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Abstract: 

 

This study investigates the Indonesian cocoa production to reveal the possibilities for 

poverty alleviation while considering the threats to environmental sustainability. We estimate, 

based on a large household panel data set and stochastic frontier analysis, the technical 

efficiency of cocoa production and decompose productivity growth. According to our results, 

the productivity of Indonesian cocoa farming increased by 75 percent between 2001 and 2013. 

Technical efficiency growth and the increased chemicals use supported by government 

subsidies were responsible for the majority of this gain. Furthermore, we find large distortions 

in the input allocations. Hence, policies that encourage the adjustment of the cocoa farms’ input 

use would be highly beneficial. Moreover, because of the weather-induced volatility in cocoa 

production, policy makers should also promote investment in agricultural research and transfer 

of drought-resistant cocoa varieties to farmers. Additionally, the average efficiency of cocoa 

farmers is estimated to be around 50 percent. We find that farmers’ educational attainment and 

their experience in cocoa farming are significant factors that can increase the efficiency levels.   
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1. Introduction 

 

1.1 Background 

 

Cocoa, one of the main ingredients of chocolate is primarily cultivated by smallholders 

in developing countries. Most of these producers live below the poverty line and have never 

tasted chocolate (Hütz-Adams and Fountain, 2012). After the Ivory Coast and Ghana, 

Indonesia is the third largest cocoa producer in the world with 10 percent of the global 

production (ICCO, 2016). Nearly 1.5 million Indonesian households depend on cocoa farming 

(ICCO, 2012). On the island of Sulawesi, which accounts for two thirds of Indonesia’s cocoa 

production (Ministry of Agriculture, 2015), 60 percent of cocoa farmers were living below the 

World Bank poverty threshold of 1.90 US dollar per day in 2009 (van Edig et al., 2010).  

 Cocoa is consumed mainly by the developed countries such as the US and Germany 

(21 and 13 percent of the total net imports in 2012). The average chocolate consumption per 

capita in both countries is over 10 kilograms (ICCO, 2012). The global demand for cocoa grew 

steeply over the last 15 years. This growth was primarily due to the Asian and African countries 

(Squicciarini and Swinnen, 2016). The prospect for cocoa demand growth is still high in China 

and India because the average chocolate consumption there is under 1 kilograms per capita 

(ICCO, 2012). However, cocoa growing countries can barely meet this expanding demand due 

to lack of appropriate production procedures and resources (ICCO, 2016). This generated an 

imbalance between the cocoa supply and demand in the global market and, because of their 

low price elasticity (Tothmihaly, 2017), an increase and high volatility in world cocoa prices 

(Onumah et al., 2013b). 

Cocoa demand can be met and the income of cocoa farmers can be improved by 

increasing the cocoa growing area, by increasing input use, or by increasing technical 

efficiency (Onumah et al., 2013b). Both in Indonesia and Africa, most expansion in the cocoa 

cultivation was achieved by the first route (Nkamleu et al., 2010). The increased cocoa prices, 

together with the incentives by government subsidies for the sector, triggered farmers to 

increase cocoa production by raising cultivated land. This led to the conversion of virgin 

tropical forests to cocoa plantations (Teal et al., 2006).  

This procedure usually includes tree felling, slash-and-burning, followed by the 

planting of cocoa and other crop trees (for example, banana) together. The latter trees provide 

shade for the young cocoa plants for two years. After three years, the cocoa trees start to 

produce and until about 10 years after planting, production rises yearly (Dand, 2010). Then, 
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the cocoa yield starts to decrease gradually because of the higher frequency of cocoa diseases, 

erosion, and the decrease of soil nutrients (Smaling and Dixon, 2006). Some 20 years after 

planting, cocoa farmers have to either invest in uprooting, soil improvement, replanting, and 

disease reduction or shift to a new area. In places with low population density, it is easier to 

move the cocoa production than to use the old growing area (Asase et al., 2009). Also, 

replanting is usually more costly for smallholders with regard of intermediate inputs, labor, 

crops risks, and capital demand.  

As a consequence of acreage expansion, cocoa plantations are increasingly intruding 

into the Indonesian rainforest, which is a world biodiversity hotspot hosting a large number of 

endemic species (REDD, 2012).1 In Sulawesi, 80 percent of the rainforests were gone by 2010 

causing, sometimes, irreversible losses of biodiversity (FAO, 2010). Findings from Frimpong 

et al. (2007) show a similar phenomenon in Africa. 

Cocoa production can also be enhanced by increasing the cocoa yield with input 

intensification. Cocoa yields in Indonesia average just above 400 kilograms/hectare. This 

number is much lower than the potential 1500 kilograms/hectare based on the best 

performances of Indonesian cocoa farmers (ICCO, 2012). Various pests (mainly the vascular 

streak dieback and the cocoa pod borer) and the fact that most of the cocoa plants are more 

than 15 years old have contributed to the decline in cocoa yields (Ministry of Agriculture, 

2015). In the face of this situation, the Indonesian Government announced the 3-year, 350-

million US dollar Gernas Pro Kakao revitalization program (KKPOD, 2013) for the cocoa 

industry in 2009. It was established to increase the adoption of pesticides and fertilizers to 

restore soil nutrients and the use of enhanced cocoa seedlings to boost productivity. However, 

the support of intensification and the ensuing increase in cocoa production can cause 

environmental deterioration and raise concerns about biodiversity conservation (Asare, 2005). 

The third method to increase cocoa production is to improve technical efficiency. For 

environmental sustainability, this is the most desirable option. According to the Ministry of 

Agriculture (2015), the main causes of the low productive efficiency in Indonesia are aging 

farmers, aging farms, lack of knowledge, poor farming techniques, and capital problems (high 

bank interests). To tackle these issues, the government introduced a number of measures such 

                                                 
1 Indonesia has only 1.2 percent of the world’s land area. However, its forests host 11 percent of all plant species, 

12 percent of all mammal species, 17 percent of all bird species, 16 percent of all reptile and amphibian species, 

33 percent of all insect species, and 24 percent of all fungi species. In this country, 772 species are threatened or 

endangered, among them 147 mammal species. Moreover, 20 of Indonesia’s 40 primate species have lost more 

than 50 percent of their original habitat in the last ten years, among them orangutans (FAO, 2010). 
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as the formation of agricultural extension services and later the expansion of credit access 

(Ministry of Agriculture, 2015).  

Negating the adverse environmental outcomes of the low productivity systems requires 

large investments from both the private and public sectors. The first important question for 

decision makers is to what extent and how cocoa cultivation can be made more technically 

efficient. The second question is how the proposed measures affect the environment.  

