated than
the hadronic τ lepton jets.

It is only natural, from Figure 4.4, to choose the definition of the signal cone to be in η − φ
space with a radius of ∆R. With this definition for the signal cone set, it is now possible to
proceed with the parameterization of the signal cone. For τ leptons with large amounts of
transverse energy, it is expected that the collimation of the decay products would be greater
due to the subsequent Lorentz boost of the products. This leads to a natural parameterization
of the signal cone radius: the higher the ET of the τ lepton, the tighter the radius of the signal
cone.

Figure 4.5 demonstrates the dependence of the hadronic τ lepton opening angle with respect
to the energy of the τ lepton. Here, all generator level τ leptons with a three or five prong decay
and pT > 6 GeV were found along with their subsequent charged stable decay products with
pT > 1 GeV. The ∆R between the decay product and the center of the visible generated τ lepton
was found and plotted against the ET of the visible generator level τ . A similar plot was made
for the QCD dijet background, with all generator level jets with a pT > 6 GeV being selected.
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Figure 4.4: The charged decay product distribution of three and five prong hadronic τ leptons
is shown in (a). Plot (b) provides the same distribution but for the decay products of jets
from the QCD dijet background sample. The scale for both (a) and (b) is relative with red
representing high and purple representing low. Both plots were made using generator level
information.
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Figure 4.5: The opening angles for three and five prong hadronic τ leptons versus transverse
energy of the generated τ lepton is shown in (a). Plot (b) provides the same distribution but
for the decay products of jets from the QCD dijet background sample. Both plots were made
using generator level information.

The opening angle in ∆R for each stable generator level particle within a cone of ∆R = 0.7,
pT > 1 GeV, and a charge of ±1, was plotted versus the transverse energy of the generator level
jet.

The signal and background plots of Figure 4.5 differ significantly, implying that a signal cone
opening angle parameterized with respect to the ET of the τ lepton could provide a method to
differentiate the signal and background. A clear correlation exists between the ET of the visible
τ lepton and the opening angle of the decay products in ∆R. The same correlation in the QCD
dijet example is not as pronounced, with the distribution remaining nearly vertical with respect
to the energy of the jet. This can also be explained from the underlying physics, as the jets from
the QCD events are not decaying from a massive Z, and should in general not be as boosted as
the τ leptons.

The parameterization chosen for the signal cone is given in Equation 4.4 and shown by the red
exclusion region in Figure 4.5. A maximum opening angle of ∆RS = 0.2 is allowed, matching
the current ATLAS reconstruction signal cone. However, for τ leptons with higher transverse
energy, the cone is defined as ∆RS = 5/ET where ET is given in GeV. The intersection of
∆RS = 0.2 and ∆RS = 5/ET occurs at ET = 25 GeV. Such a definition for the signal cone has
also been proposed for CMS in References [1] and [58] and also for CDF in Reference [59].

∆RS ≡ min(0.2, 5/ET ) (4.4)

4.2.3 Isolation Cone

The isolation cone, unlike the signal cone, is relevant to both one, three, and five prong decays
of hadronic τ leptons, as all τ leptons should have a similar isolation. However, finding an
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isolation requirement that maintains efficiency while rejecting background is challenging and
highly dependent upon the signal sample and background processes. For a Z → ττ signal
sample, it would be expected that the τ leptons should be relatively well isolated, as the majority
of the energy in the event should be in the production of the Z boson. Note that the isolation
cone is considered part of the reconstruction process on the trigger level, but in offline analysis
the isolation cone is used during identification.

Just as for the signal cone, a coordinate space must be chosen to define the shape of the
isolation cone. To determine the shape and coordinate space, it is again necessary to look
at generator level information, but now also include reconstruction level information as track
reconstruction is critical to isolation. Figure 4.6 shows the track distributions surrounding both
a hadronic τ lepton and a QCD jet. For the signal distribution, hadronic τ leptons were found
at generator level and their visible energy was calculated. Hadronic τ leptons with pT > 6 GeV
were separated into the same η bins as were used for Figure 4.4. Every track from reconstruction
level with charge ±1 and pT > 1 GeV that did not fall within a signal cone of ∆RS = 0.2 was
plotted against the visible center of the hadronic τ in ∆φ, ∆η, and ∆θ. Positive ∆η and ∆θ have
been defined to be towards the beamline, as the track distribution is expected to be symmetric
around the z-axis of the detector.

A similar method is used for the background plot in Figure 4.6. Generator level jets with
pT > 6 GeV are again separated into η bins and the opening angle between the center of the
jet and reconstructed tracks is plotted. All reconstructed tracks must have a charge of ±1 and
pT > 1 GeV. Any track which falls within the standard ATLAS signal cone of ∆RS = 0.2 is
excluded from the plot. Again, the background was taken from four independent samples binned
by pT but were combined and normalized according to cross section.

The distinct cut-offs in both the signal and background plots of Figure 4.6 emerge from the
maximum allowable |η| of 2.5 for a track as constrained by the fiducial region of the inner
detector. In the 1.5 ≤ |η| < 2.5 bin of both plots the maximum ∆η is given by the maximum
track η less the minimum η of the bin, or 1 in this case. The number of tracks slowly tapers as
the number of hits available within the TRT diminishes with respect to higher η as can be seen
in Figure 3.6. A similar effect occurs in the ∆θ plot, this time with the maximum ∆θ being
given by,

∆θmax = 2
(
tan−1 e−1.5 − tan−1 e−2.5

)
(4.5)

which is ≈ 0.27. Such a cut-off was not seen in the plots of Figure 4.4 as the range for ∆η and
∆θ was only from −0.2 to 0.2.

An interesting pattern emerges in Figure 4.6. First, it is apparent that regarding the track
distribution in η − φ space rather than θ − φ space is more natural. In the middle bin of the
signal plot, a high density of tracks can be seen just to the left (away from the beamline) of the
actual τ lepton. The same increase in density is also seen to the left of the τ lepton in the final
bin. Upon closer inspection of the first bin of the signal, a similar density can also be seen, but
this time to the right of the τ lepton. In all three cases the increased density is coplanar with
the τ lepton.

Looking at the underlying physics, this behavior is understandable. The tracks being gener-
ated that spoil the isolation cone are from the underlying creation process of the Z, a proton
proton collision, and as such, should be correlated. For the low η regions, the Z should have
very little energy, allowing the remaining energy of the event to be channeled to the remaining
processes within the collision. For higher Z energies, corresponding to higher η, less energy is
available to the processes that contribute the isolation spoiling tracks. This explains why for
low η the density is more boosted, and to the right of the τ lepton, while for high η the τ lepton
is more boosted and the increase of spoiling tracks appears to the left.
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Figure 4.6: The spoiling isolation track distribution about hadronic τ leptons is shown in (a).
Plot (b) provides the same distribution but for spoiling tracks associated with jets from the
QCD dijet background sample.
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Figure 4.7: The opening angle distribution between isolation cone spoiling tracks and generator
level hadronic τ leptons is given in (a). The same distribution but for the QCD background is
given in (b).

The same patterns do not emerge in the background plot of Figure 4.6. The distribution of
the spoiling tracks is no longer coplanar, but rather circular around the center of the jet as can
be best seen in the middle bin of the background plot. A slight increase in the density to the
left of the center of the jet is visible in the middle bin, but in not as pronounced a manner as
for the τ leptons. In all three bins the circular distribution around the center of the jet remains,
providing a significant difference to the spoiling track distribution of the signal.

Just as for the signal cone, it is important to determine if the isolation cone can be param-
eterized with respect to variables of the τ lepton. Again the choice of ET is the only natural
choice, as the energy should be driving the kinematics of the event. Figure 4.7 provides plots
of the opening angle in ∆R for the spoiling tracks with respect to the energy of the generator
level τ lepton or jet.

For the signal plot all generator level hadronically decaying τ leptons with pT > 6 were
considered. The opening angle in ∆R with reconstructed tracks of pT > 1 GeV were plotted
with respect to the visible energy of the generator level τ . All tracks that fell within a signal cone
of ∆RS = 0.2 were discarded. For the background plot, all generator level jets with pT > 6 GeV
were used. Reconstructed tracks not falling with the signal cone were plotted if their pT > 1
GeV.

Unfortunately, the results of Figure 4.7 do not show a strong correlation between energy of
the τ lepton or jet, and the spoiling track separation. Such a parameterization cannot be used
to effectively separate signal from background. From this it is clear that there is a lack of
correlation between the energy of the τ lepton or jet, and the underlying spoiling tracks. The
energy of the τ lepton should significantly effect its decay products, but should have much less
effect on the remaining processes occurring within the event.

This leaves only the shape of the track distributions of Figure 4.6 by which to decide the size
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and shape of the isolation cone. The shape of the isolation cone can theoretically be completely
arbitrary, and based on whatever shape provides the best efficiency and fake rate. However,
practical limitations require that the shape can be calculated quickly and easily. Overly complex
isolation cones make maintainability of the analysis software difficult and cut into valuable CPU
time. As such, it would seem the simplest method for defining a cone that will utilize the
previous observations regarding the track distributions is an ellipse in η− φ space with a center
moveable along the η axis. Such a moveable center along the φ axis is unnecessary, as the
distributions are symmetric about φ.

¢Á

¢´

(¢´0; 0)

r´

rÁ(¢RS = 0:2)

(
∆η −∆η0

rη

)2

+
(

∆φ
rφ

)2

= 1 (4.6)

Figure 4.8: Definition of the proposed isolation cone with accompanying figure.

Figure 4.8 with Equation 4.6 define the proposed isolation cone with the three parameters
∆η0, rη, and rφ. These three parameters are free parameters decided by the parameter space
which provides the best efficiency and fake rate. Such an optimization is signal specific; τ leptons
from W decays will not have a similar signature, but as the signatures for new physics in the
Higgs sector should be very similar to the Z decay, such a specific parameterization should be
safe. This parameterization should not be used for general searches involving τ leptons. For
such searches, a new parameterization should be obtained using relevant signal and background
samples.

The parameter ∆η0 defines the center of the ellipse with respect to the center of the τ lepton
object being reconstructed. This parameter allows for the asymmetry in the track distribution
in η, as discussed earlier, to be accounted for. The parameter rη defines the radius of the ellipse
along the ∆η direction while the parameter rφ defines the radius of the ellipse along the ∆φ
direction. Both of these parameters allow the isolation cone to take advantage of the coplanarity
of the τ lepton events. All three parameters are dependent upon the η of the signal cone around
which the isolation cone is being drawn. This follows from the change in the track distributions
with respect to the η binning in Figure 4.6.

Ideally the parameters ∆η0, rη, and rφ are optimized with respect to the efficiency and fake
rates of the selected signal and background respectively. However, the parameter space is defined
by three variables, each potentially dependent upon η. This translates to a very large parameter
space that is difficult to optimize over. Such an optimization procedure would be very time
consuming, and is not within the scope of this thesis, so an alternative method by which the
optimization can be approximated is taken.

Distributions for spoiling track opening angle with respect to generator level τ leptons or jets
were created for η bins of size 0.5 from η = 0 to η = 2.4 with 20 overlapping bins. The range
of each distribution was from −1 to 1 for both ∆η and ∆φ with 100 steps in both ranges for a
total of 100, 000 entries in each distribution. An optimization function f is defined as,

f ≡ NS
tracks

NB
tracks

(4.7)
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where NS
tracks is the number of spoiling tracks found within an isolation cone defined for a specific

parameter set. Similarly, NB
tracks is the number of spoiling tracks found within the background

for the specified isolation cone. This function was chosen as it provided a relatively stable output
of the minimization function and should be directly correlated with efficiency and fake rates.
Other optimization functions were tested, but none yielded satisfactorily stable results.

The minimization problem to be solved is technically an unbounded optimization problem in
a space of dimension three. However, from a practical viewpoint, boundings should be placed
on the parameter space, as exceptionally large or small isolation cones will lead to unreasonable
efficiencies not useable in a physics analysis. To impose boundings upon the function, a value of
1010 was returned for unnatural values. A minimum value for rη and rφ was set to 0.21 as this
avoids binning ambiguities about the signal cone. Additionally, the parameter ∆η0 was required
to remain within the signal cone, |∆η0| < 0.1. This restriction ensures that the isolation cone
will not be divorced from the signal cone. No upper limit was set on rη and rφ as the maximum
value of the distributions is 1.

A variety of numerical methods are available for such a problem including conjugate gradient
and simplex algorithms. Neither of these methods are ideal to the situation, as the function
involved is neither continuous, nor necessarily convex. Due to the statistics involved, a conjugate
gradient method would construct a very discontinuous gradient which would severely limit the
stability and convergence of the algorithm. The simplex method is more robust for discontinuous
functions such as f and provides a more stable algorithm for the problem at hand. Theoretically,
the simplex method has only been shown to be convergent for convex functions of two parameters
or less [60]. However, in general the algorithm has found to perform well for multidimensional
problems with non-convex functions when a reasonable starting parameter space is given.

The optimization method used is the Nelder-Meade simplex algorithm outlined in Reference
[61] and implemented in Reference [62]. A variety of initial parameter spaces were tried, to ensure
that the algorithm was not catching on a local minima without finding the global minima for
the system. As the binning and coordinate grid used were coarse, the ability of the algorithm
to find a global minima was highly dependent upon the initial parameter space. Initial guesses
on the parameter space showed that ∆η0 was a stable parameter for the system with changes
of less then 0.001, indicating that creating an offset of the isolation cone does not provide a
noticeable gain in the reconstruction method. The results for the most stable initial parameter
space of ∆η0 = 0, rη = 0.3, and rφ = 0.3 is shown in Figure 4.9.

The parameter rη remains near the minimum allowable value of 0.21 for nearly all η. However,
for η > 1.75 the optimal size of the radius in η increases. This behavior can be understood by
again examining the 1.5 < |η| < 2.5 bin of Figure 4.6 for the η − φ distributions. Within the
signal sample it can be seen that a higher density of tracks is above and below the signal cone
in ∆φ than in the previous two η bins.

A similar pattern in agreement with Figure 4.6 for rφ also emerges. For low η the optimal
radius begins at ≈ 0.33 and slowly increases to ≈ 0.36 at η = 1.55. A sharp spike of ≈ 0.42 occurs
at η = 1.65. After the spike, the optimal values of rη remain near ≈ 0.33 again and diminish to
≈ 0.31 for the final η bin of 2.15. This drop in the radius corresponds to the increase of the η
radius and the increase of the track distributions in φ above and below the signal cone for the
signal sample.

The optimal parameters given by Figure 4.6 show that there is a dependence on η for the
optimal isolation cone. However, due to the general instability of the optimizing algorithm for
the input datasets, parameterizing with respect to η would involve more guess work than actual
scientific rigor. For this reason, a general set of base parameters for the isolation cone definition
of Equation 4.6 should be given without an η dependence.
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Figure 4.9: Results of optimizing the isolation cone parameters of Equation 4.6 and Figure 4.8
using the Nelder-Meade simplex algorithm with an initial parameter space of ∆η0 = 0, rη = 0.3,
and rφ = 0.3 and the optimizing function of Equation 4.7. The parameter ∆η0 is not shown as
the deviation is less than 0.001 from its initial value.

Keeping this in mind the position parameter ∆η0 is set to zero, and removed from the definition
of the isolation cone. The radius in η is best kept near 0.21 while the radius in φ is set near
0.34. Figure 4.10 shows the relation of the isolation cone defined by these parameters on the
spoiling track distributions of the signal and background for the 0.5 < |η| < 1.5 bin of Figure
4.6. These values are only set as a basis for which further exploration can be performed, and a
variety of these parameters will be examined in Section 4.3.

4.2.4 Algorithm

The proposed algorithm is similar to the official ATLAS reconstruction algorithms, but uses
the modified signal and isolation cones of Sections 4.2.2 and 4.2.3. All tracks within the event
are sorted from highest pT to lowest pT into an available track list. All tracks with pT < 1
GeV are discarded from the track list. The highest pT track is chosen from the active track
list as a possible τ seed candidate, and removed from the available track list. A signal cone
with a radius determined by Equation 4.4, where ET is given by the track, is drawn around the
seed. The highest pT track from the available track list that falls within the signal cone has its
momentum four vector added to the momentum four vector of the seed track and is removed
from the available track list. The signal cone, now using the added four vectors, is drawn again.
This process, searching for the highest pT track within the signal cone, removing the track from
the available list, adding the four vectors, and recalculating the signal cone, continues until no
more tracks are available within the signal cone. During this process the charge of the object
being constructed and number of composite tracks is stored.

