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Abstract
The top quark with its heavy mass is a promising candidate to find hints on physics beyond
the Standard Model of Particle Physics. To study the top-photon coupling, decays of top-
/antitop quark pairs in association with a photon (tt̄γ) can be analysed. In this thesis,
a neural network, which classifies events according to the photons origin, is applied on
photons with non-Standard Model coupling. These samples have been created using an
effective field theory approach to modify the photon couplings. Furthermore, a different
neural network is trained to distinguish photons obeying Standard Model couplings from
Beyond Standard Model photons.

Keywords: top quark, tt̄γ decay, neural network, effective field theories

Zusammenfassung
Aufgrund seiner hohen Masse ist das Top-Quark ein vielversprechender Kandidat, Hinwei-
se auf neue Physik zu finden. Um die Top-Photon-Kopplung dahingehend zu untersuchen,
kann die Produktion von Top-/Antitop Paaren in Assoziation mit einem Photon (tt̄γ)
genutzt werden. Effektive Feldtheorien beschreiben die modifizierten Top-Photon Kopp-
lungen, welche für die Generation der Samples genutzt werden. Auf diese Samples werden
dann neuronale Netze angewandt. Dabei wird ein (auf das Standardmodell trainiertes)
neuronales Netz verwendet, um den Ursprung der Photonen zu finden, ein weiteres trai-
niert, um Standardmodell-Photonen von Photonen anderer Kopplung zu unterscheiden.

Stichwörter: Top-Quark, tt̄γ-Zerfall, neuronale Netze, effektive Feldtheorien
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1. Introduction

The top-quark is the heaviest particle within the Standard Model of particle physics (SM).
The SM describes all phenomena observed at the Large Hadron Collider (Lhc) very well
but there are observations as for example CP-violation [1], neutrino oscillation [2] or dark
matter [3], indicating that the SM is an approximation of an underlying theory. Neutrino
oscillation and CP-violation has also been observed at accelerators. Even though, the
observed CP-violation is too small to explain reality, which is one indication that there is
physics beyond the SM.
In 1995, the top-quark was discovered by the DØ [4] and CDF [5] experiments at the
Tevatron. At the Lhc, it is produced mainly in pairs mostly by gluon fusion but also
via quark anti-quark annihilation. During the production and decay process, it is possible,
that some particle emits a photon. If this photon is emitted by the top-quark, its analysis
gives an insight to the top-photon coupling, which offers an opportunity to measure the
top-quark charge directly and to test the nature of the coupling, e.g. if it is the vector
coupling predicted by the SM or if additional axial-vector components or even tensor
components are present. Since the photon can be emitted by any charged particle during
the production and decay process of tt̄ pairs and the resulting data looks similar, it is not
easy to determine the origin of the photon.
Atlas, as a top-quark factory, delivers huge amounts of data. To optimise the analysis,
the aim of the following bachelor thesis will be to further develop the existing neural
network, developed and trained by Andreas Kirchhoff within his master thesis [6] and
Pascal Herrmann’s bachelor thesis [7]. This neural network does already analyse the
origin of the photon in tt̄+ γ processes. The aim of this bachelor thesis will be to adapt
the network to effective field theories (EFT) on truth level.
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2. The Standard Model of Particle
Physics

The SM is a renormalisable quantum-field theory with the following underlying group
symmetry: SU(3)⊗SU(2)⊗U(1). SU(3) represents the strong interaction and SU(2)⊗
U(1) the electroweak interaction. The (known) elementary particles are described by the
SM as well. Gravity is not included in this theory.

2.1. Elementary particles

Figure 2.1.: Elementary particles of the SM.

Figure 2.1 shows the elementary particles. There are fermions, having spin 1/2 and there-
fore, obeying the Fermi-Dirac-statistics, and bosons with integer spin, obeying the Bose-
Einstein-statistics (see also section 2.2).
Fermions are divided into three generations (see Figure 2.1) which differ from each other
in their masses. Within each generation, fermions are separated into quarks and leptons.
Up-type quarks (first row in Figure 2.1) carry charge 2/3 e, where e is the absolute value of
the electric charge of an electron. Down-type quarks (second row) carry −1/3 e. Neutrinos
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2. The Standard Model of Particle Physics

(third row) are neutral, the other leptons (electrons, muons and tauons in the last row)
carry the charge −1 e. An antifermion belongs to each fermion that has exactly the same
properties as the fermion except for the charge-like quantum numbers, which are inverted.
Antiparticles are denoted with a bar.