 

1.2 Contribution 

 

Our research investigates the scope for improving the efficiency of Indonesian cocoa 

production as a means of alleviating poverty and fostering environmental sustainability. We 

estimate based on household, agricultural, and environmental surveys and stochastic frontier 

analysis (Coelli et al., 2005), the technical efficiency of production and decompose the total 

factor productivity change. With the results, we aim to determine the magnitude of the 

attainable efficiency increases and the methods that can be used to attain them.  

We extend the previous research on the technical efficiency of cocoa farming. 

Technical efficiency estimations are available for the large producing countries such as Ghana: 

Aneani et al. (2011), Besseah and Kim (2014), Danso-Abbeam et al. (2012), Kyei et al. (2011), 

Nkamleu et al. (2010), Ofori-Bah and Asafu-Adjaye (2011), Onumah et al. (2013a), Onumah 

et al. (2013b) and Nigeria: Adedeji et al. (2011), Agom et al.(2012), Amos (2007), Awotide et 

al. (2015), Nkamleu et al. (2010), Ogundari and Odefadehan (2007), Ogunniyi et al. (2012), 

Oladapo et al. (2012), Oyekale (2012). However, they all use cross-sectional data. With the 

information gain of our panel data, which contains 4 time periods over 13 years, we decompose 

the total factor productivity change and characterize inefficiencies more realistically. We can 

track changes in time and control for omitted and mismeasured variables to produce more 

reliable estimates (Hsiao, 2007). Furthermore, previous cocoa studies analyze the effect of 

shading trees and intercropping only on efficiency and this leads to inconclusive results 

(Besseah and Kim, 2014; Nkamleu et al., 2010; Ofori-Bah and Asafu-Adjaye, 2011). We 

include these variables in the production frontier because we assume that they have a direct 

effect on cocoa production.  

In Indonesia, Effendi et al. (2013) assess the technical efficiency of cocoa smallholders. 

However, additionally to the previous issues, they do not include the Gernas Pro Kakao 

government program in their model and work with just a small sample size of 98. Table A1 

summarizes the estimated average technical efficiencies and the sample sizes in previous cocoa 
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studies. With 1290 observations, our sample size is larger than in any previous study on the 

technical efficiency of cocoa production. 

  Our results can be used to inform policies and practices to sustainably improve yields 

and income, thus reducing deforestation. The estimates could tell us which investments 

produce the highest marginal benefits: for example, improving education, access to financing 

or to extension services, or fostering the formation of farmer groups (Ingram et al., 2014). 

 

2. Methodology 

 

2.1 Stochastic frontier analysis 

 

Efficiency is the capability to maximize outputs given a level of inputs used in the 

production. Debreu (1951) introduced the first concept of creating a production frontier to 

measure efficiency. This has led to two main empirical methods for frontier estimation: the 

deterministic Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier 

Analysis (SFA). We assess efficiency using the parametric method since it can differentiate 

between technical inefficiency and the effects of random shocks (Coelli et al., 2005). It is used 

by various researchers including Brümmer et al. (2006). 

Based on Coelli et al. (2005), we can write the basic frontier model the following 

way:  

ln 𝑦𝑖 = ln 𝑓(𝒙𝒊; 𝛽𝑖) + 𝑣𝑖 − 𝑢𝑖                             (1) 

where 𝑦𝑖 represents the output, 𝑓(𝒙𝒊; 𝛽𝑖) denotes the production function at complete efficiency 

with 𝒙𝒊 as input vectors and 𝛽𝑖 as the parameters to be estimated, vi is a random error term 

independently and identically distributed as 𝑁(0, 𝜎𝑣
2), and ui is a non-negative unobservable 

term assumed to be independently and identically distributed as 𝑁(0, 𝜎𝑢
2) and independent of 

vi. The last component measures the shortfall of the output from its maximum attainable level 

and, therefore, captures the effect of technical inefficiency. In this case, the technical efficiency 

of farm i can be written as  

𝑇𝐸𝑖  =  𝑒𝑥𝑝 (−𝑢𝑖).              (2)

 The parameters of the production function in equation (1) must theoretically satisfy the 

regularity conditions: monotonicity and curvature (Coelli et al., 2005). We specify a translog 

production function. In this function, the inclusion of squared and interaction terms provides a 

high level of flexibility.  
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The extension of our model in equation (1) enables us to measure how household 

characteristics influence efficiency. We choose a specification proposed by Coelli et al. 

(2005), which models the mean of the technical inefficiency (𝜇𝑖) as a function of several 

variables: 

𝜇𝑖 = 𝜑𝑍𝑖 + 𝑒𝑖               (3) 

where 𝑍𝑖 is a vector with farm-specific factors that are assumed to affect efficiency, 𝜑 is a 

vector with the parameters to be estimated, and 𝑒𝑖 is an independent and identically distributed 

random error term. If the estimated parameter is positive, then the corresponding variable has 

a negative influence on technical efficiency.  

 

2.2 Estimation issues 

 

 We have to look at four issues of the statistical inference: the estimation technique of 

the frontier model, the estimation technique of the inefficiency model, the estimation with panel 

data, and endogeneity. 

First, standard techniques such as OLS are inappropriate for estimating the 

unobservable frontier function from observable input and output data because they focus on 

describing average relationships. Therefore, we base the parameters on ML. Before carrying 

out the estimation, each variable is normalized by its sample mean. Given this transformation, 

the first-order coefficients can be viewed as partial production elasticities at the sample mean 

(Coelli et al., 2005).  

Regarding the second inference issue, Greene (2008) points out that researchers often 

incorporate inefficiency effects using two-step estimation techniques. In the first step, the 

production function is specified and the technical inefficiency is predicted. The second step 

regresses the assumed characteristics on the predicted inefficiency values via OLS. This 

approach leads to severely biased results. The issue is addressed by using a simultaneous 

estimation that includes the efficiency effects in the production frontier estimation. 

 With the availability of a large panel dataset, we can characterize inefficiencies more 

realistically. However, panel data also causes some issues in the estimation. The common 

feature of pooled SFA models is that the intercept is the same across productive units, thus 

generating a misspecification bias in presence of unobserved time-invariant variables. As a 

consequence, the inefficiency term may capture the influences of these variables, generating 

biased  results. Greene (2008) approaches this problem with unit-specific intercepts. In contrast 



7 

 

to the pooled model, his true fixed-effect (TFE) and true random-effect (TRE) panel 

specifications allow to differentiate between time-varying inefficiency and unit-specific 

unobservable time-invariant heterogeneity. The TFE model assumes the non-randomness while 

the TRE model the randomness of the unobserved unit-specific heterogeneity.  