When the iterative process of combining tracks to the first seed track terminates, the process
continues with the next highest pT track in the available track list acting as the seed. The same
process as before is implemented until no more tracks can be found within the signal cone. This
process continues, seeding possible τ lepton objects from the available track list. If no tracks
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Figure 4.10: Shape of the isolation cone defined by Equation 4.6 with optimal parameters
determined from Figure 4.9.

with a pT of greater than 6 GeV are available, the seeding process terminates.
After all possible τ lepton candidates have been reconstructed, the isolation cone criteria is

applied. The τ lepton candidates are sorted by pT from high to low, and an isolation cone of the
form of Equation 4.6 is drawn around the highest pT τ lepton candidate. If no tracks from the
available track list fall within the isolation cone, the candidate is considered to be a τ lepton.
Another signal cone of ∆RS = 0.2 is drawn around the center of the τ lepton candidate. If any
topological calorimeter clusters are found within this cone, they are attached to the τ lepton.

This algorithm ensures that identifying properties of the τ lepton discussed at the beginning
of this chapter are utilized to the fullest. Further identification cuts can be made on a variety of
variables associated to the reconstructed hadronic τ lepton, and are discussed in further detail
in the following chapter.

4.3 Results

To judge the viability of a reconstruction method, a metric must be defined by which to measure
the quality of the method. For particle reconstruction and identification, two metrics are used:
efficiency and fake rate. The efficiency for hadronic τ lepton identification is defined in Equation
4.8,

εS ≡
N rec
τh

Ngen
τh

(4.8)

where N rec
τh

is the number of reconstructed τ leptons passing a specific identification method
criteria. Additionally each reconstructed hadronic τ lepton must be matched against a generator
level hadronic τ lepton by a matching cone with radius ∆R < 0.2. The quantity Ngen

τh is the
number of generator level hadronic τ leptons in the sample. Each generator τ lepton must be
within a fiducial region of |η| < 2.5 corresponding to the coverage of the tracker. The signal
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sample used for the efficiency is Z → τ+τ− with full details given in Appendix A. As explained
in Section 4.2, a Z → τ+τ− sample is used as this signal will be very similar to light neutral
Higgs decays.

The fake rate is defined by Equation 4.9,

εB ≡
N rec
τh

Ngen
jets

(4.9)

where N rec
τh

now is the number of reconstructed τ leptons passing a specific identification criteria,
matched against generator level non τ lepton jets, using ∆R < 0.2. The quantity Ngen

jets is the
number of generator level jets within the sample that fulfill the criteria |η| < 2.5. The background
samples used are QCD dijets, explained in Section 4.2 with additional details in Appendix A.

To fully understand the effects caused by the proposals for signal and isolation cone, a standard
for an identified τ lepton candidate is defined to allow comparison between the methods being
explored. Here, a τ lepton candidate is considered identified as a τ lepton if the candidate has a
charge of ±1, has 1, 3, or 5 tracks within the signal cone, and has 0 tracks within the isolation
cone. This standard is not optimized and utilizes very few discriminating variables as it is not
meant to provide the best possible signal to background ratio, but rather to demonstrate the
effects of the signal and isolation cone definitions. By imposing strict requirements on isolation
and signal cones these cuts ensure that the effects of the varying definitions are seen.

When providing efficiency and fakerate distributions with respect to parameters such as pT
and η it is important to remember these plots are only projections. While it is clear the range
of η should be kept within the fiducial region of the detector, the parameter space to which pT
should be limited is not readily apparent. For efficiency and fakerate plots given with respect
to pT this is not a problem as it is a profile of pT within the fiducial region of the detector.
However, for distributions with respect to η or integrated efficiency over pT this does pose a
problem. As such, it is important to understand the underlying pT distribution of the decay
products at the generator level.

Figure 4.11 gives the pT probability density function of the visible hadronic τ lepton products
of a Z in the left plot. This process is a two body decay, and so using simple probability and a
few basic assumptions regarding the physics behind the decay process in question, it is possible
to hypothesize a general shape for the distribution of the Z decay products, or of a particle X
with a mass greater than the Z. This shape is important as it plays a critical role in the ability
of finding SM and MSSM Higgs signals as discussed in Section 2.2.2.

First, assume the Z boson is at rest in the lab frame. This assumption is not valid, as will be
seen shortly, but is used as a starting point. From conservation of energy and momentum it is
then possible to write the transverse momentum in terms of the Z mass, τ lepton mass, and z
component of momentum as is done in Equation 4.10.

p2
T =

(mZ

2

)2 −m2
τ − p2

z (4.10)

Note from above that if the pT for the system is chosen, then pz is no longer a free parameter
and is uniquely determined. Subsequently, pz does not play a role in the probability density
function of pT . However, when a specific pT is chosen, px and py remain as free parameters of the
system. When one of these free parameters is chosen, the other is then uniquely determined, as
p2
T = p2

x + p2
y. It is from this probabilistic choice that the distribution for the pT is determined.

Assume that the probability density functions for pi are dependent uniform distributions.
Then, without loss of generality, the uniform probability distribution function for px can be
chosen to determine the probability for a specific pT value. If a pT of 20 GeV is chosen, then
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Figure 4.11: Transverse momentum probability density function for the visible portion of
hadronic τ lepton decays from a parent Z is given in (a) with naive theory given in black and
Monte Carlo given in red. The subsequent transverse boost of the parent Z, due to the partons
of the proton is given in (b) from Monte Carlo.

the probability of this event is determined by the probability of choosing a px ≤ 20 GeV. Hence,
the probability density function of the pT is the cumulative probability density function of px.
However, this PDF does not take into account the probability that the energy is available for
that specific pT . For energies less than

√
(mZ/2)2 −m2

τ this probability is one, and for energies
greater than

√
(mZ/2)2 −m2

τ this probability is zero. Equation 4.11 gives the probability density
function for the decay products of the Z where Pa is the probability of the specific pT being
energetically available.

PpT =
Pa

∫ pT
0

1√
(mZ/2)2−m2

τ

dpx∫∞
0 Pa

∫ pT
0

1√
(mZ/2)2−m2

τ

dpx dpT
(4.11)

The shape of Equation 4.11 is just a right triangle terminating at a maximum of
√

(mZ/2)2 −m2
τ

and is shown by the dotted black line in the left plot of Figure 4.11. However, this shape is
dependent upon no boosting of the Z boson in either the z-direction or transverse plane, which
is not the case as can be seen in the right plot of Figure 4.11. This boosting, caused by the
underlying parton structure of the protons, causes the uniform distribution of px to spread into
an asymmetric sigmoid. The entire system becomes more complex, but for minor boosting in
the transverse plane, the dominant shape of the distribution is still given by Equation 4.11.
Note that boosting along the z-axis also effects the distribution as this provides more energy for
the system, and changes the distribution of both Pa and px. The boosting of the Z along the
transverse direction is shown in the right plot of Figure 4.11.

The loss of efficiency from applying a strict pT range can now be estimated for a worse case
scenario by assuming the Z boson has no boost. This is a worst case scenario as the Z boson
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will be boosted. Additionally,
√

(mZ/2)2 −m2
τ is approximated to be mZ/2 as mτ � mZ .

εmax
S ≈ 1−

(
2pturn
T

MX

)2

(4.12)

Equation 4.12 approximates a worst case estimate for the maximum efficiency available for a
two body decay into τ leptons from a particle X with a mass MX . As a minimum pT of 6
GeV is required for seeding tracks in the track reconstruction method for hadronic τ leptons
from Equation 4.12 14% of efficiency for τ lepton reconstruction is already lost for τ leptons
originating from a Z boson decay.

This behavior decreases as MX increases as the form is quadratic and not linear. Subsequently
for a light Higgs mass of MH = 120 GeV, just above current experimental exclusion, a 10% loss
of efficiency occurs from the turn on. It is also important to note the cross section of the dijet
QCD background within this pT space. A full list of the estimated cross sections for the dijet
QCD sample used is given in Appendix A, however the general estimation is for very high cross
sections in low pT ranges while higher pT ranges have lower cross sections. Specifically the cross
section for the range of 8 < pT < 17 GeV is σ ≈ 1.2× 1010 pb, while for 17 < pT < 35 GeV the
cross section drops by an order of magnitude to σ ≈ 8.7× 108 pb.

In the following efficiency and fakerate plots with respect to η and for the significance plots,
the reconstructed hadronic τ leptons were required to have a pT greater than 20 GeV and less
than 140 GeV. This immediately cuts the signal efficiency by nearly 20% but provides a realistic
pT range that could be used in an analysis. The lower cut is made to eliminate the large QCD
background for low pT which swamps the signal in this range while the upper cut is used to limit
the range to the maximum pT of the available background samples. For analyses using hadronic
τ leptons a variety of lower pT cuts are used ranging from pT > 15 GeV to pT > 60 GeV [63].

4.3.1 Signal Cone

Candidates were reconstructed using the algorithm described in Section 4.2.4 but with an isola-
tion cone described by ∆RI = 0.4 and a signal cone defined by both ∆RS = 0.2 and Equation
4.4. The results using the different signal cone definitions is shown in Figure 4.12 with respect
to the transverse momentum and η of the generated τ lepton. For ET � mτ the transverse
momentum and energy approach each other, and so for pT < 25 GeV it is expected that both
methods should produce similar results as is the case. However, for 25 < pT < 45 GeV the sig-
nal cone definition of Equation 4.4 is outperformed by the constant signal cone definition. The
efficiency in this pT range for the variable signal cone significantly underperforms the constant
signal cone while maintaining approximately equal fakerate levels.

By using a variable signal cone, specifically one that shrinks for higher ET , the isolation cone
is simultaneously enlarged, and subsequently all reconstructed hadronic τ leptons are affected,
not just three prong decays. Keeping the enlarged isolation cone in mind the efficiency drop
can be understood by again considering Figure 4.7. Notice that the density of spoiling tracks
appears relatively constant in ∆R up to the limit of ∆RS and a sharp drop off is not expected
for ∆R < 0.2. As such, a large number of spoiling tracks will enter the enlarged isolation cone
for lower ET and an efficiency drop is expected.

However, for transverse momentum greater than approximately 45 GeV the variable size signal
cone outperforms the constant size signal cone for signal efficiency while maintaining a similar
fakerate. Accounting for the strengths of both the variable and constant size signal cones, a
new definition is proposed for the signal cone in Equation 4.13. Here the signal cone remains
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at ∆RS = 0.2 for reconstructed τ leptons with pT < 45 GeV, but for transverse momentum
greater than becomes ∆RS = 5/ET .

∆RS =


0.2 for pT < 45 GeV

5/ET for pT ≥ 45 GeV
(4.13)

Notice that such a definition is advantageous for Z identification but could have significantly
different effects for other signals. However for Higgs searches, the signal should be similar to
that of the Z and such a reconstruction might prove to be advantageous.

The efficiency and fakerate distributions in η given by plots (c) and (d) of Figure 4.12 do
have a distinct shape, but this is expected from detector effects since the detector is not uniform
in η. Because the algorithm implemented is only track based with a minimum quality cut it
is expected that a higher efficiency will be present in the well covered central region of the
detector, and again in the end cap regions of the inner detector. Such a shape is expected in
all η distributions, although for the multivariate identification methods described in Chapter 5
these effects are expected to be washed out as sharp cuts such as those used for this section are
not used.

4.3.2 Isolation Cone

Having eliminated the moveable center from the definition of the isolation cone given by Equation
4.6 using the simplex algorithm and the spoiling track densities, the parameter space for the
optimization problem of the isolation cone is reduced to two variables, rφ and rη. This is a much
more manageable problem and can be optimized using significance defined by NS/

√
NB where

NS is number of passing signal events and NB is number of passing background events. Using
the strict cuts described above and the same reconstruction method as before but with only a
constant signal cone, the number of passing signal and background events was calculated and
normalized with respect to each other by cross section for an rφ and rη space from 0.2 to 0.6.

Figure 4.13 shows a contour plot of the significance with respect to rη and rφ. Similar plots
showing profiles for specific rφ and rη values are given in Figure 4.14 to provide a more intuitive
feel for the situation. In these plots however, the relative efficiency versus fakerate is plotted
such that highest value for both efficiency and fakerate is normalized to one.

From both Figures 4.13 and 4.14 it can be seen that there is no optimal maximum within the
parameter space provided for rη and rφ. This is expected as for a clean Z → ττ event there
should be very few spoiling tracks besides the associated τ lepton, and as such the isolation cone
could be expanded to the signal cone of the associated τ lepton within the event with very little
efficiency cost. However, within the QCD dijet sample a large number of spoiling tracks will
fall within these regions, and such an expansion of the isolation cone will cause a large drop in
fakerate.

In Figure 4.13 it can be seen that the contour lines become more and more separated for high
rφ and rη representing a significance plateau of approximately 0.07. Whether this plateau is a
maximum significance for the size of the isolation cone is unknown, as larger values could yield
higher significance. However, as mentioned previously, in actual data large isolation cones are
not possible as pile up will degrade the purity of the isolation region within the signal events.
Making a compromise between optimizing significance and realizing practical limitations, the
isolation cone size can be enlarged to ∆RI = 0.47, corresponding to the largest contour line of
Figure 4.13 with a significance of ≈ 0.068 in comparison to the significance at ∆RI = 0.40 of
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0.064. Such a definition of the isolation cone is still practical for real data, but takes advantage
of the plateau observed in Figure 4.13.

Another feature that can be taken from Figure 4.13 is that an increase of rφ or rη does
not provide an advantage in significance. Using the isolines of the plot it is possible to pick a
significance and rφ, and from this uniquely determine rη. Choosing the standard definition of
rφ = rη = 0.4 yields a significance of ≈ 0.064. Following the isoline of this significance yields
that for rφ = 0.60 a value of rη ≈ 0.30 must be used to maintain the significance. Equivalently,
for a value of rη = 0.60 a value of rφ ≈ 0.34 must be used.

It could be expected that by varying the shape of the isolation cone, while maintaining the
same significance, the efficiencies and fakerates with respect to both η and pT might change for
the different cone shapes. Such a property could provide advantages for identification of specific
signals, as efficiencies in certain ranges where the signal is expected could be boosted using such
a method. Unfortunately, such a behavior is not exhibited by changing the isolation cone shape
while maintaining significance as is demonstrated in the plots of Figure 4.15. Here the previous
example of maintaining a significance of ≈ 0.064 for ∆RI = 0.4, rη = 0.6, and rφ = 0.6 is used.
As can be seen, the distributions of efficiency and fakerate in both pT and η space show only
minor differences.

4.3.3 Combined

From the above it is clear that neither the variable signal cone as proposed in Equation 4.4, nor
the rough estimate for the isolation cone shape should be used. The variable signal cone could
provide an advantage in reconstruction of high pT hadronic τ leptons using a definition similar
to Equation 4.13 but must be treated with care, as it significantly impacts the isolation cone of
both single prong and multi prong hadronic τ lepton decays.

The isolation cone, which is used for reconstruction on the trigger level, but only for identi-
fication in offline analysis, has no apparent parameterization or shape. Because it is simplest
to define the isolation cone as a circle rather than an ellipse, maintaining the current definition
would be prudent. Increasing the size of the cone to ∆RI = 0.47 provides a significance within
the plateau observed in Figure 4.13 but may not be useful in reconstruction on the trigger level
as it would provide too high of a rejection rate of real τ leptons. For offline reconstruction the
isolation cone is not used, but is used for identification as is shown in the following chapter.
Using a larger isolation cone than the current definition might prove to be an advantage while
using multivariate techniques that do not apply a strict cut on the number of tracks within the
isolation cone.
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Figure 4.12: Efficiency for τ lepton reconstruction using ∆RS = 0.2 and the definition of
Equation 4.4 is given in (a) and (c). The fakerate using the same methods is given in (b) and
(d). Errors were assigned using the methods described in Appendix B.
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Figure 4.14: Profiles of efficiency versus fakerate for constant rη (a) and rφ (b). The efficiencies
and fakerates are normalized such that the largest efficiency and fakerate is one.
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Figure 4.15: Efficiency for hadronic τ lepton reconstruction using varying isolation cone shapes
with equivalent significance is given in plots (a) and (c). The same plots for the QCD dijet
background fakerates are given in plots (b) and (d).
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5 Tau Lepton Identification

Identification of signals within high energy particle physics has changed drastically over the
years. What was once done by hand, pouring over photographs from bubble chambers, is now
accomplished en masse by machines. Computer science has also evolved significantly over the
years, and many fast and stable machine learning algorithms have been developed. While cut
based analyses provide a simple, stable, and easily controlled method by which to identify
particles, more advanced techniques using machine learning algorithms can provide a distinct
advantage. In the case of τ lepton identification, a large group of variables are available on which
to perform a cut based analysis. However, each of these variables is weak, and provides only
slight signal and background separation. Due to the weak nature of the variables, performing
a τ lepton identification analysis by hand can be difficult, and have less than optimal results.
The following sections outline the variables and various methods currently available for τ lepton
identification by the ATLAS collaboration.