2.2. Interactions

The SM describes three out of four fundamental interactions, electromagnetism, the weak
and the strong interaction. Bosons are the exchange particles transmitting the interac-
tions. Photons are exchanged in electromagnetic processes. All fermions with electric
charge may be part of those processes. In a weak interaction process, the W± or Z boson
couples to the weak isospin. The name isospin refers to the fact that isospin is treated
mathematically the same way as the spin. The third component of the isospin I3 is 1/2

for up-type quarks and neutrinos, whereas down-type quarks and electrons, muons and
tauons have I3 = −1/2. Therefore, all known fermions are able to interact weakly. The
weak interaction violates parity symmetry. Neutrinos, as they only interact weakly, are
maximum parity violating.
Gluons, the exchange particles of the strong interaction, couple to the colour charge. All
quarks carry colour charge. This may be either red, blue, green or their anti colours. No
free colour-charged particles exist, therefore, several quarks have to form colourless parti-
cles, the hadrons. This is called confinement. Hadrons appear as mesons (two quarks, one
with a colour, one with the corresponding anticolour) or baryons (three quarks carrying
all different colours or anticolours, respectively). Through interaction with the Higgs field,
the particles obtain their mass. The Higgs boson is the excited state of the Higgs field.
The SM without the Higgs field or a similar mechanism could not describe mass at all in
a renormalisable way and would therefore be no valid theory.

2.3. The top quark

The top quark’s existence was predicted in 1973 by Makoto Kobayashi and Toshihide
Maskawa, who tried to extend the SM to include theories allowing CP violation [8]. In
1995, it was discovered by CDF [5] and DØ [4] experiments. Its mass mtop = 173.3 ±
0.4 GeV/c2 [9] is, compared to the other quarks, very large. In consequence, its decay
width is 1.35 GeV and accordingly its lifetime is 5·10−25 s. So, the top quark decays before
it is able to hadronise (to form hadrons with other quarks). Hence, a top quark passes its
properties directly to its decay products and thus, those properties can be reconstructed
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2.3. The top quark

from the properties of the decay products. Because of its special role among the quarks it
is a good candidate for testing the SM and theories beyond the SM as done in this thesis.

2.3.1. Production of top quarks

To produce the top quark one needs at least the energy corresponding to the top quark
mass and the bottom quark, or, in tt̄ decay twice the top quark mass (see Figure 2.2).
This energy has only been reached in hadron collisions up to now. Via the exchange of
a W Boson (weak interaction), a top and an anti-bottom quark are produced. Another
option is the creation of a tt̄ pair via the strong interaction. This happens when two
gluons or a quark and its anti-quark annihilate. In case of the Lhc the gluon fusion
happens more often, since at the energy range required to produce a top quark pair, the
gluons dominate the parton distribution functions of the proton compared to the fraction
of quarks and anti-quarks.

Figure 2.2.: On the left, the single top quark production by the decay of a W+ boson
(here the s channel) is shown. In the middle and on the right, one can see
the tt̄ production by gluon fusion and qq̄ annihilation.

2.3.2. Decay modes of the top quark

The top quark does not build hadrons since it decays before it could form a bound state
with other quarks. Top quarks decay via the weak interaction into a W boson and a
b quark (see Figure 2.3). These b quarks form jets due to the confinement of hadrons,
which can be detected in the hadronic calorimeter. They can be separated from c and
light jets using the technique of b-tagging (see also [10]). Since the b quark is long lived
on average (≈ 10−12 s) it can possibly travel some millimetres in the detector. Therefore,
the b jet could be slightly displaced with respect to the interaction point. W bosons decay
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2. The Standard Model of Particle Physics

Figure 2.3.: In this Feynman graph, a tt̄ pair decays via the weak interaction into b/b̄
quarks. Then, the W bosons decay into a qq̄ pair and a lepton and its
neutrino.

either hadronically into two quark jets or leptonically, one lepton and the corresponding
neutrino. Accordingly, a tt̄ event may result in either two b-jets and four jets (all hadronic:
45.7%), two b-jets, two jets, one charged lepton and missing transverse energy (indicating
a neutrino) (43.8%) or two b-jets, two charged leptons and large missing transverse energy
(indicating two neutrinos) (10.5%) [9].

