

Lecture series on

Statistical Inverse Problems

by **Prof. B.Mair,** University of Florida (USA)

from June 20th to 6th of July, 2005

1 st Week			
Monday,	20th June	11:15 - 13:00	Transmission Tomography
			 Model (Radon transform), mathematical properties
			 Filtered back projection algorithm (FBP)
Tuesday,	21 st June	14:15 - 16:00	Emission tomography (ET)
			 Medical uses, physics of the process, engineering of scanners
			 Probabilistic model (involves Poisson thinning)
			 Properties of maximum likelihood (ML) estimators
Wednesday,	22 nd June	14:15 - 16:00	Algorithms for computing ML estimators in ET
			– FBP,ART, EM
2 nd Week			
Monday,	27 th June	11:15 - 13:00	Statistical errors in ET data
			 Description of errors (Randoms, scatter, attenuation)
			 Error-correcting methods
Tuesday,	28 th June	14:15 - 16:00	Algorithms for error-correction
			- Penalized ML, or maximum aposteriori (MAP) methods and algo.
			 Wavelet denoising of Poisson data
Wednesday,	29 th June	14:15 - 16:00	Generalization of EM-ML algorithm
			 Generalizes EM-ML algorithm to reconstruction of infinite
			dimensional functions
			 applications to other areas
			 general EM algorithm
<u>3rd Week</u>			
Monday,	4 th July	11:15 - 13:00	Accelerated EMML algorithm
			 Ordered subsets (OSEM)
			 Re-scaled block iterative (RBIEM)
			 Convergence will be investigated
Tuesday,	5 th July	14:15 - 16:00	List-mode ET
Wednesday,	6 th July	14:15 - 16:00	New technologies, challenges
			 Fusion of modalities
			 PET/CT scanners
			 organ/patient motion

Abstract:

Emission tomography is an important method for functional, molecular imaging of living tissue. It can be used to detect abnormalities in cellular activity before there is any observable anatomical change. It is used to identify many forms of cancer, a damaged heart, and many brain disorders. It is based on the metabolism of various naturally occurring chemicals which are tagged with a radio-isotope. As the isotope decays, the emitted photons are detected and numerical algorithms produce an image of the amount of radiotracer at each location. The direct (non-iterative) filtered back projection algorithm has been the mainstay for reconstructing tomographic images since its inception in the seventies. However, due to the variety of applications requiring relatively short imaging times, and the need for accurate quantitative information, modern scanners now incorporate iterative algorithms based on statistical models and methods. The most common iterative algorithms are modifications of the standard expectation maximization algorithm. As a result, we will pay special attention to this method. We will discuss some of the physics motivating the statistical models, convergence characteristics of the algorithms, and indicate interesting open problems in the area.

Location: Seminar room of the IMS, Maschmühlenweg 8 - 10

Further information:

<u>munk@math.uni-goettingen.de</u>

More information about the author:

http://www.math.ufl.edu/~bam/

Institut für Mathematische Stochastik

Maschmühlenweg 8 - 10

37073 Göttingen
Telefon: ++49 551 39-13502/03

Telefax: ++49 551 39-13505

E-mail: stochastik@math.uni-goettingen.de