5.1 General Variables

A variety of general variables are used by official ATLAS identification to determine the quality
of a hadronic τ lepton candidate. These variables can either be used in a cut based analysis, or
with more advanced multivariate techniques, as will be described in the following section. The
variables can be divided into three categories: inner detector, calorimeter, and combined.

The following provides a brief description of each variable, how it is pertinent to hadronic τ
lepton identification, and plots comparing the variable in both signal and background. The same
Z → ττ signal sample of Section 4.2 is used along with the dijet QCD background. Signal is
always given in blue while background is given in red. The number of events for both signal and
background are normalized such that the area under the curve is one. This allows the shapes of
both signal and background to be easily compared.

All signal plots were made matching reconstructed hadronic τ leptons against visible generator
level hadronic τ leptons with a cone of ∆R = 0.2. This matching ensures that the signal variables
seen match actual τ leptons opposed to false candidates. No matching requirement were made
on the background except to ensure that the faking τ lepton candidate did not come from an
actual generator level τ lepton.

5.1.1 Inner Detector

The inner detector provides a variety of important variables for hadronic τ lepton identification.
Specifically, the inner detector provides the number of signal tracks, number of isolation tracks,
track width for three or five prong decays, charge, and partial or full mass.

Number of Signal Tracks

From Section 2.2.1 it is apparent that hadronic τ leptons should have either one, three, or, on
the rare occasion, five tracks within the signal cone. This of course does not always occur, as

57



5 Tau Lepton Identification

Tracks in Signal
0 1 2 3 4 5 6 7 8

N
um

be
r 

of
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6
Inner Detector: Signal TracksInner Detector: Signal Tracks

Tracks in Isolation

0 1 2 3 4 5 6

N
um

be
r 

of
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Inner Detector: Isolation TracksInner Detector: Isolation Tracks

(a) (b)

Figure 5.1: Plot (a) shows the number of signal tracks associated with a τ lepton candidate
from the signal (blue) and the background (red). Plot (b) shows the number of tracks spoiling
the isolation cone.

spoiling tracks not associated to the τ lepton decay may enter the signal cone and create a
reconstructed τ lepton object with two tracks from what was a one prong decay. Similarly, a
track from the τ lepton decay may not be reconstructed from a three or five prong decay, causing
a τ lepton object with two or four associated tracks.

The left plot of Figure 5.1 shows the number of signal tracks for the Z → ττ process in blue
and the dijet QCD sample in red. A maximum for the signal sample occurs at one associated
signal track, as it should. However, signal candidates with two signal tracks are identified at
approximately the same rate at which candidates with three signal tracks are identified. The
background candidates peak at two signal tracks, and as such the number of signal tracks provide
a possible cut to eliminate a large portion of the background without eliminating a significant
portion of the signal.

Number of Isolation Tracks

The number of tracks within the isolation cone of a τ lepton candidate provides an important
handle for identification as previously discussed in Section 4.2.3. The right plot of Figure 5.1
demonstrates that the isolation cone does indeed play an important role in identification. Nearly
90% of all signal candidates have no spoiling tracks within their isolation cone. In direct contrast,
the majority of background candidates have one or more spoiling tracks within their isolation
cones. By providing an optimized isolation cone shape, this stark contrast between signal and
background can be improved upon even more.
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Figure 5.2: Plot (a) gives the charge for τ lepton candidates from signal and background. Plot
(b) gives the track variance as defined in Equation 5.1.

Charge

Theoretically, the charge of a τ lepton candidate should be ±1 as these are the only physical
values. However, due to tracks not being properly added to the signal cone, or extra tracks
being added to the signal cone, oftentimes the charge of a τ lepton candidate can be zero. The
left plot of Figure 5.2 shows that this misidentification of charge does not occur very often, but
is not negligible. For the QCD dijet background the charge distribution appears to be normally
distributed about a mean charge of zero. The charge variable is highly correlated to the number
of signal tracks variable, and provides an excellent method by which to separate signal and
background.

Track Variance

The track variance is only defined for multi prong candidates, and subsequently this parameter
cannot be utilized for a large number of possible τ lepton candidates. The variance is defined by
Equation 5.1 where ∆η is taken between the center of the τ lepton candidate and the composite
tracks [26].

Track Variance ≡
∑

i ∆η2(τ, tracki)ptracki
T∑

i p
tracki
T

−
(∑

i ∆η(τ, tracki)ptracki
T∑

i p
tracki
T

)2

(5.1)

The track variance, as shown in the right plot of Figure 5.2 does not provide a very strong
separation variable, but can be used in multivariate techniques where weak separation variables
can provide performance boosts. Note that the the peak at zero is from single prong decays or
candidates without associated tracks, where the track variance is not defined.
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Impact Parameter Significance

The impact parameter significance is given by the lateral impact parameter d0 over the error
assigned to the measurement, d0/σ(d0). The impact parameter of a τ lepton is 87.11 µm so for
the majority of τ leptons the error on the impact parameter measurement will be well over the
value of the actual parameter. However, as shown in the left plot of Figure 5.3 this parameter
does vary slightly between signal and background. As expected, the tail of the distribution for
signal τ lepton candidates falls off less quickly than the tail for the background. This is because
the jets are expected to be from the primary vertex, while the τ leptons are produced from a
secondary vertex, albeit a small distance from the primary vertex. Again this variable is too
weak to be used in a standard cut based analysis, but can be used in multivariate techniques.

5.1.2 Calorimeter

While the calorimeter cannot easily differentiate between the number of prongs from a τ lepton
decay, variables from the calorimeter can help determine the collimation and isolation of the
decay jet. This is especially important for collimation, as the possible neutral particles of a
hadronic τ lepton decay will not be measured within the inner detector.

Electromagnetic Calorimeter Radius

The electromagnetic calorimeter radius is a critical quantity used in the hadronic τ lepton
triggers as discussed in Section 4.1.1 with the quantity defined in Equation 4.1. This variable
exploits the collimation of the τ lepton, just as the signal track variance and number does, and
is expected to be a stronger variable for separation. This is the case, as can be seen in the right
plot of Figure 5.3. Here there is a clear separation between signal and background with the
radius for the background having a peak at ≈ 0.17 and the radius for the signal having a peak
near ≈ 0.05. This variable can be used both in a direct cut based analysis and a multivariate
approach.

Isolation Fraction

The isolation fraction is the normalized difference between a region of size ∆η×∆φ = 0.1× 0.1
over a region of size ∆η ×∆φ = 0.2× 0.2 as given by Equation 5.2 [64].

Isolation Fraction ≡
∑

0.2Ecell −
∑

0.1Ecell∑
0.2Ecell

(5.2)

Here a sum is performed over all calorimeter cells within the larger 0.2 × 0.2 region, less the
sum of the cells within the smaller region. This quantity is normalized by the sum over the cells
within the larger region.

From Equation 5.2, the isolation fraction is expected to be small for well isolated events, such
as actual τ leptons, and larger for less isolated QCD events. The left plot of Figure 5.4 shows
this is the case with the isolation fraction for the signal peaking near ≈ 0.01 and the isolation
fraction for the background peaking at ≈ 0.03. Isolation fraction, just like number of spoiling
isolation tracks is a strong separation variable and can be used in cut based analyses.

Number of Hits within Strip Cells

The number of hits within the strip cells is defined to be the number of hits within the η strip
of the topological cluster associated with the τ lepton candidate with an energy of ET > 200
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Figure 5.3: Plot (a) shows the lateral impact parameter significance while plot (b) shows size
of the τ lepton candidate within the EM calorimeter as defined in Equation 4.1.

MeV. For τ leptons this number is expected to be near the number of particles within the decay,
so ranging anywhere from one to greater than eight. For background jets this number should
be less, as the number of highly boosted particles within the jet will be limited. This behavior
can be seen in the right plot of Figure 5.4 with the tail of the background distribution falling
off much faster than the signal distribution.

Weighted Strip Width

The weighted strip width provides a variable that describes the shape of the energy deposited
within the calorimeter with respect to the η of the calorimeter cells. The variable is defined
by Equation 5.3, where summations are performed over cells within a block of size ∆η ×∆φ =
0.3× 0.3 [64].

Strip Width ≡
√∑

0.3 η
2
cellEcell∑

0.3Ecell
−
(∑

0.3 ηcellEcell∑
0.3Ecell

)2

(5.3)

This definition is synonymous with the variance of the track width for multi prong decays
defined in Equation 5.1 but for the calorimeter. As the τ leptons should be highly collimated,
the variance on the strip width should remain low. For the background jets however, collimation
is not as delineated and so the variance should vary over a much larger range. This behavior
is shown in the left plot of Figure 5.5. Unfortunately this variable is not a strongly separating
variable and can only be used effectively in multivariate techniques.

5.1.3 Combined

Combined variables are able to provide values from both the inner detector and calorimeter in
a single variable with discriminating power. As most reconstructed τ lepton objects have both
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Figure 5.4: Plot (a) shows the isolation fraction of the topological calorimeter cluster associated
with the τ lepton candidate as defined by Equation 5.2. Plot (b) gives the number of hits with
ET > 200 MeV within the η strip associated with a τ lepton candidate.

tracks and topological calorimeter clusters associated with them, these variables are available
for most reconstructed τ lepton candidates.

Tau Lepton ET over pT

This value is the total transverse energy of the τ lepton candidate over the pT of the lead
track used to reconstruct the candidate. The majority of τ leptons have one prong decays and
subsequently have the majority of their energy concentrated within one or two particles. The
ratio from the signal is expected to be near one. The background jets however have a larger
number of tracks, as shown in Figure 5.1 and so the ratio is expected to be higher for the
background. The right plot of Figure 5.5 demonstrates this behavior.

Mass

While traditionally the mass of the τ lepton candidate is calculated directly from the momenta
vector of the associated tracks, this method produces masses well below the mass of the τ lepton
due to 6ET from neutrinos and not accounting for the energy from neutral particles. Within the
ATLAS collaboration energy flow techniques are used to correct the energy of the reconstructed
τ lepton using both calorimetry information and 6ET information from the event. This technique
is apparent in Figure 5.6, as the number of events with a mass corresponding nearly exactly
to that of the full τ lepton is very large. This technique has great promise, but still requires
significant work. As of now the discriminating ability of the object mass is minimal.
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Figure 5.5: Plot (a) shows the weighted width of strip cells as defined by Equation 5.3. Plot
(b) shows the ratio of the total ET of the τ candidate over the pT of the lead track.
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Figure 5.6: Mass of the reconstructed τ lepton candidate using energy flow techniques for
signal and background.
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Hadronic over Track Energy

An additional variable combining both inner detector and calorimeter information is the hadronic
energy within the calorimeter over the total energy of the associated tracks. Unfortunately this
current variable was not available in the samples used for this study, and plots could not be
made.

5.2 Methods

ATLAS uses a variety of multivariate techniques along with standardized cut based definitions
for hadronic τ lepton identification. The four techniques used in current analyses are described
and compared: standardized cut flow analysis, the likelihood method, artificial neural nets, and
boosted decision trees.

5.2.1 Cut Flow

Because multivariate methods rely heavily upon Monte Carlo or previous data with separated
signal and background, it is necessary to develop a safe cut based identification method. Within
large collaborations such as ATLAS it is important to have standard definitions so that common
physics objects such as the hadronic τ lepton remain consistent amongst the working groups.

Within ATLAS three standard cut flow definitions of “tight”, “medium”, and “loose” are
defined corresponding to 70%, 50%, and 30% efficiencies with respect to all reconstructed τ
lepton candidates. The cut flows for these definitions are given in Table 5.1 for one and multi
prong τ lepton candidates from the merged calorimeter and inner detector seeded algorithms.
The cut flow for one and multi prong candidates are given in separate tables, as the optimal cut
values depend upon the kinematics of the event. The values of Table 5.1 can be compared to
Figures 5.1 through 5.6 for a rough estimate of the efficiency drop for each cut.

As the number of reconstructed τ lepton candidates is usually larger than the number of
generator level τ leptons within a sample, these numbers are lower than the actual efficiency.
Figure 5.7 shows the efficiencies and fakerates of the three standard cut flow definitions using
the same method as described in Section 4.3 for calculating efficiencies and fakerates. As can
be seen, there are large turn on’s in both the efficiency and fakerate with respect to low pT
especially for the “tight” cut flow. Unlike the simpler cut based analysis of Chapter 4 the tails
of the distributions in pT also fall with respect to pT except for the “loose” efficiency.

Structure can also be seen in the η distributions, again expected as the detector is not uniform
in η. The structure however is much less noticeable than in Chapter 4 as now both calorimetry
and inner detector variables are being used to reconstruct and identify the τ leptons. Contri-
butions from both the calorimeter and inner detector still lend structure to the distribution but
wash each other out.

Similar standard definitions of “loose”, “medium”, and “tight” are also provided for the
likelihood method but are not used for the artificial neural net and boosted decision tree methods.
However, for the purposes of comparison, the efficiencies for the artificial neural net and boosted
decision tree methods were matched such that the total efficiency of the “tight” cut for the cut
flow method corresponds to the same total efficiencies for both the artificial neural net and
boosted decision trees. Similar matching was applied for “medium” and “loose”.
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Figure 5.7: Plots (a) and (c) give the efficiency in pT and η for the three standardized cut
flow defintions corresponding to a 70%, 50%, and 30% efficiency with respect to reconstructed
candidates. The equivalent fakerate plots are given by (b) and (d).
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Signal Tracks = 1
Variable Loose Value Medium Value Tight Value

Isolation Tracks < 1000 < 1 < 1
Bad Signal Tracks < 1000 < 1 < 1
Mass [GeV] < 1000 < 1.8 < 1.6
Strip Cell Hits < 1000 < 10 < 8
EM Radius < 0.12 < 0.12 < 0.08
Strip Width < 1000 < 0.0012 < 0.0008
Isolation Fraction < 0.9 < 0.6 < 0.4
EM Isolation < 0.9 < 0.15 < 0.1
ET over pT < 6 < 6 < 5

Signal Tracks ≥ 2
Variable Loose Value Medium Value Tight Value

Isolation Tracks < 1000 < 1 < 1
Bad Signal Tracks < 1000 < 1 < 1
Mass [GeV] < 1000 < 1.8 < 1.6
Track Mass [GeV] < 1.8 < 1.8 < 1.5
Strip Cell Hits < 1000 < 10 < 8
EM Radius < 0.15 < 0.15 < 0.10
Strip Width < 1000 < 0.002 < 0.0015
Isolation Fraction < 0.9 < 0.6 < 0.4
EM Isolation < 0.9 < 0.3 < 0.2
Track Width < 0.002 < 0.002 < 0.0015
ET over pT < 10 < 10 < 8

Table 5.1: “Loose”, “medium”, and “tight” cut flow definitions as taken from
TauCommonSetIsTau.py version 1.1 for merged τ lepton one and multi prong candidates are
given in the upper and lower tables respectively. These defintions fluctuate significantly be-
tween software releases and the values listed above are meant only as a guide. The most current
values, at the time of writing, are given in Reference [65].

5.2.2 Likelihood

The method of maximum likelihood was first proposed in a rudimentary form by Ronald Fisher
in 1912, and has since become one of the most widely used statistical tools for determining
optimal free parameters of a system [66]. Likelihoods have now become a common standard in
high energy particle physics analysis, being currently used by DØ, CDF, CMS, and ATLAS for
various identification techniques. The ATLAS reconstruction software Athena uses a logarithmic
likelihood method in its current software releases for hadronic τ lepton identification [67].