The ML estimation of the TFE specification needs the solution of the so-called 

incidental parameters problem. This inferential issue arises when the length of the panel is 

relatively small compared with the number of units, causing the inconsistent estimation of the 

parameters. As shown in Belotti and Ilardi (2012), the dummy variable approach for estimation 

appears to be suitable only when the panel length is large enough (T >10). Our sample is highly 

unbalanced and contains just 5 time periods. The common method to solve this problem is 

based on the elimination of the individual effects through within transformation, i.e., working 

with the deviations from the means. The consistent estimation of the TFE variant is proposed 

by Belotti and Ilardi (2012). However, the disadvantage of these methods is that they do not 

permit the use of time-invariant factors such as gender and education, which we assume are 

significant determinants of inefficiency. In our estimations, we use both the TRE and TFE 

specifications and choose between the two according to the Mundlak (1978) approach. 

 As pointed out by Greene (2008), neither the pooled nor the “true” formulation is 

completely satisfactory. Although the “true” model may appear to be the most flexible 

choice, it can be argued that a portion of the time-invariant unobserved heterogeneity does 

belong to inefficiency or that these two components should not be disentangled at all . 

Therefore, we estimate both extremes: the Coelli et al. (2005) model in which all time-

invariant unobserved heterogeneity is considered as inefficiency and the TRE/TFE 

specification in which all time-invariant unobserved heterogeneity is ruled out from the 

inefficiency component. 

Finally, the direct inference of a stochastic frontier may be susceptible to simultaneity 

bias that occurs if each farmer selects the output and input levels to maximize profit for given 

prices. But no simultaneity bias ensues if farmers maximize expected rather than actual profit 

(Coelli et al., 2005). We make this reasonable assumption meaning that technical efficiency is 

unknown to producers before they make their input decisions. Thus, the quantities of variable 

inputs are largely predetermined and uncorrelated with technical efficiency.  
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2.3 Total factor productivity change 

 

We base our calculations of total factor productivity (TFP) change on Brümmer et al. 

(2006). The TFP change is decomposed into technical efficiency change (TEC), scale 

efficiency change (SEC), allocative efficiency change (AEC), and technical change (TC) to 

control for productivity adjustments connected to these factors: 

𝑇𝐹𝑃𝐶1  =  𝑇𝐸𝐶 +  𝑆𝐸𝐶 +  𝐴𝐸𝐶 +  𝑇𝐶            (4) 

According to Zhu and Lansink (2010), we can disaggregate technical efficiency change 

further:  

𝑇𝐸𝐶 =  𝑇𝐸𝐶𝐸𝑉 +  𝑇𝐸𝐶𝑇𝐶 +  𝑇𝐸𝐶𝑈𝐹               (5) 

where 𝑇𝐸𝐶𝐸𝑉, 𝑇𝐸𝐶𝑇𝐶, and 𝑇𝐸𝐶𝑈𝐹 are effects of the change in various inefficiency model 

variables, technical change of the inefficiency component, and unspecified factors. 

Because we have dummy variables that further describe the production technology, we 

also calculate an augmented TFP change that includes two additional components connected to 

technology:  

𝑇𝐹𝑃𝐶2  =  𝑇𝐹𝑃𝐶1 + 𝑇𝐼𝑈 +  𝑇𝐺𝐾                  (6) 

where 𝑇𝐼𝑈 and 𝑇𝐺𝐾 are contributions from input use change and the Gernas Pro Kakao program. 

Thus, we arrive at the following detailed decomposition: 

𝑇𝐹𝑃𝐶2 = 𝑇𝐸𝐶𝐸𝑉 + 𝑇𝐸𝐶𝑇𝐶 +  𝑇𝐸𝐶𝑈𝐹 + 𝑇𝐶 + 𝑇𝐺𝐾 +  𝑇𝑊𝑃 + 𝑆𝐸𝐶 + 𝐴𝐸𝐶       (7) 

 

3. Empirical specification 

 

3.1 Production frontier model 

 

The translog production function for the cocoa farm i with four inputs, and seven 

dummy variables is specified as: 

𝑙𝑛𝑦𝑖𝑡 =  𝛼0 + ∑ 𝛽𝑘𝑙𝑛𝑥𝑘𝑖𝑡
4
𝑘=1 +

1

2
∑ ∑ 𝛽𝑗𝑘𝑙𝑛𝑥𝑗𝑖𝑡𝑙𝑛𝑥𝑘𝑖𝑡

4
𝑘=1

4
𝑗=1 + ∑ 𝛿𝑗𝐷𝑗𝑖𝑡 + ∑ 𝜃𝑗𝑇𝑗𝑡

3
𝑗=1 +7

𝑗=1

𝑣𝑖𝑡 − 𝑢𝑖𝑡                     (8) 

where yi is the amount of cocoa beans harvested in kilograms, xk is a vector of observations 

on inputs, Dj is a vector of observations on dummy variables characterizing the production 

process, Tj represents time dummies controlling for unobservable influences that vary 

between the years, such as technical change, the 𝛼’s, 𝛽’s, 𝛿’s, and 𝜃’s are unknown 

parameters to be estimated, v is a random error term, and finally u is a non-negative 
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unobservable variable describing inefficiency. We do not include tree biomass and other crop 

outputs in the production function because of the small number of forest and other crop trees 

on the cocoa farms in our sample area. 

 We draw on Nkamleu et al. (2010) and Ofori-Bah and Asafu-Adjaye (2011) to 

identify the production factors that we consider in our analysis (Table 1). The variables used 

in these and other previous cocoa technical efficiency studies are summarized in Table A2. 

According to the classical model, with a given technology, output is determined by land (x1), 

labor (x2), and intermediate inputs (x3). In our model, land indicates the total cultivated cocoa 

area measured in ares, while labor is calculated in Rupiah and involves all harvest and 

maintenance tasks on the cocoa farm.2 We assume that the latter is a good approximation for 

quality-adjusted labor input. Furthermore, intermediate inputs are measured as the cost of 

fertilizers, pesticides, transport, and processing in Rupiah. We aggregate these inputs to avoid 

multicollinearity (Brümmer et al., 2006) and presume that the value of material inputs reflects 

the quality of inputs better than quantity because of the different concentrations of active 

components and nutrients (Wollni and Brümmer, 2012). The age of cocoa trees (x4) is also 

added to the classical production factors. It influences the cocoa output the following way. 

Cocoa trees begin to produce pods only from about three years after planting, reach full 

bearing capacity around the age of 10 years, and their output starts to diminish gradually 

thereafter (Dand, 2010). In some previous studies, the sign of this variable is positive and in 

other studies, negative depending on the average tree age in the sample (Table A2).  