2.3.3. tt̄γ

Within the process of tt̄ production and decay, one of the charged particles can emit a
photon. This can be an initial state quark as well as the top quark or any (charged) decay
product. The final states are similar to the tt̄ processes but with one additional photon.
Analysing the properties of the photon gives an insight into the top-photon coupling, since
the top-photon vertex is studied directly.

2.4. Effective field theories

Effective Field Theories (EFT) are thought to be embedded in a greater theory being
a low energy approximation. Taking the example in Figure 2.4 for a very virtual W
boson, the parameter GF combines the whole interaction without considering each vertex
individually [11]. Thus, the 4-fermion Fermi coupling is a low-energy approximation of the
weak interaction. Similarly, an EFT approach can be used to extend the SM. New physics
at a generally large energy scale could lead to an effective modification of SM couplings
at lower scales even though the effect will be larger for larger energies. The Lagrange
density, giving the energy density of the space and time dependent fields, is modified.
In case of the top-photon coupling, such new physics contributions can be parametrised
with three generalised couplings, scaled with the Wilson coefficients and normalised to
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2.4. Effective field theories

an energy scale of Λ2 as it is shown in Equation 2.1. Usually, Λ2 ≈ 1 TeV2 because we
expect new physics to appear around this scale. ctG is the coupling corresponding to
the top-gluon coupling. In the tt̄γ process, top-gluon coupling happens in tt̄ production.
Therefore, the modified top-gluon coupling should have an influence on the total rate of
tt̄γ production but not on the top-photon coupling. ctW and ctZ are both electroweak
couplings. Therefore they should have an influence on the top-photon coupling. Each
Wilson coefficient has a negative and a positive value. In this thesis, ctwm refers to the
negative value of ctW as listed in Table 2.1, whereas ctwp to the positive one and ctw0 to
set the coefficient equals zero. These values are calculated in the thesis of Sreelakshmi J
S [12].

Figure 2.4.: Muon decay as an example for a low-energy approximation of the weak
interaction [13].

L = LSM + ctw
Λ2 O + ctz

Λ2 O + ctg
Λ2 O + ... (2.1)

Wilson coefficient positive value negative value
ctW 1.0 -1.2
ctZ 1.4 -1.0
ctG 0.4 -0.4

Table 2.1.: Wilson coefficients for each coupling constant established in the thesis of
Sreelakshmi J S [12].
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3. Experimental setup

Figure 3.1.: The Cern accelerator complex, located at Geneva, Switzerland ©Cern.

For the moment, the European Organisation for Nuclear Research (Cern) runs the largest
hadron collider with 27 km circumference, the Large Hadron Collider (Lhc). Figure 3.1
shows an overview of the different accelerators and the experiments. A bottle of hydrogen
(replaced twice a year) feeds the accelerators with protons. The protons are separated
from the electrons by a strong electric field. They are accelerated in several steps by
a linear accelerator, then with circular accelerators: the Synchrotron Booster, the Pro-
ton Synchrotron and the Super Proton Synchrotron which increases the beam energy to
450 GeV. Finally, the protons are fed into two different beam pipes. It takes around
20 minutes to accelerate them until each beam reaches its maximum energy of 6.5 TeV
[14]. Therefore, the centre of mass energy is 13 TeV, which is nowadays the maximum.
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3. Experimental setup

A strong magnetic field keeps the proton beam on track. The protons are brought to
collision at four points, where the four major detectors are installed, Atlas, Cms, Alice
and Lhcb. The proton bunches, containing up to 1011 protons, are brought to collision
at a frequency of 40 MHz. On average 50 to 60 collisions take place in each bunch cross-
ing. Atlas has a design luminosity of 1034 cm−2 s−1 [15]. The integrated luminosity over
the full Run 2 pp̄ data sample is 139 fb−1 [16]. The Luminosity measures the likelihood
of collisions by counting the bunches and protons per bunch, time and area. The high
luminosity provides a huge number of events, which requires good detectors and efficient
data analysis.