The likelihood for a signal or background is given by Equation 5.4,

L ≡
∏
i

Pi(xi) (5.4)

where a product is performed over the probability distribution functions, Pi(xi), for each variable
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xi with which the likelihood is being calculated. The likelihood discriminant is then given by,

D ≡ LS
LS + LB

(5.5)

where L is the likelihood for either signal or background as given by Equation 5.4. This dis-
criminant by definition must be contained within the range of zero to one. However, due to the
weak nature of the variables available for τ lepton identification, the discriminant as defined by
Equation 5.5 has large peaks at both zero and one. To provide a discriminant that yields a more
linearly varying efficiency, a transformed discriminant is used, defined by Equation 5.6.

Dln ≡ −ln
(

1
D
− 1
)
. (5.6)

This definition of the discriminant with a logarithmic scale allows for a more linear response of
the efficiencies based on the discriminant value specified [68].

The likelihood discriminant for ATLAS hadronic τ identification was trained on a W → τντ
signal sample and dijet QCD sample. As such, the resulting performance for a Z → ττ signal is
expected to be less than optimal. The probability distribution functions generated for the signal
sample were binned according to pT and whether the τ lepton decay was one prong or multi
prong. One prong decays were further split into two groups, one with no identified π0 clusters
within the EM calorimeter, and one with multiple π0 clusters identified.

For the one prong samples, probability distribution functions were made for all the variables
of Section 5.1 excluding track width, charge, number of tracks in the signal cone, and number
of tracks in the isolation cone. Additionally ratios of energy deposited in the calorimeter over
energy in associated signal tracks were used along with the significance of the longitudinal
impact parameter, z0/σ(z0). For the multi prong samples all of the above variables were used,
excluding the longitudinal impact parameter significance. Additional tracking variables were
used including number of signal tracks, and signal track separation [67].

The left plot of Figure 5.8 shows the likelihood distribution of the hadronic τ candidates for
both the signal in blue and the background in red. Both sets of events are normalized to an
integral of one. Significant separation between the signal and background distributions can be
seen, with the background distribution centered around −20 and the signal distribution centered
around 0.

The right plot of Figure 5.8 gives the significance, again defined by NS/
√
NB as is done

in Section 4.3. The significance is better than the maximum significance of Figure 4.13 for
likelihood discriminant values greater than −2 as expected. A peak significance of 0.16 is
reached at D ≈ 10. This is nearly double the significance of the simple cut based analysis of
Section 4.3 and demonstrates the simplicity yet power of using the likelihood method.

Figure 5.9 gives the efficiencies and fakerates for the likelihood method with respect to η and
pT for the likelihood method. The efficiency with respect to pT has an even more pronounced
turn on than for the cut flow method, but does not drop for higher pT . The structure within
the efficiency plot with respect to η, specifically for the “loose” likelihood indicates that the
likelihood method requires more stringent cuts on inner detector variables. Note that by just
using a simple likelihood the same efficiency as the cut flow technique can be maintained while
decreasing the fakerate by nearly an order of magnitude.

5.2.3 Artificial Neural Net

The artificial neural net was first conceived by Frank Rosenblatt in 1957 as a method by which
to approximate any given function using a weighted series of units in a network closely modeling
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Figure 5.8: Distributions of the normalized number of events and significance with respect to
the log discriminant given by Equation 5.6 for the likelihood method.

the neural networks of the human mind [69]. However, the method proposed by Rosenblatt was
a single layer feed-forward network, or perceptron, which was capable of only separating linearly
dependent variables. It was hypothesized by Minsky and Papert that such a property would
hold for multi layer perceptrons, dimming interest in artificial neural networks [70]. During the
1980’s interest was renewed in artificial neural networks, and in 1989 Cybenko proved: “finite
linear combinations of compositions of a fixed, univariate function and a set of affine functionals
can uniformly approximate any continuous function of n real variables with support in the unit
hypercube” [71]. Further proofs have practically shown that a multi-layer perceptron with a
finite number of units can arbitrarily approximate a universal Turing Machine [72].

A wide variety of artificial neural network techniques are currently available. However, as
current τ lepton identification within the ATLAS collaboration is performed by a two layer per-
ceptron implemented with the Stuttgart Neural Network Simulator [73], this particular method
will be described.

The building blocks of a neural net are units and links. The units may be of three types:
input, hidden, and output. These types correspond to the input variables, the two hidden
layers, and the output discriminant respectively, of which a basic schematic is given in Figure
5.10. Each unit is connected by a weighted directed link. As the neural net used is a perceptron
or feed-forward network, only forward directed links are allowed as seen in Figure 5.10. Each
unit has an associated activation value aj(t), activation function fa, output function fo, bias θj ,
output oi(t), and net input nj(t). Here the indices i, j represent a unit index and t designates
the iteration step. Each link has a weight wij(t) connecting the unit i to the unit j where i < j,
by the necessity of a feed-forward mechanism.

The net input for a unit is defined by Equation 5.7,

nj(t) ≡
∑
i

wijoi(t) (5.7)
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Figure 5.9: Efficiencies for the likelihood method are given in (a) and (c). The equivalent
fakerate plots are given by (b) and (d).
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Figure 5.10: Schematic of a simple multi layer perceptron for τ lepton identification. Three
input nodes: number of signal tracks, number of isolation tracks, and charge are provided. Each
node feeds forward to a hidden layer of two nodes, which feeds into another hidden layer of two
nodes, terminating in the output node or discriminant of the network. A signal input training
event has a theoretical discriminant of one, while a background training event has a theoretical
discriminant of zero. Error from backward propagation is calculated using these values. An
example chain of calculations is given for an example node j.

where the sum of all connecting units outputs is taken, with the corresponding weight of each
connecting link. The activation function used is the common logistic activation function,

fa(nj(t), θj) =
(

1 + eθj−nj(t)
)−1

(5.8)

from which the next iterative activation value is calculated by Equation 5.9.

aj(t+ 1) = fa(nj(t), θj) (5.9)

The output value oj(t) is then calculated using the output function fo(aj(t)), where in general
fo(aj(t)) = aj(t).

A neural net is trained by providing a signal sample and background with inputs from a
variety of variables. The net is iterated over, computing the activation and output of units for
some predefined iterative method ranging from serial to random. After the completion of an
iterative cycle or forward propagation, backward propagation is performed, where the weights
of the links are adjusted according to the errors between the output value and the input values
of each layer. After backward propagation, the cycle repeats until relative stability is reached.
After the network has been trained, a validation set of background and signal is used to evaluate
the effectiveness of the training.

In many cases neural nets can be over trained, picking out patterns that are specific to the
training samples, rather than general patterns of the process itself. When over training occurs,
the signal sample shows an excellent discriminate distribution, with signal easily distinguishable
from background. However, when the neural net is applied to a new sample of signal and
background, a large number of events are found to have a discriminant of one or zero. Such
training of a neural net can be avoided by using large samples, or validating the training often,
taking care to avoid the discriminant behavior described above.

Currently, within ATLAS, neural networks have been only trained for inner detector seeded
τ leptons associated with one or three tracks. The network is a two layer perceptron with nine,
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Figure 5.11: Distributions of the normalized number of events and significance with respect
to the discriminant for the artificial neural net identification method.

ten, or eleven inputs, thirty nodes per hidden layer, and one output node. The inputs used are
the same as described in Section 5.1 when such parameters are available for the reconstructed
τ lepton candidate with an additional parameter of lateral impact parameter significance when
available.

Figure 5.11 gives the discriminant distributions for the signal and background along with the
significance. Unlike the likelihood significance no local maximum gives the best significance.
This behavior is to be expected as the neural net is trained to provide the best significance
for a discriminant of one. If such a behavior does not occur the neural net is not trained to
significance but rather some other metric.

From the left plot of Figure 5.11 it appears as if the neural net is over trained, as a large
number of events are assigned a value of zero. This however is not the case, as many of these
events have no associated tracks and were reconstructed using only calorimetry information.
Candidates with only calorimetric information cannot have a discriminant assigned and are
assigned a default value of zero. This behavior is verified in the background distribution where
few events are assigned a discriminant value over 0.4.

Using the “loose”, “medium”, and “tight” discriminant cuts previously discussed, efficiency
and fakerate plots are given in Figure 5.12. Note that the “loose” total efficiency is slightly
lower than the “loose” efficiency for the cut flow method as all candidates reconstructed with
only calorimetry information are necessarily discarded. Consequently the maximum efficiency
attainable using the neural net method is slightly below the total efficiency of the likelihood
method for a discriminant of “loose”.

The neural net has a stronger immediate turn on than the likelihood, but then gradually
increases to a peak efficiency near 40 GeV. For high pT the efficiency drops significantly more
than in the case of the likelihood. Such a behavior could prove problematic for massive Higgs
searches with a di-τ lepton decay product, where the two τ leptons have large pT . The efficiency
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Figure 5.12: Efficiencies for the artificial neural net identification method are given in (a) and
(c) while equivalent fakerates are given in (b) and (d).
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Figure 5.13: Schematic of a simple decision tree. Blue indicates a signal dominated branch/leaf
while red indicates background. Rectangles represent branches, triangles represent terminating
leaves. For this tree branches were terminated for G < 0.16 corresponding to an 80% purity
and when less than 25 events were remaining in the sample. The first discriminating variable is
number of isolation tracks and the optimal value is found to be 0. The second variable is charge
with a value of 0 chosen for separation.

and fakerate both have structure in η, again corresponding to a combination of various detector
effects. The sharp drop in efficiency for η = 0 most probably indicates that in this region
the electromagnetic calorimeter variables are more heavily weighted than the inner detector
variables.

5.2.4 Boosted Decision Tree

Boosted decision trees provide yet another method with which to discriminate signal from back-
ground, but are particularly well suited to the type of problem presented by τ lepton identifica-
tion. In general, boosted decision trees perform well on discriminating signal from background
in cases where the variables are weak, and no single cut has a clear advantage. This is the case
for τ lepton identification; certain variables clearly have greater discriminating power such as
the isolation fraction, but no single variable provides a definitive separation.

Not only do boosted decision trees perform well on weakly discriminating variables but they
can be trained quickly without the danger of over training, as is the case with neural nets.
The addition of variables does not destabilize the method, unlike neural nets where additional
input nodes can cause a destabilized algorithm. In general, boosted decision trees provide a
stable, fast, and transparent method by which to determine the optimal weighting of weakly
discriminating variables. Further details on the mathematical framework of boosted decision
trees can be found in References [74] and [75].

Using a boosted decision tree consists of two steps which are iterated over until stability for
the tree is achieved. First a decision tree is built as shown in Figure 5.13. This process begins
with a sample of background and signal with a specified number of discriminating variables.
The discriminating variables are arbitrarily ordered, although changing the order can cause
instability if boosting is not convergent. A decision is then made on which value to cut for the
first variable. This decision can be through a variety of methods, but for ATLAS, the value
selected minimizes the sum of the Gini index, as defined in Equation 5.10, of the two daughter
branches [76].

G ≡ P (1− P ) (5.10)

73



5 Tau Lepton Identification

The Gini index reflects the separation of the sample and is based on the purity of the sample,
given by Equation 5.11 where the sum of each weighted signal event is divided by the weighted
sum of all events.

P ≡
∑

S wiNi∑
S wiNi +

∑
B wiNi

(5.11)

In the initial decision tree the weight for each event, wi, is set to one over the number of events,
as no boosting has yet occurred and this normalizes the total number of events. A Gini index
of zero corresponds to a sample that is either all signal or background, while a maximum index
of one quarter corresponds to a sample of equally mixed signal and background [77].

After a value has been chosen, the sample is split into two branches, one that passes the cut
and one that fails. A value for the next discriminating value is then determined for each branch
again by using the Gini index. This process continues, with the number of branches doubling
for each discriminating value assuming no terminating branches. A branch terminates with a
leaf if the number of events left within the sample is below a threshold value, or if the Gini
index calculated for that particular sample is below a cutoff. The building of the decision tree is
terminated when all branches have reached one of the two thresholds, number of events or Gini
index, or when no more discriminating variables are available.

After the decision tree has been built, the tree is boosted. This boosting can be performed
through a variety of techniques, but ATLAS employs adaptive boosting (AdaBoost) [76]. For
this method a weight is assigned to each event, with the weight increasing for misplaced events,
signal events placed on a background leaf or background events placed on a signal leaf. Assume a
sample of N events with a vector of discriminating variables ~di for the ith event. The type of the
event is given by ti where a value of 1 indicates signal and a value of −1 indicates background.
If the set of discriminating variables ~di for the ith event place the event on a signal leaf the
classifier Tm(~di) is defined to equal 1 where m indicates the mth tree built. Similarly, if ~di
places the event on a background leaf, Tm(~di) = −1.

The misclassification rate εm for themth tree built is given by Equation 5.12 where δ(ti, Tm(~di))
is a Dirac delta function such that it is zero when ti = Tm(~di) and one when ti 6= Tm(~di) [77].
Effectively this delta function assigns a value of zero for properly placed events, and a value
of one for misplaced events. The misclassification rate is required to be less than 0.5 as this
prevents the decision tree weighting from diverging.

εm ≡
∑

iwiδ(ti, Tm(~di))∑
iwi

< 0.5 (5.12)

The weighting for the mth decision tree, αm, is defined by Equation 5.13 where β is a constant
parameter for all events and trees. Traditionally β is set to 0.5 as is done within the original
proposal of AdaBoost [75].

αm ≡ β ln
(

1− εm
εm

)
(5.13)

The weight of the ith event for the mth decision tree is then given by Equation 5.14.

wi,m+1 = wi,me
αmδ(ti,Tm(~di)) (5.14)

All events that are properly placed do not have their weights from the previous decision tree
altered while misplaced events have their weights increased. From the logarithmic form of εm it
can be seen that the relative weighting of misclassified events with respect to properly classified
events increases to infinity for the limit of zero misclassified events. The parameter β decreases
the slope for the asymptotic behavior of αm with respect to εm and can be adjusted to control
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the relative weighting scheme. After the weighting for the mth event is determined the weights
are all renormalized.

The classifier for an event with discriminating variables ~d is given by the sum of the classifiers
Tm(~d) multiplied by the corresponding weight, αm, for each decision tree and normalized [77].

T (~d) =
∑

m αmTm(~d)∑
m αm

(5.15)

The classifier of Equation 5.15 can range from a value of −1 corresponding to a background
event, to a value of 1 corresponding to a signal event. A value of 0 is an event that is equally
likely to be signal or background. Oftentimes the classifier is adjusted to range from 0 to 1 as
this format is similar to the discriminants of ANN’s and likelihoods.

From the nature of decision trees, as can be seen in Figure 5.13, the boosted decision tree
method suffers from inherent limitations, which while somewhat avoidable, do diminish the
effectiveness of the method. This arises from the necessary binary decisions at the splitting of
a branch. The problem arising from this can be seen in the example of number of tracks within
the signal cone of a τ lepton candidate. From Section 2.2.1 it is clear that for an actual τ lepton
this discriminating variable is physically required to be 1, 3, or 5. This causes a problem for the
decision tree as it cannot take advantage of this kinematic reality. The user can specify that
such a decision should be made on whether the number of signal tracks is within this kinematic
basis. However, the automation of the entire system is destroyed by such a choice on the part of
the user and introduces further complications. Another possible workaround would be to allow
multiple decisions on the same variable, but again, this introduces complications.

Such complications require that the user carefully choose the discriminating variables used for
the decision tree. Oftentimes issues such as the one described above can be avoided by mapping
the discriminating variables to a new value. Such re-mapping of variables must be done with
care, as this can introduce user bias into the optimization process. The parameter space of
discriminating variables used by ATLAS for the τ lepton identification boosted decision trees is
very complex, and as such is not reported here. A full description can be found in Reference
[76].

Unlike ANN’s, boosted decision trees are not susceptible to over training, assuming the method
described above without multiple splittings on a signal discriminating variable. This provides
a distinct advantage of the boosted decision tree over ANN’s. Additionally, the cuts applied
through the decision tree are very transparent and the behavior of the tree can be easily traced
in direct contrast to the convolution of sigmoid functions used by ANN’s. Boosted decision
trees, however, do take into account the correlation of variables, and as such, can provide an
advantage over the likelihood method.

The distribution of signal and background events along with the significance is given with
respect to the discriminant for the boosted decision tree method in Figure 5.14. Neither of
the distributions are smooth, but have distinct structures. These occur as the method is not
continuous like the ANN or likelihood methods, but rather made from a series of binary deci-
sions represented by the trees. These individual decisions are washed out by the boosting, but
structure still remains.