We enhance the basic production frontier with seven dummy variables to describe the 

cocoa cultivation process more accurately (Wollni and Brümmer, 2012). Because zero values 

of input variables can cause biased inference, a dummy variable is added that equals one if 

intermediate inputs equal zero (D1). The second dummy variable is equal to one if the 

smallholder participated in the Gernas Pro Kakao government program. The objective of this 

program is to rehabilitate cocoa farms and expand intensification by providing easier access 

to inputs (KKPOD, 2013). The third dummy variable equals one if hybrid cocoa variety is 

cultivated by the farmer. We anticipate that hybrids produce higher yields than the local 

varieties (Dand, 2010). Moreover, the pruning of cocoa trees (D4) is expected to improve 

output levels because it gives room for sufficient sunlight that stimulates the growth of 

flowers. Additionally, it keeps the farm environment clean, preventing the development and 

                                                 
2 1 hectare equals 100 ares. During the last 15 years, 1 euro fluctuated between 10000 and 17000 Indonesian 

Rupiahs. 
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spread of pests (Danso-Abbeam et al., 2012; Effendi et al., 2013; Amos, 2007). Furthermore, 

a dummy for yield loss is used to reflect the effect of pests and adverse weather on the cocoa 

harvest quantity. 

 

Table 1: Description of the cocoa farm variables. 

Variable Description 

Output  

Cocoa Cocoa quantity harvested on the farm (kilograms) 

Input 

Tree age Average cocoa tree age (years) 

Land Total area planted with cocoa (ares) 

Labor Maintenance and harvest labor costs for the cocoa farm (constant 2001 Rupiah) 

Intermediate inputs Fertilizer, pesticide, transport, and processing costs for the farm (constant 2001 Rupiah) 

Technology 

No input Dummy, 1 = household did not use intermediate inputs for the cocoa farm 

Gernas  Dummy, 1 = household joined the Gernas Pro Kakao program in the last 3 years 

Hybrid Dummy, 1 = hybrid cocoa variety was cultivated by the farmer 

Pruning Dummy, 1 = cocoa trees were pruned 

Intercrop  Dummy, 1 = there was intercropping on the cocoa farm 

Shade 60 Dummy, 1 = shade level of the cocoa farm is larger than 60 percent 

Crop loss Dummy, 1 = cocoa yield loss because of adverse weather or pests  

Inefficiency 

Male  Dummy, 1 = household head is male 

Age Age of the household head (years) 

High school  Dummy, 1 = household head completed the senior high school 

Extension Dummy, 1 = household head had agricultural extension contacts 

Credit Dummy, 1 = household head obtained credit in the last 3 years 

Association  Dummy, 1 = household head was member in a cocoa cooperative in the last 3 years 

Time 

Year 2004 Dummy, 1 = observation is in 2004 

Year 2006 Dummy, 1 = observation is in 2006 

Year 2013 Dummy, 1 = observation is in 2013 

Notes: All variables refer to the last 12 months with the mentioned exceptions. Labor and intermediate input costs 

are adjusted for inflation with the Indonesian Consumer Price Index (2001=1.00). 

 

Some cocoa is grown in an agroforestry or an intercropping system (Ofori-Bah and 

Asafu-Adjaye, 2011). Ruf and Zadi (1998) and Asare (2005) suppose that cocoa yields can be 

maintained in the long run only with the use of forest tree species in cocoa cultivation. Cocoa 

agroforests also support conservation policies because they connect rainforest areas and 

provide habitat for native plants and animals. However, the influence of shading trees on cocoa 
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yields is highly debated. Although some papers report the advantages of these trees because 

they decrease plant stress, others provide evidence that shade can limit cocoa yields (Frimpong 

et al., 2007). The current consensus on this issue implies that shade starts to reduce cocoa yields 

beyond a level of around 30 percent. Following Bentley et al. (2004), we add a sixth dummy 

variable to our model that captures the influence of the high shade (larger than 60 percent) 

production system and expect the sign to be negative.  

To assess the effect of crop diversification on cocoa production (Ofori-Bah and Asafu-

Adjaye, 2011), a seventh dummy variable for intercropping is also added to the model. Farmers 

can grow a variety of fruit-bearing trees to help cope with the volatile cocoa prices by 

supplementing their income. In Indonesia, banana and coconut are mainly intercropped with 

cocoa at its fruit-bearing age (Ministry of Agriculture, 2015). But crop diversification has also 

another advantage. An increasing number of studies demonstrate that intercropping improves 

erosion control (soil and water retention), nutrient cycling, carbon dioxide capture, 

biodiversity, and the relationship of fauna and flora (Scherer-Lorenzen et al., 2005; Gockowski 

and Sonwa, 2011). Therefore, interplanting is often supported to take advantage of the 

mutualism between different plants and to compensate for the low level of intermediate inputs 

(Pretzsch, 2005). We anticipate that intercropping has a positive effect on cocoa yields. 

 

3.2 Inefficiency model 

 

In addition to the production frontier model above, we specify the following 

inefficiency equation for cocoa farm i: 

𝜇𝑖𝑡 = 𝜑0 + ∑ 𝜑𝑗𝑍𝑗𝑖𝑡 +6
𝑗=1 ∑ 𝜔𝑗𝑇𝑗𝑡 + 𝑒𝑖𝑡

3
𝑗=1             (9) 

where 𝜇 is the mean of the inefficiency estimates u that follow a truncated normal distribution 

(Coelli et al., 2005), Zj is a vector of observations on six factors that are expected to affect 

the efficiency level, Tj again denotes the three time dummies that account for variations in 

mean efficiency between the years, the 𝜑’s and 𝜔’s are the unknown parameters to be 

estimated, and e is the random error term. We include explanatory variables in the 

inefficiency model that express the management skills of cocoa smallholders and their access 

to productive resources and knowledge (Wollni and Brümmer, 2012). 

The first two explanatory variables reflect the household structure (Wollni and 

Brümmer, 2012). First, we expect that it is more difficult for households with female heads 

to access markets. They are also usually widows, which can limit labor availability to 
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accomplish agricultural work timely (Onumah et al., 2013b). As a result, we expect female-

headed households to display lower efficiency levels (Table A2).  

Furthermore, farmer age is thought to increase technical inefficiency partly because 

older smallholders take up less likely the latest technologies (Coelli et al., 2005). They are 

also less energetic than their younger counterparts. However, Onumah et al. (2013b) suggest 

that older farmers might develop a higher technical efficiency level than younger farmers 

because of their longer farming experience.  

The next variable refers to the inner capabilities of the household head (Ofori-Bah 

and Asafu-Adjaye, 2011). The education dummy equals one if the head of the household 

completed high school. We expect that it affects positively the management skills of the 

cocoa farmers and hence efficiency (Ingram et al., 2014). However, a number of papers show 

that smallholders with higher educational attainment reveal lower technical efficiency levels 

(Teal et al., 2006). An explanation of these findings is that smallholders with higher 

educational levels have more likely additional sources of income and they concentrate more 

on these off-farm activities than on the farm management.  