The maximum significance attained by the boosted decision tree method is ≈ 0.09 which
while it outperforms a simple cut based analysis does not match the levels attained by either
the likelihood method or ANN method. Whether this lack of performance is due to improper
training implementation or rather an inherent mismatch of problem and method is unknown
without further investigation.
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Figure 5.14: Distributions of the normalized number of events and significance with respect
to the discriminant for the boosted decision tree identification method.

The efficiency and fakerate plots for the boosted decision tree method are given in Figure
5.15. Unlike both the ANN and likelihood, the efficiency increases with high pT and the turn
on is very sharp. This increase in efficiency with respect to pT in combination with the very
flat behavior of the fakerate for high pT indicates that the boosted decision tree identification
method while not optimal for Z identification could provide a better handle on high pT regions
than either the ANN or likelihood.

A distinct structure is again seen in the η distributions, as expected. Now however drops
appear at η ≈ 1 corresponding to gaps within the inner detector as can be see in Figure 3.6.
This indicates that inner detector variables are favored over calorimeter variables.

5.3 Comparison

Before making definitive comparison statements it is important to remember that these com-
parisons are not global but rather very specific to the signal sample, background sample, and
pT range used within the context of this analysis. By example, switching the signal sample to a
heavy SM Higgs decay and by considering a higher pT range, the BDT method could very well
perform significantly better and even outperform the likelihood and ANN methods.

Keeping the context of this analysis in mind, Figure 5.16 provide a plot of the four methods’
total fakerates versus efficiencies. Note that while error is not included for clarity, these values
still have significant error associated to them. For total efficiencies less than ≈ 73% the ANN
outperforms both the likelihood and the ANN. Notice that the ANN does not exceed efficiencies
greater than ≈ 90%; this is again due to the ANN using only track seeded τ lepton candidates.

For values greater than 73% the likelihood outperforms the other methods. For the ANN this
is expected due to the inherent properties of the algorithm used. The boosted decision tree under
performs both the likelihood and ANN for nearly all efficiencies except for a very small portion
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Figure 5.15: Efficiencies for the boosted decision tree identification method are given in (a)
and (c) while equivalent fakerates are given in (b) and (d).
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Figure 5.16: Comparison of efficiency versus fakerate for the four identification methods
outlined in Section 5.2.

in the high efficiency range, and nearly matches the three discrete cut flow definitions. For a
general Z analysis using hadronic τ leptons the ANN appears to provide the best identification
method of the three described above.
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Determining τ lepton identification efficiency from actual data with no generator level infor-
mation available is a unique challenge but can be estimated from data using a variety of tech-
niques. Obtaining such an efficiency measurement is important for physics searches involving
the hadronic τ lepton so that accurate cross sections can be calculated. The following chapter is
not intended as a comprehensive study, but rather an initial discussion of the subtleties involved
in hadronic τ lepton efficiency measurement from data.

6.1 Total Efficiency

A brief outline of the method for determining a total hadronic τ lepton efficiency is given followed
by a discussion of a simple implementation and the problems encountered during implementa-
tion.

6.1.1 Method

The proposed method is similar to that of Reference [78] and begins by assuming that the
efficiency of muon identification within the detector is well known for the Z → µµ process.
This is a reasonable assumption, as muon studies will be among the first feasible studies on
preliminary data, and analyses including hadronic τ leptons will not be feasible until a full
understanding of the detector is gained from preliminary studies.

Keeping this in mind the method begins by requiring a sample is gathered by triggering
on an isolated muon and the integrated luminosity of the sample is known. Events are then
selected where a single isolated muon is found and a single isolated hadronic τ lepton of some
predetermined quality cut is also found. These events are divided into events where the muon
and hadronic τ lepton both have the same sign, NSS , and events where the muon and hadronic
τ lepton have opposite signs, NOS . In a reasonable first guess it is assumed that all events
with the same sign are necessarily background events, and additionally that the background has
equal likelihood to produce a same sign and opposite sign event. The efficiency for hadronic τ
lepton identification is then given by Equation 6.1.

ετ =
NOS − (f + 1)NSS

εµALintσZBR(Z → ττ)BR(τ → µ)BR(τ → h)
(6.1)

Here εµ is the total efficiency for muons from a priori knowledge of the Z → µµ process,
this includes trigger efficiencies, A is the detector acceptance, σZ is the cross section of the Z
boson at the LHC for the specific operation conditions of the data sample, Lint is the integrated
luminosity for the sample, and the BR’s are the various branching ratios of the Z and τ lepton
known to high precision from previous experiments. The value f is the ratio between opposite
sign and same sign background events and in this first scenario is taken to be 1.

However the number of Z → µµ events can be reliably measured from data and is written in
Equation 6.2. Here, BR(Z → ττ) is taken to taken to be equal to BR(Z → µµ).

Nµµ = ε2µALintσZBR(Z → ττ) (6.2)
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Placing this expression back into Equation 6.1 provides Equation 6.3 which eliminates A, Lint,
σZ , BR(Z → ττ), and their associated errors.

ετ =
εµ
(
NOS − (f + 1)NSS

)
NµµBR(τ → µ)BR(τ → h)

(6.3)

The first problem to note from Equation 6.3 is that taking a total efficiency directly from
a Z → µµ process is not the same as taking the integrated efficiency from a Z → µν̄µνττhντ
process as there is an average downward pT shift in the Z → µτh distribution attributed to the
difference between a two and a three-body decay.

Because the muon efficiency has a turn on, as can be seen in Figure 6.1, the average downward
shift of pT within the distribution for Z → µτh must be taken into account. This can be done
by taking an efficiency distribution with respect to pT for the Z → µµ process and multiplying
this by the pT event distribution for signal muons from the Z → µτh sample from tuned Monte
Carlo. The distribution is summed and then divided by the initial number of events to provide
the corrected total efficiency.

The next issue of Equation 6.3 is the assumption that f = 1, or that there is a one to
one correspondence between background events with same sign and opposite sign. To fully
understand this ratio one must first understand the relevant backgrounds that provide a real
or fake muon and hadronic τ lepton. From the SM, three processes provide a considerable
background contribution: top pair production, W boson plus jets production, and bottom quark
pair production. Table 6.1 gives the cross sections for these processes along with the Z → µτh
process.

Process Cross Section [pb]
Z → µτh 302.3
W + jets 5943.17
tt̄ 373.6
bb̄ 8.85× 104

Table 6.1: Cross sections for the signal process used and corresponding relevant backgrounds
for hadronic τ lepton efficiency calculation for a pp collision with

√
s = 10 TeV [79].

For all of these background processes it can be hypothesized as to the correlation between
same sign and opposite events, but it is simplest to extract this information from tuned Monte
Carlo. As the Monte Carlo and its relation to data should be well understood by the time a τ
lepton efficiency study is being performed, the extraction of a scale factor f should yield a result
with low systematic error, and should provide a better factor than the assumption of a one to
one ratio.

The final issue at hand regarding Equation 6.3 is the possibility of actual signal events pro-
viding a same sign event. Not only this, but the possibility of a hadronic τ lepton being faked
by either muon or electron will bias the efficiency measurement and must also be considered.
These issues will be explored in more detail in the following section.

A simple implementation of the method described above was performed to investigate the
feasibility of such a study on real data. For this study three Monte Carlo samples were used: a
Z → µµ sample, a Z → ττ sample, and a bb̄ sample all described in Appendix A.
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Figure 6.1: Muon efficiency using Monte Carlo generator level information and STACO re-
constructed muons with a “best match” tag and isolation < 5 GeV.

6.1.2 Muon Efficiency

Within ATLAS two algorithms are used for muon reconstruction, STACO (STAtiscial COmbi-
nation) and Muid [26]. For this study STACO muons were used, as this is the default muon
reconstruction choice. Muon tracks are reconstructed in the muon spectrometer and extrapo-
lated to the vertex of the event. Tracks within the inner detector are also reconstructed and
matched against the extrapolated muon tracks from the muon spectrometers. If a match passes
a specified criteria the two tracks are statistically combined to provide a reconstructed muon
object. If the object was the best match between muon spectrometer and inner detector tracks
it is labeled as such [80].

The muon efficiency can be calculated from actual data using a variety of techniques some
of which are outlined in Reference [81]. For the purpose of this implementation these studies
are assumed to have already been performed, and so the muon efficiency was calculated from
the Z → µµ sample using generator level information. Reconstructed muons labeled as “best
match” with an isolation energy of less than 5 GeV were matched against generator level muons
with a cone of ∆R = 0.2. All reconstructed muons that passed these cuts were considered
identified and were divided by the number of generator level muons. The efficiency of the
selected reconstructed muons with respect to pT is given by Figure 6.1.

6.1.3 Charge Misreconstruction

Before implementing the method described above it is critical to validate the assumption that all
signal events will necessarily have an opposite sign muon and τ lepton. Table 6.2 gives a table
of the cut flow used, and the relative percentages of same sign and opposite sign reconstructed
signal events. The first cut is a general cut to ensure that both the muon and hadronic τ lepton
are of good quality. This is done for the muon by requiring an energy of less than 5 GeV
deposited within its isolation cone. Additionally the muon is required to be a “best match” as
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described previously.

Cut Same Sign [%] Opposite Sign [%]

Iso(µ) < 5 GeV, “µ best match”, 74.15+0.45
−0.45 25.84+0.45

−0.45

DANN(τh) > 0.9, Charge(τh) = ±1

∆R(µ, τh) > 0.2 95.06+0.25
−0.26 4.94+0.26

−0.25

∆R(τgen, τh) < 0.2 95.88+0.25
−0.26 4.12+0.26

−0.25

Table 6.2: Cut flow and corresponding same/opposite sign event precentages using only the
signal Monte Carlo sample described in Appendix A.

Two requirements are placed on the hadronic τ candidate. The first cut requires that the
τ lepton candidate is of high quality by using the ANN method discussed in Section 5.2.3 as
this provides the best signal to background signficance. The second cut placed on the τ lepton
candidate is that the charge must be plus or minus one. This cut is necessary as τ lepton
candidates can be reconstructed with charges of other than one, which is incompatible with the
same/opposite sign method for seperating signal and background.

After the quality cut for the muon and τ lepton, along with the requirement that only one
muon and hadronic τ lepton are in the event, the opposite sign percentage is 74% while the
same sign percentage is 26%. This large percentage of same sign events can be accounted for
by muons being reconstructed as hadronic τ leptons. To remedy this problem the second cut
is applied, requiring a seperation of ∆R > 0.2 between the muon and hadronic τ lepton. This
cut ensures that the muon is not being misreconstructed as a hadronic τ lepton. In general
this problem can be avoided by treating an event constistantly and allowing an object to be
identified only once.

This does not, however, entirely solve the problem with 95% of events opposite sign and
5% of events same sign. This difference can be attributed to either faking hadronic τ leptons,
which correspond to no underlying generator hadronic τ lepton, or to charge misreconstruction
of the hadronic τ lepton. To determine the cause of this 5% same sign events the hadronic τ
lepton candidates were required to match a generator level hadronic τ lepton using a matching
cone of ∆R = 0.2. As can be seen, this reduces the percentage of same sign events by less
than 1% implying that the cause for the remaining 5% of same sign events is entirely from
misrecontruction of the hadronic τ lepton charge.

For the above method to provide meaningful results this charge misreconstruction must be
accounted for. Using Monte Carlo, as was done for this study, it is of course possible to estimate
the percentage of same sign events, in this case, 4.9%. This method for accounting for charge
misreconstruction requires that the Monte Carlo models the data well but also introduces another
systematic error to the efficiency.

Another method to verify the same sign event percentage given by Monte Carlo is to use inner
detector properties measured from data alone. The charge of the hadronic τ lepton candidate
is determined from inner detector information alone and subsequently the misreconstruction
can be attributed to track reconstruction and hadronic τ lepton reconstruction within the inner
detector.
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The left plot of Figure 6.2 demonstrates the percentage of generator level matched τ lepton
candidates with a properly reconstructed charge over the total number of matched τ lepton
candidates with a charge of ±1. For very low pT a dip can be seen that can most probably
be attributed to three prong hadronic decays where two tracks of the same sign are not re-
constructed. The decrease in efficiency for higher pT is not readily apparent without further
investigation.

By fully examining the track misconstruction combinations and their subsequent possibilities
of charge misreconstruction discussed above it would be possible to estimate hadronic τ lepton
charge misreconstruction using inner detector charge misrecontruction and track reconstruction
data. Such a detailed study is not performed here, but is merely mentioned to highlight the
difficulties that must be considered with respect to hadronic τ lepton charge misreconstruction.

6.1.4 Electron Misidentification

When outlining the possible background available to the Z → µτh channel, the background
Z → µe was not mentioned, as an electron should not be misreconstructed as a hadronic
τ lepton. Unfortunately, this is not the case with ATLAS hadronic τ lepton reconstruction,
where a large number of electrons are reconstructed as hadronic τ leptons. Because of this
misreconstruction a cut must be applied to the cut flow of Table 6.2 to ensure that the Z → µe
background is not included in the selection of the Z → µτh signal.

A variety of identification methods are available for electron reconstruction similar to those
outlined for hadronic τ lepton reconstruction in Section 5.2 [26]. Combining the variables from
electron reconstruction with the variables from hadronic τ lepton reconstruction, an electron
likelihood veto was calculated for every reconstructed hadronic τ lepton candidate after passing
the first and second cuts of Table 6.2. Each candidate was then matched against generator
level information to determine whether the selected candidate corresponded to an electron or
hadronic τ lepton jet. The electron likelihood for both the candidates matched with electrons
and matched with hadronic τ leptons is given in the left plot of Figure 6.2.

As can be seen, placing a cut requiring the electron likelihood veto to be greater than zero
provides an excellent seperation between actual hadronic τ leptons and faking electrons. Table
6.3 gives the percentage of faking electrons before and after the electron likelihood veto cut
for both same sign and opposite sign events. With the veto in place, the contamination from
electron events is reduced to less than 1% of the entire sample. While this is much smaller
than the error attributed to charge misreconstruction, faking electrons must still be taken into
account.

Cut Electron Same Sign [%] Electron Opposite Sign [%]

No Electron Veto 14.74+0.39
−0.39 11.2+1.6

−1.5

Electron Veto(τh) > 0 0.66+0.11
−0.10 1.07+0.76

−0.51

Table 6.3: Cut flow for electron rejection and corresponding same/opposite sign event precen-
tages using only the signal Monte Carlo sample described in Appendix A.
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Figure 6.2: Percent of matched hadronic τ lepton candidates with correct charge is given in
(a). Electron likelihood veto for reconstructed hadronic τ lepton candidates passing the first
cut of Table 6.2 matched against generator level hadronic τ leptons (blue) and generator level
electrons (red) is given in (b). The distributions of (b) were normalized to an integral of one.

6.1.5 Background Estimation

While the correlation between same sign and opposite sign events should be calculated using an
inclusive sample, such a sample was not available at the time of writing, and so only a bb̄ sample
as described in Appendix A was used. Using the first two cuts of Table 6.2 and the second cut
of Table 6.3, opposite sign to same sign ratios were found. The ratio of opposite sign to same
sign background events for the bb̄ could be dependent upon pT of the event, but as only a small
background sample was available distributions for this ratio could not be made with respect to
pT . Integrating over all pT available within the background sample an opposite sign to same
sign ratio of 1.17± 0.12 was found.

6.1.6 Results

The integrated efficiency from the distribution of Figure 6.1 is 94.46 ± 0.11%. This efficiency
now needs to be scaled with respect to the pT distribution of opposite sign signal events. While
such a distribution is not available from data, it can be modeled relatively well by Monte Carlo.
The left plot of Figure 6.3 shows the probability density function of reconstructed muons using
the first two cuts of Table 6.2 and the last cut of Table 6.3. This distribution is then multiplied
by the efficiency plot of Figure 6.1 to obtain the right plot of Figure 6.3. This distribution is
integrated over to obtain the properly adjust efficiency which is 90.07 ± 0.11%. The error on
this adjusted efficiency only takes into account statistics of the Monte Carlo without considering
systematic uncertainty.

Using Equation 6.3 the hadronic τ lepton identification efficiency can be calculated to be
ετ = 17.3 ± 2.1% using the numbers from Table 6.4. Note that the error here is only from
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Variable Value

NOS 5574 events
NSS 379 events
f 1.17± 0.12
εµ 90.01± 0.11
LintσZ→µτh 32990 events

Table 6.4: Values for the variables of Equation 6.3 using the Monte Carlo samples described
in Appendix A and normalized to an integrated luminosity of 200 pb−1, the expected data after
the 2009− 2010 data run [82].

statistical uncertainty due to the Monte Carlo size. Due to the lack of statistics in the available
samples the numbers of Table 6.4 were calculated using the same Monte Carlo samples used
for estimating f and εµ. As such, there is direct agreemant between the efficiency measured
using Equation 6.3 and the actual efficiency measured from Monte Carlo. For a more detailed
analysis on possible error estimation, Reference [78] provides an excellent resource. The leading
systematic error term however is from calorimetery scale uncertainty and is estimated to be on
the order of ≈ 8%.

6.2 Efficiency Versus pT

While obtaining an overall efficiency for hadronic τ lepton reconstruction is important, it is also
important to parameterize the efficiency as a function of pT (and η) for the hadronic τ lepton.
Determining this efficiency distribution however, is even more challenging than determining
total efficiency. If the pT distribution of muons from τ leptons was the same as for the visible
product of hadronic τ lepton decays, calculating an efficiency with respect to pT would just
require implementing a method similar to a total efficiency calculation, but with large statistics
and taking pT into account. However, the muon and hadronic τ lepton efficiencies are not
the same as can be seen in Figure 6.4. Here the pT probability density functions are plotted
for the decay products of Z → µτh events. The following section briefly explores the physics
behind momentum shift and methods by which an efficiency distribution for hadronic τ lepton
identification can be made with respect to pT .

6.2.1 Momentum Shift

The shift of the expected values from the probability density functions of Figure 6.4 are under-
stood by taking into account that a τ lepton decay into a muon, muon neutrino, and τ lepton
neutrino is a three-body decay, while hadronic τ lepton decays are a variety of N -body decays.
The decay channels for the τ lepton have been measured to a relatively high precision, and so
the calculation of the difference between the expected transverse momentum fraction carried by
the muon, or visible hadronic decay products with respect to the total τ lepton pT , can be cal-
culated directly from theory. This calculation however is somewhat involved, and so calculating
expected values from a large amount of Monte Carlo generator level information is simpler. The
Monte Carlo results are approximated using probability theory to give the reader an intuitive
feel for the underlying physics.
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Figure 6.3: The Monte Carlo pT probability density function for reconstructed muons from a
Z → µτh event is given by (a). The distribution is adjusted by multiplying (a) by the efficiency
of Figure 6.1 to obtain (b). The integral of this distrution yields the adjusted efficiency for muon
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This problem is similar to the two-body decay discussed earlier in Section 4.3, but now must
be done for N -body decays. For the case of a two-body decay it is clear from intuition that the
expected energy of each of the two decay products must be half the energy of the parent. This
is achieved by allowing the probability density function for either decay child to be represented
by a uniform distribution as given in Equation 6.4 where x is the energy of the decay child and
E is the energy of the parent.

f2(x) =
1
E

(6.4)

Such a uniform distribution is properly normalized,
∫ E
0 = 1, and the expected energy for either

decay product is E/2,
∫ E
0 xf2(x) dx = E/2.

Expanding to a three-body decay a similar approach can be taken. Notice that if the energy of
two of the three decay products is chosen, the third value is uniquely determined. Keeping this
in mind the probability density function for the energy of a decay product from a three-body
decay can be written as is done in Equation 6.5. Here the probability of finding a particle with
energy x is still given by the uniform distribution. However, this probability must be multiplied
by the probability that the second particle has an energy less than x, which is just one less the
cumulative probability distribution up to the value x. Finally, this quantity must be multiplied
by two to take into account the available permutations.

f3(x) = 2
(

1
E

)(
1− x

E

)
(6.5)

Notice that the distribution is still normalized,
∫ E
0 f3(x) dx = 1 and the expectation value is

E/3,
∫ E
0 xf3(x) dx = E/3. By generalizing the reasoning used for the three-body decay, it is

possible to write the energy probability density function for a product of an N -body decay. The
uniform distribution is still used, but now is multiplied N − 2 times by 1− x/E. Furthermore,
the permutation factor N −1 must be taken account. Combining these together yields Equation
6.6.

fN (x) =
N − 1
E

(
1− x

E

)N−2
(6.6)

Applying this to a pT distribution now requires that the mass of the decay products is taken
into account. Once this is done, the probability density function for E can be transformed to
the variable pT as the relation between the two variables, m2 = E2

T − p2
T is known and ET , just

as E, must be conserved. However, when calculating the expected value for the pT carried by
a muon from a τ lepton decay with pT > 1 GeV the mass of the muon can be neglected for a
simple approximation. As such, the expected pT is just given by Equation 6.5 which yields pT /3
where pT is the transverse momentum of the parent τ lepton.

For the case of a hadronic decay the approximation that the constituents are massless is less
accurate, but still yields a reasonable result, especially for high pT . Consider now the expected
pT of the τ lepton neutrino in a hadronic decay; the probability density function for the hadronic
portion of the τ lepton is then just the normalized inverse of the τ lepton neutrino probability
density function.

However, the τ lepton can decay through a variety of hadronic channels. What is important
is the number of final decay products and the probability of that specific decay occurring. Table
6.5 shows a breakdown of the N -body decay percentages for one prong and three prong hadronic
τ lepton decays normalized such that the total is one.
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6 Tau Lepton Efficiency in Data

N -bodies one prong three prong
2 0.18 0
3 0.41 0
4 0.15 0.16
5 0.02 0.08

Table 6.5: Table demonstrating the number of decay products for one and three prong hadronic
τ lepton decays [18].
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Figure 6.5: Probability density functions for the pT of a muon from a τ lepton (a), and the
visible hadronic portion of a τ lepton (b) with approximate theory given in black and Monte
Carlo simulation given in red.

The approximate expectation value for the τ lepton neutrino pT is given by Equation 6.7.〈
pT (ντ )

〉
≈
∫ pT (τ)

0
x
(

0.18f2(x) + 0.41f3(x) + 0.31f4(x) + 0.10f5(x)
)
dx

= pT (τ)
(

0.18
2

+
0.41

3
+

0.31
4

+
0.10

5

)
= 0.32pT (τ)

(6.7)

From Equation 6.7 the expected value for the visible hadronic portion of the decay is pT (1−0.32)
or 0.68pT . Using generator level Monte Carlo which does take into account mass effects, an
expected pT fraction for the visible portion of hadronic τ leptons was found to be 0.63pT . For
τ lepton decays to muons, an expected momentum fraction of 0.36pT was found in comparison
to the approximate theoretical value of 0.33pT . The approximate probability density functions
for both the muon and the visible portion of a hadronic τ lepton decay are given in Figure 6.5
along with with the distribution obtained from Monte Carlo.

Notice that the expected momentum fractions calculated describe the shift of expected val-
ues of the probability distribution functions of Figure 6.4 very well, but do not describe the
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6.2 Efficiency Versus pT

shift in distribution shape. To understand the change in the shape of the distribution further
investigation of theory and Monte Carlo is required.

6.2.2 Methods

A variety of methods do exist by which the hadronic τ lepton efficiency can be calculated with
respect to pT . However, all of these methods rely heavily on Monte Carlo, and subsequently the
ability of the Monte Carlo to describe real data. The most apparent of these methods is fine
tune the Monte Carlo with respect to Z production using Z → µµ data. The total hadronic
τ lepton efficiency can then be determined using the method of Section 6.1.1. The exact same
cuts can be applied to Monte Carlo and the entire distribution is normalized such that the total
efficiency between data and Monte Carlo match.

Another method is to continue the study from the previous section and accurately model the
shift of the muon and hadronic τ lepton pT distributions for the Z → µτh processes. Using a
technique similar to the total efficiency method of 6.1.1 a distribution for only signal muons
and visible hadronic τ leptons can be obtained with respect to pT . The muon distribution
can be corrected with respect to efficiency and then subsequently shifted to match the visible
hadronic τ lepton distribution; dividing the two histograms provides an efficiency distribution
for the hadronic τ leptons with respect to pT . Note that this method requires that not only the
distribution shift can be modeled accurately but that clean signal muon and visible hadronic τ
lepton distributions with respect to pT can be obtained from data.

A final method which is currently being explored by ATLAS is embedding techniques [83].
Here Z → µµ events are selected from data. The muons from the selected events are removed
and replaced with a Monte Carlo τ lepton and its subsequent decay products. The event is
reconstructed using the embedded τ and the efficiency can then be calculated from the embedded
events. This method is possible as Z → µµ and Z → ττ events are kinematically identical, and
the decay of the τ lepton can be well modeled using Monte Carlo. Current methods within
ATLAS draw a cone around the muon and the reconstructed level and remove all tracks and
calorimetry information from this cone. A simulated reconstructed τ lepton is then placed into
this cone.

This method as it is in development, would not provide an accurate method by which to
calculate efficiencies. However, methods being explored in CMS work directly with the raw
digitized data files. Hits attributed only to the muon in the detectors are removed and then the
simulated hits, attributed only to the τ lepton are overlayed. This method treats the event much
more consistently and could provide an excellent method to determine efficiencies with further
investigation. All of the above methods rely heavily upon Monte Carlo and require excellent
agreement between Monte Carlo and data to be used effectively.
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7 Conclusion

Hadronic τ lepton reconstruction and identification as can be seen from this thesis, is not a
simple and straight forward task, but requires many subtleties for proper identification. In
Chapter 4 both a signal cone parameterized with respect to ET and an alternate definition of
the isolation cone were explored. It was found that while CDF and CMS both use shrinking
signal cones, such a definition at ATLAS is not prudent as it decreases efficiency, especially in a
critical pT region while maintaining the fake rate. Additionally, while the shape of the isolation
cone can be changed, this in general does not provide any significant increase in efficiency or
decrease in fakerate. This is because the space surrounding a hadronic τ lepton from a Z decay
is very clean, and it is merely the absolute area of the cone that makes a difference.

Currently ATLAS has very robust methods for identifying hadronic τ leptons as is demon-
strated in Chapter 5. The general variables outlined each provide a weak handle on separating
hadronic τ leptons from background, but when combined using multivariate techniques, are
able to provide significant discriminating power. It was found that using artificial neural nets
provides the best separation between signal and background, while likelihoods provide adequate
separation but with a simpler method. Boosted decision trees were also explored, and while their
separation of signal and background was found to be worse than both ANN’s and likelihoods,
further investigation is merited.

In Chapter 6 a method for determining total hadronic τ efficiency from data was demon-
strated. While further studies need to be made, the demonstration that the scale factor f
cannot be naively assumed to be 1 along with the adjusting of εµ with respect to the pT distri-
bution of the measured muons are important steps in the right direction. It is clear that charge
misreconstruction needs to be studied further as this will play an important role in uncertainty
calculations. Additional methods for obtaining efficiency distributions with respect to η and pT
are also important, and while various methods were briefly proposed, more detailed studies need
to be made.

As seen from Chapter 2 the τ lepton is critical not only for validation of SM processes but
in searches for new physics. It is important that the methods used for reconstruction and
identification of τ leptons are continually studied as they will provide insights and methods that
can be used throughout the ATLAS experiment.
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A Monte Carlo Samples

The specific samples used for this thesis are given in Table A.1. The definitions of tags listed
in the dataset names of Table A.1 are given in Tables A.5 and A.4. The tag letter g designates
a specific generator definition while r specifies a reconstruction definition and s a simulation
definition. For consistency the samples used all were reconstructed using tag r541 performed
by Athena 14.2.20.3 with geometry configuration ATLAS-GEO-02-01-00.

Process Dataset
Z → ττ mc08.106052.PythiaZtautau.recon.AOD.e347 s462 r541
Z → µµ mc08.106051.PythiaZmumu 1Lepton.recon.AOD.e347 s462 r541
QCD bb̄ mc08.108405.PythiaB bbmu15X.recon.AOD.e347 s462 r541
QCD Dijet mc08.105009.J0 pythia jetjet.recon.AOD.e344 s478 r541

mc08.105010.J1 pythia jetjet.recon.AOD.e344 s479 r541
mc08.105011.J2 pythia jetjet.recon.AOD.e344 s479 r541
mc08.105012.J3 pythia jetjet.recon.AOD.e344 s479 r541

Table A.1: Monte Carlo samples used for this thesis. Hyperlinks provide the PANDA monitor
entry.

Two event generators were used for the samples. The Z → ττ sample was generated using
MC@NL0 3.1 [79] with a 10 TeV center of mass energy. The QCD dijet samples, QCD bb̄ sample,
and Z → µµ sample were generated using Pythia 6.4 [84], also at a 10 TeV center of mass energy.
No pile up was considered in the samples. Simulation of the detector was done using a variety of
definitions, however all definitions used the same simulator and detector geometry configuration.
The simulator used was GEANT 4 [85].

The cross sections for each sample are given in Table A.3. Note that the full number of events
was not used for the efficiency and fakerate studies, as the full number of events for each given
cross section had not been fully generated at the time this paper was written. The cross sections
were calculated using MCFM [86]. The QCD dijet samples J0 through J3 each correspond to
a given transverse momentum range designated in Table A.2. As discussed earlier, the cross
section for low momentum dijet events is very high, while it tapers significantly for higher pT
and is of critical importance when considering optimization for reconstruction and identification
algorithms.
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A Monte Carlo Samples

Name pT Range [GeV]

J0 8− 17
J1 17− 35
J2 35− 70
J3 70− 140

Table A.2: Transverse montum bins for the QCD dijet samples.

Proccess Cross Section [pb] Events Events Used

Z → ττ 1368.86 2× 105 194184
Z → µµ 1143.96 5× 106 31506
QCD bb̄ 8.85× 104 5× 104 43960
QCD J0 1.170× 1010 4× 105 5000
QCD J1 8.668× 108 4× 105 179442
QCD J2 5.601× 107 4× 105 70181
QCD J3 3.280× 106 4× 105 23351

Table A.3: Cross sections for the samples used along with number of events corresponding to
the given cross section. The final column gives number of events used for efficiency and fakerate
calculations.

Tag Date Description Definition
r541 2008.09.19 reconstruction

tag
transfromation=csc digi trf.py,csc reco trf.py
transfromation version=14.2.20.3
AddCaloDigi=False
ConditionsTag=OFLCOND-SIM-00-00-03
DBRelease=5.9.1
DigiRndmSvc=AtRanluxGenSvc
Geometry=ATLAS-GEO-02-01-00
JobConfig=NONE
NoiseControl=NONE
SamplingFractionDbTag=QGSP BERT
TriggerConfig=lumi1E31 no Bphysics no prescale
beamGasHits=NONE
beamHaloHits=NONE
cavernHits=NONE
minbiasHits;ConditionsTag=NONE;OFLCOND-SIM-00-00-
03
DBRelease=5.9.1
Geometry=ATLAS-GEO-02-01-00
JobConfig=SetJetConstants-02-000.py
TriggerConfig=lumi1E31 no Bphysics no prescale
formats=RDO.AOD.ESD.NTUP
cpu per event=800
memory=2000
priority =400
events per job=250

Table A.4: Reconstruction tag for samples used with detailed definition, creation date, and
hyperlink to ATLAS production group page.
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Tag Date Description Definition
e344 2008.07.04 event

generator tag
transfromation=csc evgen08 trf.py
transfromation version=14.2.0.1
Input file base=None
SeedOffset=0
formats=EVNT
cpu per event=30
memory=1000
priority =300
events per job=5000

e347 2008.07.21 event
generator tag

transfromation=csc evgen08 trf.py
transfromation version=14.2.0.2
Input file base=None
SeedOffset=0
formats=EVNT
cpu per event=30
memory=1000
priority =300
events per job=5000

s462 2008.07.29 simulation tag transfromation=csc atlasG4 trf.py
transfromation version=14.2.10.1
ConditionsTag=NONE
DBRelease=5.5.1
Geometry=ATLAS-GEO-02-01-00
JobConfig=VertexPos.py
PhysicsList=QGSP BERT
formats=HITS
cpu per event=1200
memory=2000
priority =100
events per job=25

s478 2008.09.29 simulation tag transfromation=csc atlasG4 trf.py
transfromation version=14.2.10.1
ConditionsTag=NONE
DBRelease=5.5.1
Geometry=ATLAS-GEO-02-01-00
JobConfig=VertexPosTilted.py
PhysicsList=QGSP BERT
formats=HITS
cpu per event=1200
memory=2000
priority =100
events per job=25

s479 2008.10.01 simulation tag transfromation=csc atlasG4 trf.py
transfromation version=14.2.10.1
ConditionsTag=NONE
DBRelease=5.5.1
Geometry=ATLAS-GEO-02-01-00
JobConfig=VertexPos.py CalHits.py
PhysicsList=QGSP BERT
formats=HITS
cpu per event=1200
memory=2000
priority =100
events per job=25

Table A.5: Simulation and generator tags for samples used with detailed definition, creation
date, and hyperlink to ATLAS production group page for each tag.
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B Method for Assigning Errors

When performing efficiency and fakerate studies on Monte Carlo, the error assignment is not a
simple task, as many approaches may be taken. Primarily, two issues must be resolved. The
first issue is by which mathematical method should the error be calculated. Should standard
Poisson or binomial errors be assigned or should another method be used? The second issue at
hand is what the error should represent. Should the error be directly correlated to the number
of events used in the study, or should it rather represent the error expected in real data?