The last three variables indicate the external support for cocoa farming households 

(Nkamleu et al., 2010; and Ofori-Bah and Asafu-Adjaye, 2011). Contacts with extension agents 

are commonly considered to influence efficiencies positively since the information circulated 

in extension services should enhance farming methods (Dinar et al., 2007). However, some 

factors such as other information sources, the ability and willingness of smallholders to employ 

the distributed information, and the quality of agricultural extension services can confound the 

results of extension contacts (Feder et al., 2004; Table A2).  

Furthermore, the credit dummy variable indicates whether the cocoa farmer has access 

to credit. If smallholders can buy intermediate inputs with credit when required and not just 

when they have sufficient cash, then input use can become more optimal. Consequently, the 

economic literature underlines the failure of credit markets as the cause of non-profit 

maximizing behaviors and poverty traps (Dercon, 2003). Additionally, reducing capital 

constraints decreases the opportunity cost of intermediate inputs relative to family labor and 

allows the application of labor-saving technologies such as enhanced cocoa hybrid-fertilizer 

methods (Nkamleu et al., 2010). Thus, many economists view the spread of feasible 

agricultural credit services crucial for raising the productivity of labor and land (Zeller et al., 

1997).  

Finally, we include a dummy variable for membership in a cocoa association. We 

expect that associations assist smallholders in reducing transaction costs and, therefore improve 
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their access to various resources and increase their technical efficiency (Binam et al., 2004; 

Hafid et al., 2013). 

 

4. Data description 

 

4.1 Data sources 

 

We acquire the data using the STORMA (Stability of Rainforest Margins in Indonesia) 

project survey data from Göttingen.3 This project conducted four rounds of household and 

agricultural surveys in Indonesia in 2001, 2004, 2006, and 2013. The survey data were 

collected from 722 cocoa farmer households in 15 random villages near the Lore Lindu 

National Park in Central Sulawesi province. This province is the second largest cocoa producer 

in Indonesia with 17 percent of the Indonesian production in 2014 (Ministry of Agriculture, 

2015). The park provides habitat for some of the most unique animal and plant species in the 

world. However, the increase of land used for farming is threatening its integrity.  

In each sample village, the head of the village and the leaders of the hamlets listed the 

names of every household head living in the village. Next, the sample households were 

randomly selected from these lists and interviewed using standardized structured 

questionnaires. The researchers edited the questionnaire in English first, then translated it into 

Indonesian and tested it with a pilot survey. The interviews lasted, on average, about 2 hours. 

Because some farmers cultivated several cocoa plots simultaneously, output and input details 

were collected at plot level to increase data accuracy. In the four rounds, those panel and split-

off households were tracked who were still living in those 15 villages.  

 

4.2 Descriptive statistics 

 

Table 2 shows the summary statistics of the independent and dependent variables in the 

production frontier and inefficiency equations. The dataset is an unbalanced panel of 722 cocoa 

farms and contains 1290 observations. Therefore, on average, one farm appears in just 1.8 

rounds.  

 Over the 12 years, the average output of the cocoa farms rose almost twofold, while the 

average farm size remained almost constant at around 0.75 hectares, which is about one third 

                                                 
3 Funded by the German Research Foundation (DFG). 
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of the African average (Nkamleu et al., 2010; ICCO, 2012). This resulted in an almost twofold 

increase in the average cocoa yield, which was in 2013 with around 600 kg/hectare above the 

world average of about 500 kg/hectare and well above the Indonesian average of about 400 

kg/hectare (ICCO, 2016). We can list two reasons for this. First, cocoa trees reached their most 

productive age around 2011 and they were, on average, 12 years old in 2013. According to 

Nkamleu et al. (2010), this is just one half of the African average because of the later start of 

cocoa cultivation in Indonesia. Second, the use of labor and intermediate inputs (mostly, 

fertilizer and pesticide) increased more than threefold and the ratio of cocoa farms that used 

both increased from 15 percent to 42 percent. The Gernas Pro Kakao government program 

implemented in 2009 could have contributed to this phenomenon by providing easier access to 

intermediate inputs (KKPOD, 2013). However, the use of labor and intermediate inputs is still 

just one third and one half of the African average (Nkamleu et al., 2010; Maytak, 2014). 

Over the years, we could also observe the spread of hybrid cocoa varieties: in 2013, 

they were planted on 10 percent of the cocoa farms. This is significantly larger than the world 

average of 5 percent (ICCO, 2012). Furthermore, the practice of tree pruning fluctuated around 

95 percent in the last three survey rounds which is much higher than in Africa (Maytak, 2014). 

According to the data, cocoa in our sample area is cultivated mostly in a full-sun monoculture 

system, in contrast to Africa (Gockowski and Sonwa, 2011; Nkamleu et al., 2010). The ratio 

of intercropping decreased to 8 percent in 2013, while the share of high shade farms stood at 

just 2 percent. Finally, in accordance with the world average, 43 percent of the cocoa farms 

experienced significant yield losses due to adverse weather and pests (Dand, 2010). 

The statistics of the inefficiency variables point to a slow cultural change in our 

sample area, to more female household heads. The share of female household heads stood at 

10 percent in 2013, which is consistent with past studies that show cocoa cultivation as a 

male-dominated livelihood (Nkamleu et al., 2010; Maytak, 2014). Moreover, the age and the 

educational attainment of the average household head increased considerably over the years. 

The average farmer age of 49 years in 2013 is consistent with data collected by Nkamleu et 

al. (2010) and Vigneri (2007). Furthermore, we do not observe an increase in extension 

services from the initial 25 percent but do see that credit access rose dramatically from almost 

zero to 23 percent. Finally, in 2013 about every third household was member of a cocoa 

farmer group. All the last three statistical values are close to the African averages (Nkamleu 

et al., 2010).   
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Table 2: Summary statistics of the cocoa farm variables. 

Variable 
2001 2004 2006 2013 Pooled 

Mean  SD Mean  SD Mean SD Mean SD Mean SD 

Output  

Cocoa 315 464 379  618 300  328 607  729 427  589 

Input 

Tree age   6.9  3.8 7.2 4.3 12.0 6.5   

Land 75 67 73 59 72 57 77 70 74 64 

Labor 43838 139602 58497 257185 64283 195650 338792  822868 157764 535064 

Int. inputs 152520  307663 122226 232994 77799 226500 319243 701444 185231 476924 