Oftentimes the first issue is ignored, as at first glance it would appear that binomial error
should be used, or in the case of a large number of events substituted with Poisson error for
simplicity. However, as is fully discussed in Reference [87], and upon which this discussion is
based, both these methods produce unphysical edge effects. Let Nrec define the number of events
passing a specific criteria, in this case properly reconstructed and identified τ leptons and Ngen

the total number of generated τ leptons or generated jets, in the case of the background.
The binomial distribution represents discrete independent events with a yes or no outcome,

and would appear to be perfectly suited for the calculation of efficiency and fakerate errors. The
expected value for 〈Nrec〉 is εtNgen where εt is the “true” efficiency. As the true efficiency is
not available this is replaced with the measured efficiency and so the estimated binomial error
is the error on the quantity Nrec divided by Ngen. The error on Nrec is just the square root of
the variance, and so the error on the efficiency (or fakerate) is given by Equation B.1.

σε =

√
Nrec(1− ε)
Ngen

(B.1)

This measurement for the error breaks down for the cases of Nrec = 0, Ngen. In both cases from
the form of Equation B.1 it can be seen that the calculated error is σε = 0. An error assignment
of zero is of course unreasonable, as a measurement cannot be made with absolute certainty.
While the error assignments for all other values of Nrec are reasonable, these exceptions are
crucial. In nearly all efficiency plots within this thesis with respect to pT , Nrec equals Ngen for
high pT bins. Similarly in the fakerate plots, Nrec equals 0 for low pT bins. In neither case is
the uncertainty on these measurements zero, and as such, binomial error assignment using the
method described above is invalid.

Poisson error is often used instead of binomial error as the binomial distribution approaches
the Poisson distribution for large numbers. The error for Nrec is then just

√
Nrec and the same

applies for Ngen. Using standard propagation of error the error on the efficiency or fakerate is
then given by Equation B.2.

σε =
(
N2

rec (Nrec +Ngen)
Ngen

)1/2

(B.2)

Again the same problem as for the binomial error occurs for Nrec = 0, the error is also equal
to zero. For the case of Nrec = Ngen the problem of no uncertainty no longer occurs. However, a
new problem arises; the error distribution extends beyond one, and in some cases, even beyond
zero. This clearly makes no sense, as an efficiency, and its subsequent error must remain within
the interval of [0, 1]. As such, assigning error using the Poisson method is also less than desirable.
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B Method for Assigning Errors

Returning to the binomial distribution, as this distribution does accurately model the events
being studied for efficiency and fakerate calculations, the probability of observing Nrec given εt
and Ngen is given by Equation B.3.

P (Nrec|εt, Ngen) =
(

Ngen!
Nrec! (Ngen −Nrec)

)
εNrec
t (1− εt)Ngen−Nrec (B.3)

Using Baye’s theorem [88], this probability can be rewritten for εt as is done in Equation B.4
where Γ(x) =

∫∞
0 yx−1e−y dy and assuming the efficiency must fall within the range [0, 1].

P (εt|Nrec, Ngen) =
(

Γ (Ngen)
Γ (Nrec + 1) Γ (Ngen −Nrec + 1)

)
εNrec(1− ε)Ngen−Nrec (B.4)

The error for the efficiency is then defined as the shortest interval from εa to εb on the
probability distribution function defined by Equation B.4 such that the integral of this interval
is one standard deviation of Gaussian error. In other words, minimize the function εb− εa given
that Equation B.5 holds true.∫ εb

εa

P (ε|Nrec, Ngen) dε = erf
(

1√
2

)
(B.5)

The solution of this minimization problem is non-trivial analytically, and so is performed
numerically. The full implementation is performed using the BayesDivide routine implemented
in ROOT. When the PDF’s for Equation B.4 are plotted it can be seen that the shortcomings of
the two previous methods discussed are overcome. Additionally, it is important to note that the
error bars are not symmetric as the distribution is not necessarily centered around the value of ε.
All efficiency and fakerate plots contained within this thesis use the above method to calculate
errors.

While the mathematical method by which the error should be calculated has been demon-
strated, what the errors represent has not yet been explained. While it is at times beneficial
to demonstrate error with respect to what real data would look like, this is in general not the
case for optimization studies of Monte Carlo. As such, the error for all calculated efficiencies is
directly proportional to the number of events within the signal Monte Carlo sample used. For
the case of the fakerates the situation becomes slightly more complex as now the background is
split into four samples as explained in Appendix A.

Ideally this should not cause a problem when the fakerate is plotted with respect to pT as
the pT of each generated jet should fall within its specific sample binning. This is not the case
however, as the generator level reconstruction of jets does not match the Pythia generation of
the jets and as such there is overlap between the samples. Normalizing all the samples with
respect to their cross sections is one solution to this, but the error no longer represents the
statistical uncertainty due to the size of the Monte Carlo sample. Additionally, due to the
distinct differences in cross sections between the pT bins it was found that any fakerate behavior
in the high pT region would be washed out. To provide an accurate representation of the actual
error within the study the samples were added together without scaling for distributions with
respect to pT . For distributions with respect to η and φ the samples were normalized such that
the number of events in the Monte Carlo sample with the largest cross section was maintained.
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C Analysis Framework

The ATLAS analysis and reconstruction framework ATHENA is a derivative of the GAUDI
framework developed initially for LHC-b but extended as a common framework between various
physics experiments [89]. The primary code base of ATHENA is developed in C++ and is
managed through the Configuration Management Tool (CMT) [90] which is intended to give
the framework a highly modularized structure. CMT configures the files necessary to build
packages, while the compiled code itself is run through Python wrappers to provide additional
job options for individual runs.

The ATHENA reconstructed event model is broken into three levels of data containers: Event
Summary Data (ESD), Analysis Object Data (AOD), and Derived Physics Data (DPD) [91]. The
ESD is the most detailed of the containers with information that is often not necessary for most
physics analyses. The AOD is less detailed but still contains nearly all relevant information
necessary for a physics analysis. The DPD is highly specific to various work groups and no
common format is currently used between groups. Both the ESD and AOD are only accessible
through the ATHENA framework, while DPD’s may be accessed through ROOT.

While the theory behind the ATHENA framework and data model is sound, the implemen-
tation is less than ideal. A decentralized development environment with no quality assurance
or testing, lack of documentation, and lack of coordination has led to an analysis system that
is oftentimes unusable. An example of this is compiling the standard “hello world” analysis
skeleton outlined in various ATHENA tutorials. Using a standard installation of ATHENA
14.2.21, compile time (using the BASH time command) took 2 minutes and 55 seconds with the
compiled code being linked to 156 libraries. Upon subsequent recompiles the behavior remained
similar.

For performing a physics analysis such a compile time is unacceptable as turn around time
for code development now is limited primarily by the long compile times. Ideally, for an agile
development cycle a compile time on the order of seconds, and certainly not on the order of
minutes, is necessary. This issue should be addressed directly by developing the configuration
tool such that compilation and linking is done intelligently using a minimal number of recompiles
and linkages. Unfortunately such a task was not within the scope of this project and so other
methods were used to overcome these difficulties.

As this problem is common within ATLAS, the DPD was developed to allow for external
analysis of data using only ROOT libraries. The DPD is written as a ROOT ntuple with
all variables accessible using only ROOT libraries. However, current DPD’s are written as
flat ntuples, requiring rewriting of analysis code every time a variable is added to the ntuple
structure. A flat format also leads to a highly complicated and non-intuitive interface for the
user with variables for individual objects being spread over a variety of branches. Additionally,
reading variables from a flat ntuple into a structured object for analysis is not good coding
practice when the ntuple can contain these objects itself.

However, loading user written libraries into ATHENA such that structured ntuples can be
written is a non-trivial task. Structured ntuples have been created using ATHENA, but currently
are not in widespread use as the difficulties of properly loading definitions into ROOT is a
hindrance for the end user. Ideally a structure needs to be available such that the end user can
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C Analysis Framework

simply access the ntuple in ROOT directly with no additional configuration on their part.
To accomplish this, an analysis skeleton was written during the writing of this thesis that,

while far from perfect, does address many of the issues above. The framework consists of three
components: an ntuple maker that runs directly through ATHENA and needs only be modified
on occasion, an object library of structured physics objects such as muons, etc., and an analysis
frame that can read the ntuple created by the ntuple maker.

The object library provides classes for τ leptons, muons, electrons, jets, tracks, missing energy,
and generator level particles. All classes derive from a base particle class which consists of a basic
four momentum vector and an assigned charge. The base class has all the methods available
to the TLorentzVector class in ROOT, but in a standardized and documented fashion. The
derived classes have the standard addition and subtraction operators defined and downcast to
the base particle when added or subtracted to the other available classes.

Two constructors are provided for each class besides the base constructor. The first construc-
tor accepts the arguments individually, for example:

p a r t i c l e ∗example = new p a r t i c l e (double E, double PX, double PY,
double PZ, double CHARGE)

while the second constructor accepts as an argument two vectors of doubles.

tau ∗example = new tau ( vector<double> FOURMOMENTUM,
vector<double> ADDITIONALINFO)

A full example of the header file for the generator level particle class is given in Listing C.1 and
demonstrates some of the specialized methods available to the derived classes.

The second constructor is designed specifically to read objects created by the ntuple maker.
In general, any physics object can be represented by two vectors of doubles. The first vector
provides the basic kinematic information for that object, the four momentum vector and charge.
The second vector carries additional information regarding the specifics of that object. For
generator level particles two additional vectors are required as can be seen from Listing C.1.
The first vector provides the barcodes of parent particles while the second provides the barcodes
of child particles. Technically only one of these vectors is needed, but by providing both, a
significant speedup occurs when searching for children or parents of a particle.

By using vectors of doubles the structure of the ntuple created remains the same, even when
more information needs to be added to the ntuple. Additional information for an object can be
simply pushed back into the additional information vector, while keeping the structure of the
ntuple the same. A simple modification to the constructor of the specific class and the informa-
tion is available within the analysis framework. Backwards compatibility can be maintained in
a fully automated fashion by adding a version tag to the ntuple that is automatically read by
the constructor. This even allows for the sharing of ntuples between various work groups with
a specific tag given for each specialized ntuple. Most importantly, no additional configuration
of ROOT is required as vectors are supported directly.

The ntuple maker writes structured ntuples directly to this format which are then read by
the analyzer. The analyzer links to the specific object libraries discussed above, and for each
event writes all the objects to a vector of the corresponding class for the object. As the libraries
are small, compile time is fast (less than a second) and analysis is simple using the structured
classes. The analyzer can be modularized by specific methods, and an options class allows for a
job options file to be read which switches on and off components of the analyzer.

This three part analysis framework provides several advantages over the current methods
being employed at ATLAS.
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• Development cycle is fast and on the order of seconds rather than minutes.

• Code is structured with physics objects so that common code is reused, and done properly,
once.

• Ntuples are structured, but in such a way that additional configuration of ATHENA and
ROOT is not required.

• Ntuple tree format does not change with the addition of variables.

• Ntuples and code can be shared between groups with an underlying base.

• Versions of ntuples can automatically be accounted for using specific tags, and the con-
structors can adjust accordingly.

Ideally, however, the problem of the ATHENA framework should be solved by a consolida-
tion and rewriting of code done by professional software developers using a realistic software
development cycle. Until then, the method described above provides an adequate alternative
for small scale analysis.
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C Analysis Framework

Listing C.1: Header file for the generator level particle class used in the writing of this thesis.
class generated : public p a r t i c l e
{
protected :

// v a r i a b l e s
int pdgid ;
int barcode ;
int s t a t u s ;
vector<int> parents ;
vector<int> c h i l d r e n ;

public :
// methods
int PdgId ( ) ;
int Barcode ( ) ;
int Status ( ) ;
vector<int> Parents ( ) ;
vector<int> Chi ldren ( ) ;
void SetPdgId ( int PDGID) ;
void SetBarcode ( int BARCODE) ;
void SetStatus ( int STATUS) ;
void SetParents ( vector<int> PARENTS) ;
void SetChi ldren ( vector<int> CHILDREN) ;
int NumberOfParents ( ) ;
int NumberOfChildren ( ) ;
void ReturnParents ( vector<generated∗> ∗OUT, vector<generated∗> ∗DATA) ;
void ReturnChildren ( vector<generated∗> ∗OUT, vector<generated∗> ∗DATA) ;
void ReturnAl lChi ldren ( vector<generated∗> ∗OUT, vector<generated∗> ∗DATA) ;
void ReturnFinalChi ldren ( vector<generated∗> ∗OUT, vector<generated∗> ∗DATA) ;
bool HasParent ( int PDGID, int STATUS, vector<generated∗> ∗DATA) ;
bool HasChild ( int PDGID, int STATUS, vector<generated∗> ∗DATA) ;
// c o n s t r u c t o r s
generated ( ) ;
generated (double E, double PX, double PY, double PZ, double CHARGE,

int PDGID, int BARCODE, int STATUS, vector<int> PARENTS,
vector<int> CHILDREN) ;

generated ( vector<double> A, vector<double> B, vector<int> C,
vector<int> D) ;

// d e s t r u c t o r
˜ generated ( ) ;

} ;
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Calculations

All SM and MSSM Higgs boson decay widths of Figures 2.4 and 2.5 were calculated using HDECAY
[25] which is available from Michael Spira at http://people.web.psi.ch/spira/proglist.
html. An Octave [92] wrapper was written for the compiled FORTRAN code to allow for simple
and fast analysis and plotting of the returned decay widths. This code is available upon request
by emailing Philip Ilten at philten@gmail.com. For the MSSM model the parameters were
adjusted to reflect the mmax

h0 scenario as outlined in Reference [27]. The relevant parameters are
given in Table D.1. The input file hdecay.in used is given in Listing D.1.

Parameter Value Parameter Value

mt 174.3 GeV MSUSY 1 TeV
µ 200 GeV M2 200 GeV
XOS
t 2MSUSY XMS

t

√
6MSUSY

Ab At Mg̃ 0.8MSUSY

Table D.1: Parameters for the mmax
h0 MSSM benchmark scenario [27].

The cross sections of Figures 2.4 and 2.7 were produced using HIGLU, VV2H, V2HV, and HQQ.
The programs were written by Michael Spira and are available through the website given earlier.
Again an Octave wrapper was written for the above programs to facilitate fast and simple
manipulation of the returned calculations. The MSSM benchmark parameters of Table D.1
were used for all MSSM plots. An example input file for HIGLU is given in Listings D.2 and D.3.
The input files for the remaining programs are similar.

The plots made for both cross sections and decay widths were checked against plots from
Reference [93] to ensure accuracy. Slight deviations exist between the plots of this paper and
the plots of Reference [93] but are most probably due to small differences in calculation methods
and input parameters. An additional check was made using FEYNHIGGS version 2.6.5 [94] which
is available at http://www.feynhiggs.de. An Octave wrapper was also written for FEYNHIGGS
and is available upon request.