Technology 

No input 0.85 0.36 0.86 0.35 0.79 0.41 0.58 0.49 0.74 0.44 

Gernas 0 0 0 0 0 0  0.14 0.35 0.05 0.22 

Hybrid   0.03 0.16 0.11 0.31 0.10 0.31   

Pruning   0.95 0.22 0.97 0.18 0.93 0.26   

Intercrop   0.16 0.36 0.11 0.32 0.08 0.27   

Shade 60       0.02 0.14   

Crop loss       0.43 0.50   

Inefficiency  

Male  0.99 0.12 0.97  0.18 0.93 0.25 0.90 0.30 0.94 0.24 

Age 45 14 47 14 46 14 49 15 47 14 

High school  0.12 0.33 0.15 0.36 0.19 0.40 0.17 0.38 0.17 0.37 

Extension 0.31 0.46 0.25 0.44 0.22 0.41 0.25 0.43 0.25 0.43 

Credit   0.01 0.09 0.09 0.28 0.23 0.42   

Association       0.36 0.48   

Time 

Year 2004 0 0 1 0 0 0 0 0 0.19 0.40 

Year 2006 0 0 0 0 1 0 0 0 0.29 0.45 

Year 2013 0 0 0 0 0 0 1 0 0.36 0.48 

N  207 251 372 460 1290 

 

5. Results and discussion 

 

5.1 Production frontier 

 

 Table 3 displays the parameter estimates of the production frontiers. Because the 

Mundlak (1978) approach selects the random-effect specification over the fixed-effect model, 

we include only the random-effect results in this table. To check for the correct functional form 

of the models, we use likelihood ratio (LR) tests and the Akaike Information Criterion (AIC). 

They suggest that the Cobb-Douglas production function is preferred with our panel data and 

the translog function with the 2013 data. Thus, we report only these estimation results. 
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For the translog functional form, regularity properties must be checked after estimation 

since they are not automatically satisfied (Wollni and Brümmer, 2012). Therefore, we test for 

monotonically increasing marginal products and decreasing marginal returns regarding tree 

age, land, labor, and intermediate inputs in the 2013 model. The first-order coefficients are 

interpreted as partial output elasticities at the sample mean because we mean-correct each 

variable. We find both positive elasticities and diminishing marginal productivities at the 

sample mean. The monotonicity assumptions are violated in less than 1 percent of the 

observations for land, labor, and intermediate inputs but in 57 percent of the cases for tree age. 

We can explain the latter by the fact that, in 2013, the average age of cocoa trees was a little 

higher than their most productive age. 

In the pooled panel model, the output elasticities of land, labor, and intermediate inputs 

are 0.622, 0.118, and 0.079. We employ a t-test to evaluate whether the elasticity of scale 

(0.819) at the sample mean significantly differs from one. The null hypothesis of constant 

returns to scale is rejected at the 5 percent level, according to the test results. This implies that 

cocoa production exhibits a diminishing returns to scale. Normally, undertakings with this 

characteristics are viewed as too big. However, the average cocoa farm size in our sample is 

smaller than one hectare. A plausible cause of the diminishing return to scale can be some 

impediments to growth (Brümmer et al., 2006).  

Additionally, various dummy variables are incorporated into the models to describe 

cocoa farming more accurately. The variable “No input” is negative and significant at the 1 

percent level. This means that, as anticipated, farms not using intermediate inputs have lower 

cocoa output levels. Furthermore, the variable “Gernas” indicates that smallholders who 

participated in the Gernas Pro Kakao government program achieve higher cocoa output 

levels. Finally, the negative signs of the 2004 and 2006 year dummies reflect lower cocoa 

production levels in these two years compared with the other years. This is the consequence 

of an exceptionally strong negative El Niño weather effect between 2004 and 2006.  

The outcomes of the true random effect model are similar to pooled panel model. In 

the 2013 model, the square of the tree age variable is significant and negative. This points to 

the maturing and aging process of the cocoa trees. Furthermore, the output elasticities of land, 

labor, and intermediate inputs are 0.505, 0.257, and 0.088. According to the t-test results, the 

scale elasticity amounts to 0.850 and significantly differs from one. Therefore, we can also 

conclude here that cocoa farms exhibit a decreasing returns to scale. Finally, all dummy 

variables of the 2013 model confirm the expected signs, but two of them are not significant. 
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Our findings show the positive effect of intermediate input use, pruning, and the Gernas Pro 

Kakao program, but the negative effect of high shade on cocoa production. 

 

Table 3: Parameter estimates of the cocoa production frontier models. 

Variable Pooled panel model TRE panel model 2013 model 

Input 

ln Tree age   0.071 (0.086) 

ln Land 0.622 (0.033)*** 0.616 (0.034)*** 0.505 (0.062)*** 

ln Labor 0.118 (0.028)*** 0.123 (0.028)*** 0.257 (0.051)*** 

ln Int. inputs 0.079 (0.026)*** 0.081 (0.026)*** 0.088 (0.045)** 

0.5 (ln Tree age)2   -0.584 (0.154)*** 

0.5 (ln Land)2   0.006 (0.072) 

0.5 (ln Labor)2   0.002 (0.096) 

0.5 (ln Int. inputs)2   -0.010 (0.054) 

ln Tree age * ln Land   0.285 (0.093)*** 

ln Tree age * ln Labor   -0.210 (0.095)** 

ln Tree age * ln Int. inputs   -0.099 (0.070) 

ln Land * ln Labor   -0.038 (0.094) 

ln Land * ln Int. inputs   0.070 (0.052) 

ln Labor * ln Int. inputs   0.022 (0.035) 

Technology 

No input -0.531 (0.058)*** -0.506 (0.059)*** -0.389 (0.114)*** 

Gernas 0.359 (0.145)** 0.308 (0.141)** 0.323 (0.122)*** 

Hybrid   0.170 (0.154) 

Pruning   0.494 (0.171)*** 

Intercrop   0.058 (0.232) 

Shade 60   -0.422 (0.208)** 

Crop loss   -0.144 (0.087)* 

Time 

Year 2004 -0.201 (0.117)* -0.235 (0.116)**  

Year 2006 -0.410 (0.091)*** -0.405 (0.091)***  

Year 2013 0.130 (0.143) 0.182 (0.141)  

Constant 1.061 (0.087)*** 1.004 (0.090)*** 0.419 (0.195)** 

Variance 

σu 2.258 (0.377)*** 2.301 (0.411)*** 1.633 (0.313)*** 

σv 0.535 (0.039)*** 0.475 (0.048)*** 0.493 (0.065)*** 

RTS 0.819 0.820 0.850 

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01. 
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5.2 Efficiency levels 

 

 Generalized likelihood ratio tests are employed to evaluate whether average response 

functions would fit the models or inefficiency effects are present in the models. We reject the 

null hypothesis for all three specifications at the 1 percent level, which means that the stochastic 

frontier model represents the data better than the OLS model. 