Figure D.1 shows the results from using FEYNHIGGS and matches relatively well with the
results obtained from the Spira programs. Masses below MA0 = 100 GeV were not available for
calculation and so the plots range only from 100 to 500 GeV. Additionally, weak boson fusion
calculations were not available for all MSSM Higgs types, while associated W and Z production
calculations were not available for the A0.
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Figure D.1: The equivalent plots of Figure 2.7 but produced using FEYNHIGGS. Weak boson
fusion calculations for all MSSM Higgs types along with associated W and Z production for A0

were not possible with FEYNHIGGS.
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Listing D.1: Input file hdecay.in for calculating decay widths using HDECAY.
SLHAIN = 0
SLHAOUT = 0
HIGGS = XXXXX
MODEL = 1
TGBET = XXXXX
MABEG = XXXXX
MAEND = XXXXX
NMA = XXXXX
ALS(MZ) = 0.118D0
MSBAR(1) = 0.190D0
MC = 1.40D0
MB = 4.60D0
MT = 174.3D0
MTAU = 1.7771D0
MMUON = 0.105658389D0
1/ALPHA = 137.0359895D0
GF = 1.16639D−5
GAMW = 2.080D0
GAMZ = 2.490D0
MZ = 91.187D0
MW = 80.41D0
VUS = 0.2205D0
VCB = 0.04D0
VUB/VCB = 0.08D0
MU = 200 .D0
M2 = 200 .D0
MGLUINO = 800 .D0
MSL1 = 1000 .D0
MER1 = 1000 .D0
MQL1 = 1000 .D0
MUR1 = 1000 .D0
MDR1 = 1000 .D0
MSL = 1000 .D0
MER = 1000 .D0
MSQ = 1000 .D0
MUR = 1000 .D0
MDR = 1000 .D0
AL = 1000 .D0
AU = 1000 .D0
AD = 1000 .D0
NNLO (M) = 0
ON−SHELL = 0
ON−SH−WZ = 0
IPOLE = 0
OFF−SUSY = 1
INDIDEC = 0
NF−GG = 5
IGOLD = 0
MPLANCK = 2.4 D18
MGOLD = 1 .D−13
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Listing D.2: First part of input file higlu.in used for calculating gluon gluon fusion cross
sections using HIGLU.
PROCESS: 0 = GG −−> H 1 = H −−> GG
=======

PROCESS = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COLLIDER: 0 = P P 1 = P PBAR
========

COLLIDER = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TOTAL ENERGY: [TEV]
=============

ENERGY = 14 .D0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MODEL: 0 = SM MSSM: 1 = SUBHPOLE 2 = SUBH
====== 3 = FEYNHIGGSFAST

MODEL = XXXXX
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TAN(BETA) : (MSSM)
==========

TANBETA = XXXXX
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COUPLINGS: G B = BOTTOM G T = TOP
========== (MODEL = 0)

G B = 1 .D0
G T = 1 .D0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
QUARK MASSES: [GEV]
=============

M SB(1) = 0.190D0
M C = 1.40D0
M B = 4.60D0
M T = 174.3D0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
HIGGS TYPE AND MASS [GEV] : 1 = HEAVY SCALAR 2 = PSEUDOSCALAR 3 = LIGHT SCALAR
========================== INDIVIDU = 0 : M HIGGS = M A

TYPE = XXXXX
INDIVIDU = 0
M HIGGS = XXXXX
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SCALES: [GEV] MU = MU 1∗M HIGGS + MU 2 : RENORMALIZATION SCALE
======= Q = Q 1∗M HIGGS + Q 2 : FACTORIZATION SCALE

MU 1 = .2D0
MU 2 = 0 .D0
Q 1 = 1 .D0
Q 2 = 0 .D0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ORDER OF ALPHA S: 1 = LO 2 = NLO
=================

LOOP = 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DEFINITION OF ALPHA S: 1 = ALPHA S (M Z) 2 = BY LAMBDA (N F)
======================

CHOICE = 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ALPHA S (M Z ) :
==============

ALPHA S = 0.118D0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LAMBDA NF: [GEV] (QCD SCALE)
==========

N F = 3
LAMBDA = 0.226D0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Listing D.3: Second part of input file higlu.in used for calculating gluon gluon fusion cross
sections using HIGLU.
NUMBER OF EXTERNAL LIGHT FLAVORS: (FOR H −−> GG)
=================================

N EXT = 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
VEGAS: ABSERR = ABSOLUTE ERROR
====== POINTS = NUMBER OF CALLS

ITMAX = NUMBER OF ITERATIONS
PRINT = PRINT OPTION FOR INTERMEDIATE VEGAS−OUTPUT

0 1 10
NO OUPUT PRETTYPRINT TABLE

ABSERR = 0 .D0
POINTS = 10000
ITMAX = 5
PRINT = 10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
STRUCTURE FUNCTIONS: STFUN: 0 = PDFLIB 1 = GRV NGROUP: −1 = CTEQ6
==================== SCHEME = FACTORIZATION SCHEME: 0 = MSBAR 1 = DIS

STFUN = 0
SET = 2
SCHEME = 0
NGROUP = −1
NSET = 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PARAMETERS: (FOR RAD. CORR. OF SUSY−COUPLINGS)
===========

MZ = Z−MASS [GEV]
MSQ = SQUARK−MASS [GEV]

GF = 1.16639D−5
MZ = 91.187D0
MW = 80.41D0
MGLUINO = 800 .D0
MSQ = 1000.D0
MUR = 1000.D0
MDR = 1000.D0
M2 = 200 .D0
MU = 200.D0
AU = 0 .D0
AD = 0 .D0

107





Bibliography

[1] P. Ilten, A Study of Tau Identification with the CMS Detector at the LHC, Massachusetts
Institute of Technology (June 2008), Bachelor of Science Thesis.

[2] R. Mohapatra and et al, Theory of neutrinos: A white paper, Reports on Progress in
Physics 70 (2007) 1757, hep-ph/0510213.

[3] M. Peskin and V. Schroeder, An Introduction to Quantum Field Theory, Westveiw Press,
8th edn., (1995).

[4] D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2nd edn., (2008).

[5] F. Halzen and A. Martin, Quarks and Leptons: An Intorductory Course in Modern
Particle Physics, Wiley, 1st edn., (1984).

[6] P. Higgs, Broken Symmetries and the mass of gauge bosons, Physical Review Letters
13(16) (October 1964) 508.

[7] R. Feynman and M. Gell-Man, Theory of the Fermi Interaction, Physical Review 109(1)
(January 1957) 193.

[8] S. Weinberg, A Model of Leptons, Physical Review Letters 19(21) (November 1967) 1264.

[9] A. Salam, Weak and electromagnetic interactions, in: Elementary Particle Theory,
Proceedings Of The Nobel Symposium Held 1968 At Lerum, Sweden, Stockholm, (1968),
1968 367–377.

[10] G. ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nulcear Physics
B(35) (July 1971) 167.

[11] H. Georgi and S. Glashow, Unity of All Elementary-Particle Forces, Physical Review
Letters 32(8) (February 1974) 438.

[12] A. Natale and R. Shellard, The gauge heirarchy problem, Journal of Physics G: Nuclear
and Particle Physics 8 (1982) 635.

[13] H. Haber, Supersymmetry, Part I (Theory), Physics Letters B(667) (October 2008) 1.

[14] S. Martin, A Supersymmetry Primer, hep-ph/9709356.

[15] M. Perl and et al, Evidence for Anomalous Lepton Production in e+e− Annihilation,
Physical Review Letters 35(22) (December 1975) 1489.

[16] M. Acciarri and et al, Measurement of the lifetime of the tau lepton, Physics Letters
B(479) (April 2000) 67.

[17] W. Marciano and A. Sirlin, Electroweak Radiative Correction to tau Decay, Physical
Review Letters 61(16) (October 1988) 1815.

109

http://xxx.lanl.gov/abs/hep-ph/0510213
http://xxx.lanl.gov/abs/hep-ph/9709356


Bibliography

[18] M. Yao and et al, Review of Particle Physics, The European Physical Journal B(667)
(2008) 1+.

[19] M. Perl, The tau lepton, Reports on Progress in Physics 55 (1992) 653.

[20] A. Martin, R. Roberts, W. Stirling, and R. Thorne, Parton distributions and the LHC: W
and Z production, European Physical Journal C14 (2000) 133, hep-ph/9907231.

[21] A. Ahmad and et al, Search for the Standard Model Higgs boson via Vector Boson Fusion
production process in the di-tau channels with ATLAS, ATLAS Note
ATL-PHYS-INT(2008-000) (October 2008) 1.

[22] J. Ellis, M. Galliard, and D. Nanopoulos, A Phenomenological Profile of the Higgs Boson,
Nuclear Physics B(106) (November 1975) 292.

[23] W. Lee, C. Quigg, and H. Thacker, Strength of Weak Interactions at Very High Energies
and the Higgs Boson Mass, Physical Review Letters 38(16) (April 1977) 883.

[24] M. Spira and et al, QCD effects in Higgs physics, Fortschritte der Physik 46 (April 1999)
203.

[25] A. Djouadi, J. Kalinowski, and M. Spira, HDECAY: A program for Higgs boson decays in
the standard model and its supersymmetric extension, Computer Physics Communication
108 (1998) 56, hep-ph/9704448.

[26] G. Aad and et al, Expected Performance of the ATLAS Experiment Detector, Trigger and
Physics, ATLAS Note CERN-OPEN(2008-020) (December 2008) 1.

[27] M. Carena, S. Heinemeyer, C. Wagner, and G. Weiglein, Suggestions for benchmark
scenarios for MSSM Higgs boson searches at hadron colliders, European Physical Journal
C26 (2003) 601, hep-ph/0202167.

[28] ATLAS Collaboration, ATLAS Detector and Physics Performance Technical Design
Report, ATLAS Note ATLAS TDR(015) (May 1999) 459.

[29] R. Chierici, Search fo new physics with τs at the LHC, Nuclear Physics B(144) (2004)
349.

[30] C. Hensel, Personal Communication.

[31] O. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock, LHC
Design Report, CERN, Geneva, (2004).

[32] H. Wiedemann, Synchrotron Radiation, Springer, 5th edn., (2003).

[33] C. Kim, A 3-D Touschek Scattering Theory, in: Sixth European Particle Accelerator
Conference, (June 1998), 1998 1–3.

[34] C. Hill, A. Lombardi, R. Scrivens, and M. Vretenar, Test of the CERN LINAC
Performance for LHC-type Beams, in: XX International Linac Conference, (August
2000), 2000 590–592.

[35] K. Reich, The CERN Proton Synchrotron Booster, IEEE Transactions on Nuclear Science
16(3) (June 1969) 959.

110

http://xxx.lanl.gov/abs/hep-ph/9907231
http://xxx.lanl.gov/abs/hep-ph/9704448
http://xxx.lanl.gov/abs/hep-ph/0202167


Bibliography

[36] M. Benedikt and et al, The PS Complex as Proton Pre-Injector for the LHC - Design and
Implementation Report, CERN, Geneva, (2000).

[37] K. Schindl, The Injector Chain for the LHC, in: 9th LEP Performance Workshop in
Chamonix, (1999), 1999 47–52.

[38] G. Aad and et al, The ATLAS Experiment at the CERN Large Hadron Collider, Journal
of Instrumentation 3(S08003) (August 2008) 1.

[39] A. Yamamoto and et al, The ATLAS central solenoid, Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 584(1) (2008) 53.

[40] ATLAS Collaboration, ATLAS Detector and Physics Technical Design Report, ATLAS
Note ATLAS TDR(014) (May 1999) 1.

[41] D. Baynham and et al, Engineerinig Status of the Superconducting End Cap Toroid
Magnets for the ATLAS Experiment at LHC, IEEE Transactions on Applie
Superconductivity 10(2) (March 2000) 357.

[42] M. Aleksa and et al, Measurement of the ATLAS solenoid magnetic field, Journal of
Instrumentation 3(P04003) (April 2008) 1.

[43] G. Aad and et al, ATLAS pixel detector electronics and sensors, Journal of
Instrumentation 3(P07007) (July 2008) 1.

[44] A. Ahmad and et al, The silicon microstrip sensors of the ATLAS semiconductor tracker,
Nuclear Instruments and Methods in Physics Research A(578) (2007) 98.

[45] E. Abat and et al, The ATLAS Transition Radiation Tracker (TRT) proportional drift
tube: design and performance, Journal of Instrumentation 3(P02013) (February 2008) 1.

[46] J. Hostachy, Construction and test results of the ATLAS EM barrel calorimeter and
presampler, Nuclear Physics B - Proceedings Supplements 125 (2003) 112 , Innovative
Particle and Radiation Detectors.

[47] M. Aharrouche and et al, Energy linearity and resolution of the ATLAS electromagnetic
barrel calorimeter in an electron test-beam, Nuclear Instruments and Methods in Physics
Research A(568) (August 2006) 601.

[48] B. Aubert, Construction, assembly and tests of the ATLAS electromagnetic barrel
calorimeter, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 558(2) (2006) 388.

[49] M. Aleksa and et al, Construction, assmebly and test of the ATLAS electromagnetic
end-cap calorimeters, Journal of Instrumentation 3(P06002) (June 2008) 1.

[50] J. Abdallah and et al, Design, Construction and Installation of the ATLAS Hadronic
Barrel Scintillator -Tile Calorimeter, ATLAS Note
ATL-ATL-COM-TILECAL(2007-019) (July 2008) 1.

[51] H. Okawa, Commissioning of the ATLAS tile calorimeter with cosmic ray and single beam
data, ATLAS Note ATL-TILECAL-PROC(2008-002) (November 2008) 1.

111



Bibliography

[52] S. Akhmadaliev and et al, Results from a new combined test of an electromagnetic liquid
argon calorimeter with a hadronic scintillating-tile calorimeter, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 449(3) (2000) 461.

[53] S. Palenstini, The Muon Spectrometer of the ATLAS Experiment, Nuclear Physics
B(125) (2003) 337.

[54] J. Wotschack, ATLAS Muon Chamber Construction Parameters for CSC, MDT, and
RPC chambers, ATLAS Note ATL-MUON-PUB(2008-006) (April 2008) 1.

[55] R. Achenbach, The ATLAS Level-1 Calorimeter Trigger, Journal of Instrumentation
3(P03001) (March 2008) 1.

[56] M. Casado and et al, The ATLAS tau trigger, ATLAS Note
ATL-DAQ-PROC(2008-008) (December 2008) 1.

[57] A. Kalinowski, Tau Lepton Reconstruction and ID with the ATLAS Detector at the LHC,
in: 10th International workshop on Tau Lepton Physics, (September 2008), 2008 1–14.

[58] S. Gennai and et al, Tau jet reconstruction and tagging at High Level Trigger and off-line,
CMS Note 2006(028) (January 2006) 1.

[59] The CDF Collaboration, Search for New Physics with High Mass Tau Pairs in CDF, CDF
Note 7176 (November 2004) 1.

[60] J. Lagarias, J. Reeds, M. Wright, and P. Wright, Convergence Properties of the
Nelder-Mead Simplex Method in Low Dimensions, SIAM Journal on Optimization 9(1)
(December 1998) 112.

[61] A. Nelder and R. Mead, A simplex method for function minimization, The Computer
Journal 7(4) (January 1965) 308.

[62] The Mathworks Inc., Natick, Massachusetts, MATLAB, (January 2007), Version 7.4.0.287
(R2007a).

[63] Z. Czyczula, Tau Physics with First Data in ATLAS, ATLAS Note
ATL-PHYS-PROC(2008-079) (December 2008) 1.

[64] R. Brenner, The ATLAS hadronic tau trigger - performance and early running plans, in:
Prospects For Charged Higgs Discovery At Colliders, (September 2008), 2008 1–24.

[65] B. Gosdzik, Status report on tauID with safe variables, in: ATLAS Tau Meeting,
(December 2008), 2008 1–25.

[66] J. Aldrich, R. A. Fisher and the Making of Maximum Likelihood 1912 - 1922, Statistical
Science 12(3) (August 1997) 162.

[67] K. Benslama and et al, Tau identification using the TauDiscriminant package, ATLAS
Note ATL-COM-PHYS(2008-212) (November 2008) 1.

[68] M. Wolter, Tau identification using multivariate techniques in ATLAS, ATLAS Note
ATL-PHYS-PROC(2009-016) (January 2009) 1.

112



Bibliography

[69] F. Rosenblatt, The Perceptron: A Perceiving and Recognizing Automaton, Project PARA,
Cornell Aeronautical Laboratory Report 85-460-1.

[70] M. Minsky and S. Papert, Perceptrons, An Introduction to Computational Geometry, MIT
Press, (1969).

[71] G. Cybenko, Approximation by Superpositions of a Sigmoidal Function, Mathematics of
Control, Signals, and Systems 2 (1989) 303.

[72] H. Siegelmann and E. Sontag, Turing Computability with Neural Nets, Applied
Mathematics Letters 4 (1991) 77.

[73] A. Zell and et al, Stuttgart Neural Network Simulator, University of Stuttgart and
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