 Table 4 documents the average annual rates of technical efficiency, while Figure A1 

presents the efficiency distributions of the sample farms. Based on the panel models, the mean 

technical efficiency of cocoa farmers is estimated to be around 50 percent, but the range is very 

wide (1-90) and many scores are inside the bottom quarter of the range of the distribution. This 

means that most cocoa farmers have an ample scope to expand cocoa output without increasing 

input use. African cocoa farmers (Table A1) seem to have higher technical efficiencies which 

can be partly explained by the much longer cultivation of cocoa on the African continent. In 

terms of technical efficiency change over time, we find an overall increasing trend. This is not 

surprising, since cocoa production was introduced in Indonesia only in the 1990s and farmers 

had to learn to know-hows of cultivation. 

  

Table 4: Descriptive statistics of the cocoa farm efficiency estimates (percentages). 

Year 
Pooled panel model TRE panel model 2013 model 

Mean SD Min Max Mean SD Min Max Mean SD Min Max 

2001 36 24 1 83 37 24 1 86     

2004 46 22 1 87 48 24 1 89     

2006 51 22 1 83 52 23 1 85     

2013 50 22 2 88 51 23 2 90 50 22 3 87 

2001–2013 47 23 1 88 49 24 1 90     

 

5.3 Inefficiency effects 

 

 Table 5 presents the results of the inefficiency model estimations: both the estimated 

coefficients and the corresponding marginal effects at the means. For dummy variables, the 

marginal effects are calculated for a discrete change from zero to one. A negative sign indicates 

that the variable in question has a negative influence on inefficiency, which means a positive 

influence on efficiency. We check the joint significance of the possible inefficiency effects 

with likelihood ratio tests. Based on the results, we reject at the 1 percent level for all three 

models that all inefficiency variables are insignificant.  
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In the panel models, the cocoa farmers’ age and the year dummies are the only significant 

factors that affect the productive efficiencies. As anticipated, efficiency increases with farmer 

age, which is also a proxy for experience in cocoa cultivation in our study. According to our 

model, every additional year provides a 0.7 percent increase in technical efficiency, on average. 

Furthermore, the significant year dummies identify an overall increasing trend in technical 

efficiency. The 2013 model finds an additional significant factor: educational attainment. As 

expected, a higher educational level enhances an individual’s understanding of farming. 

Finally, we find that credit access, extension services, and farmer associations do not 

significantly affect efficiency. These results are inconsistent with many African cocoa studies 

which show positive linkages (Table A2). For example, many economists view the spread of 

feasible agricultural credit services crucial for raising technical efficiency (Zeller et al, 1997). 

The limited effect of agricultural extension programs on efficiency can be due to the inherent 

deficiencies of public information systems, flawed service design (“top-down” manner), or 

bureaucratic inefficiency (Nkamleu et al., 2010). Furthermore, the ineffectiveness of farmer 

groups can be attributed to the missing social capital, that is, the lack of assistance to each other 

in the times of need (Ingram et al., 2014). 

 

Table 5: Estimates and average marginal effects of the cocoa farm inefficiency models. 

Variable Pooled panel 

model 

 TRE panel model  2013 model  

Coefficients Marg. eff. Coefficients Marg. eff. Coefficients Marg. eff. 

Male  -0.173 (1.112) -0.029 -0.164 (1.204) -0.025 0.530 (0.911) 0.121 

Age -0.041 (0.018)** -0.007** -0.041 (0.020)** -0.006** -0.029 (0.016)* -0.007* 

High school 0.084 (0.595) 0.014 0.092 (0.652) 0.014 -1.272 (0.729)* -0.291* 

Extension -0.108 (0.417) -0.018 -0.100 (0.446) -0.015 0.780 (0.494) 0.178 

Credit     -0.137 (0.528) -0.031 

Association     0.039 (0.437) 0.009 

Time       

Year 2004 -1.769 (0.940)* -0.296* -2.078 (1.060)** -0.320**   

Year 2006 -2.705 (0.800)*** -0.453*** -2.840 (0.881)*** -0.437***   

Year 2013 -2.549 (0.950)*** -0.426*** -2.853 (1.111)*** -0.439***   

Constant 2.241 (1.346)*  2.323 (1.418)  0.336 (1.437)  

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01.  

 

5.4 Productivity change 

 

 Table 6 shows the decomposition of the total factor productivity change into several 

sources: technical efficiency factors, technical change, scale and allocative efficiency effects, 
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and additional factors connected to technology. Land allocative effects are not calculated 

because if the size of a cocoa farm was changed over the years, we consider it a different 

farm. Since the pooled and random-effect model results are similar, we discuss only the RE 

estimates.  

The total productivity growth of the cocoa farms over the 12 years amounts to around 

75 percent. This means about a 6 percent annual improvement, on average. The fastest 

productivity growth (more than 36 percent) was accomplished in the third observation period, 

between 2006 and 2013. In the first and second periods, cocoa farms experienced total factor 

productivity increases of about 13 and 27 percent. 

Examining the individual components of TFP change, we find that the growth in the 

2001–2004 period is primarily caused by technical efficiency change, especially by its TECTC 

component (30.4 percent increase). The distribution of this effect is shown in Figure A2. This 

improvement might be the result of the fact that cocoa production in our sample area started 

just in the 1990s and farmers needed to gain knowledge and experience in the early stages of 

cultivation. In our first sample period, the sharp decrease (−23.5 percent) of the standard 

technology component was counteracting this growth. This could be mainly due to the very 

dry 2004 cocoa growing season. The allocative effect of the intermediate inputs had an 

additional negative influence (−12.8 percent) on productivity. Finally, we find that changes in 

scale and labor allocative efficiency are relatively small compared with the other elements. 

The TFP increase between 2004 and 2006 is dominated by the technical efficiency 

change (16.4 percent) and the allocative effects of the intermediate inputs (14.9 percent). The 

value of the former points to the slowdown of the technical efficiency increase, while the latter 

shows a tremendous improvement in the input allocation. The allocative effect induced by labor 

input and the technology effect of the input use had a further positive influence on productivity. 

Again, the technical change component was offsetting the improvement because of the 

unfavorable weather conditions (-17 percent). 

In contrast to the first two periods, the main driver for productivity growth in the last 

observation period was technical progress (40.5 percent increase). This is due to the positive 

effect of the La Niña climate pattern. However, the distortion in the allocation of intermediate 

inputs (-33.1 percent change) was counterbalancing this improvement. We can also notice the 

increasing technology effect of input use and the Gernas Pro Kakao government program. 

However, technical efficiency growth continued to slow down. A possible explanation for this 

finding could be the deterioration of land infrastructure because of the heavy rains. 
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Table 6: Decomposition of the total factor productivity change in cocoa farming (percentages). 

Time period TECEV TECTC TECUF TC SEC AECLA AECII TFPC1 TIU TGK TFPC2 

Pooled model            

2001–2004 2.3 29.3 18.7 -20.1 -1.3 -3.5 -12.6 12.8 1.2 0.0 14.0 

2004–2006 0.9 12.6 4.8 -20.9 -0.1 5.8 14.6 17.7 6.8 0.0 24.5 

2006–2013 2.9 -2.1 3.7 41.0 -1.5 8.7 -32.4 20.3 10.5 6.1 36.9 

2001–2013 6.1 39.8 27.2 0.0 -2.9 11.0 -30.4 50.8 18.5 6.1 75.4 

Average annual 

change 

0.5 3.3 2.3 0.0 -0.2 0.9 -2.5 4.3 1.5 0.5 6.3 

TRE model            

2001–2004 2.1 30.4 20.7 -23.5 -1.3 -3.5 -12.8 12.1 1.1 0.0 13.2 

2004–2006 0.8 9.6 6.0 -17.0 0.0 5.8 14.9 20.1 6.5 0.0 26.6 

2006–2013 2.6 0.2 3.0 40.5 -1.6 9.2 -33.1 20.8 10.0 5.3 36.1 

2001–2013 5.5 40.2 29.7 0.0 -2.9 11.5 -31.0 53.0 17.6 5.3 75.9 

Average annual 

change 

0.5 3.4 2.5 0.0 -0.2 1.0 -2.6 4.5 1.5 0.4 6.4 

Notes: TECEV = technical efficiency change from the variable “age of household head”, TECTC = technical 

efficiency change from technical change, TECUF = technical efficiency change from unspecified factors, TC = 

technical change, SEC = scale efficiency change, AECLA = allocative efficiency change (labor), AECII = allocative 

efficiency change (intermediate inputs), TFPC1 = standard total factor productivity change, TIU = the effect of 

non-zero intermediate input use, TGK = the effect of the Gernas Pro Kakao program, TFPC2 = augmented total 

factor productivity change. Values are calculated according to Brümmer et al. (2002), and Zhu and Lansink 

(2010). 

 

6. Conclusion 

 

The surge in cocoa demand and price prompts us to search for sustainable ways to 

improve cocoa yields and thus, farmer income. We investigate the productivity and efficiency of 

the Indonesian cocoa production using a panel survey data of 1290 observations and a stochastic 

frontier model. The results indicate a decreasing return to scale in production. Given the small 

average cocoa farm size, this could reflect the impediments to growth.  

According to our results, the productivity of Indonesian cocoa farming increased by 75 

percent between 2001 and 2013. We decompose total factor productivity change into several 

sources: technical efficiency factors, technical change, scale and allocative efficiency effects, 

and additional factors connected to technology. The calculations show large distortions in input 

allocation. Hence, policies that encourage the adjustment of the cocoa farms’ input use would 

be highly beneficial. Furthermore, the technical change component points to a weather-induced 

volatility in cocoa production. Thus, policy makers should also promote investment in 

agricultural research and transfer of drought-resistant cocoa varieties to farmers. The estimates 
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also show the important role of the increasing input use and the Gernas Pro Kakao government 

program in achieving productivity growth.  

Finally, the biggest growth in cocoa productivity was caused by the increasing technical 

efficiency. However, the average technical efficiency in Indonesia is still under 50 percent, 

which is much smaller than the West African average. To sustainably boost cocoa productivity 

further, we have to look at the possible sources in our detailed technical efficiency results. The 

significant factors identified to have a positive influence on the efficiency levels are the 

smallholders’ educational attainment and their experience in cocoa farming. Our findings also 

show that the extension services, the rural credit system, and the farmer groups do not have a 

significant effect on the efficiency of cocoa farms in our research area.  

The limited effect of existing agricultural extension programs on efficiency can be due 

to the inherent deficiencies of public information systems, flawed service design, or 

bureaucratic inefficiency. Furthermore, the ineffectiveness of farmer groups can be attributed 

to the missing social capital, that is, the lack of assistance to each other in the times of need. 

Hence, policy should focus on adjusting the public extension programs, fostering the mutual 

benefits in the farmer groups, and developing viable credit institutions to expand the Indonesian 

cocoa output without increasing input use. 
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Appendix 

 

Table A1: Technical efficiencies in previous cocoa studies.  

Country No. of datasets Weighted mean TE Mean sample size Total sample size 

Ghana 10 56 313 3125 

Ivory Coast 1 58 1372 1372 

Cameroon 1 65 1003 1003 

Nigeria 11 72 246 2701 

Indonesia 1 81 98 98 

World 24 63 346 8299 

Sources: Own calculations from Aneani et al. (2011), Awotide et al. (2015), Besseah and Kim (2014), Danso-

Abbeam et al. (2012), Kyei et al. (2011), Nkamleu et al. (2010), Ofori-Bah and Asafu-Adjaye (2011), Onumah et 

al. (2013a), Onumah et al. (2013b), Adedeji et al. (2011), Agom et al.(2012), Amos (2007), Ogundari and 

Odefadehan (2007), Ogunniyi et al. (2012), Oladapo et al. (2012), Oyekale (2012), and Effendi et al. (2013). 

Notes: There are 24 datasets in 17 studies. We used the sample sizes as weights for the aggregation of the technical 

efficiency scores. TE = technical efficiency.  
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Table A2: Determinants of production and inefficiency in previous cocoa studies. 

Variable 
No. of positive 

effects 

Number of negative 

effects 

No. of insignificant 

effects 

No. of 

datasets 

Production 

Tree age 6 5 3 14 

Farm size 19  2 21 

Labor cost 20  3 23 

Fertilizer cost 10 1 6 17 

Pesticide cost 19 1 4 24 

Processing cost 3  1 4 

Transport cost 2   2 

Pruning 1  2 3 

Inefficiency 

Male 1 10 3 14 

Farmer age 3 5 12 20 

Educational level 3 11 9 23 

Extension services 1 8 8 17 

Credit access  6 4 10 

Association member 1 5 4 10 

Intercropping  1 1 2 

Shade cover 1 2 2 5 

Sources: Own calculations from Aneani et al. (2011), Awotide et al. (2015), Besseah and Kim (2014), Danso-

Abbeam et al. (2012), Kyei et al. (2011), Nkamleu et al. (2010), Ofori-Bah and Asafu-Adjaye (2011), Onumah et 

al. (2013a), Onumah et al. (2013b), Adedeji et al. (2011), Agom et al.(2012), Amos (2007), Ogundari and 

Odefadehan (2007), Ogunniyi et al. (2012), Oladapo et al. (2012), Oyekale (2012), and Effendi et al. (2013). 

Notes: There are 24 datasets in 17 studies. 

  



29 

 

Figure A1: Distribution of efficiencies in the cocoa production models. 

a) Pooled panel model, 2001-2013 

 

b) TRE panel model, 2001-2013 

 

c) 2013 model 
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Figure A2: Distribution of the TECTC productivity change component in 2004. 

a) Pooled panel model 

 

b) TRE panel model 

 

 