3.1. The Atlas detector

Figure 3.2.: The onion like built Atlas detector ©Cern.

Atlas stands for A Toroidal Lhc ApparatuS [15]. It is the largest particle detector (in
volume). For analysing the data, a (cylindrical) coordinate system is defined. The z axis
points along the beam. The angle φ is defined to go around the beam and the angle θ
is in between the z axis and the scattered particle. Instead of θ, it is more useful to use
the pseudorapidity η = − ln (tan(θ/2)) = 1/2 ln

(
|p|+pL

|p|−pL

)
[15], where p is the 3-momentum

of the photon and pL the longitudinal momentum. The differences in pseudorapidity are
Lorentz invariant under boosts in z direction. Another property used is the difference
in the η − φ-plane defined as ∆R =

√
∆η2 + ∆φ2, which is also Lorentz invariant under

boosts in z direction.

10



3.1. The Atlas detector

Inner detector: The inner detector tracks electrically charged particles and measures
their momentum and charge using a magnetic field in z direction. In Figure 3.2 the com-
ponents of the inner detector are shown: The pixel detector (resolution: 14 × 115 µm2),
the Semiconductor Tracker made of silicon micro-strips and readout strips, measuring the
position of charged particles with an accuracy of 17 µm and the Transition Radiation
Tracker which basically separates pions from electrons and positrons. The end caps mea-
sure particles with a high pseudorapidity, e.g. particles flying almost parallel to the beam
[15].

Calorimeter: The calorimeters measure the total energy of the particles by forcing
them to deposit their energy in the detector by ionisation, scintillation or Cherenkov
radiation. There are electromagnetic calorimeters measuring the energy of electrons,
positrons and photons and hadronic calorimeters measuring hadrons. In both calorimeters
the energy deposition is achieved by showers, which result from the interaction of incoming
particles with the dense calorimeter material. Calorimeters consist of passive material,
which induces the showers and active material measuring the signal. The electromagnetic
calorimeter uses lead and stainless steel as a passive and liquid Argon as an active material.
Hadronic Calorimeters use iron and plastic scintillation tiles.

Muon system: Muon chambers are the outermost layer of the detector. They are gas
detectors. Muons pass the other detectors unseen except of the tracking detector. To-
gether with the momentum measurement in the muon chamber, a very good momentum
resolution is obtained.

Neutrinos cannot be seen by any of the detectors. Using missing transverse momentum
and given the W boson mass, the neutrino momentum can be reconstructedwith a two-
fold ambiguity.

Trigger systems separate the interesting1 processes. First, a hardware based trigger system
defines so called regions of interest (RoI) in around 2.2 µs and reduces within this process
the amount of data to a maximum of ≈ 100 kHz. The High Level Trigger is software based
and reduces the data to 1 kHz, this takes around 4 s. The now separated interesting data
(and samples of the not interesting ones, for cross-checking) are stored at the Cern
computer centre and ready to be analysed [17].

1Interesting here means: Processes of high transverse momentum, as this indicates processes containing
top quarks, Higgs bosons or (if they exist) new particles like SUSY particles.
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4. Neural networks

A neural network (NN) is used for classification. Feedforward NNs are built in layers,
consisting of nodes. Each node of a layer is connected to all the nodes in the previous and
the following layer, as indicated in Figure 4.1. Each node of the input layer represents one
parameter xi given to the NN. The nodes in the output layer correspond to the categories
in which the data will be divided. High values mean, the sample matches the category
with a high probability.

Figure 4.1.: A feed-forward neural network. The input nodes correspond to the (here)
three features given to the network, the output layer (with two nodes)
gives the answer. The hidden layer has five nodes in this picture. It is not
accessible by the user.

Hidden layers are in between the input and the output layer. Each of the 5 nodes in
Figure 4.1 carries a value which is the weighted sum of the nodes of the previous layer
(Equation 4.1), therefore, the name feedforward NN.

f(x) = σ

(
N∑
i=1

wixi + C

)
[18]. (4.1)

The σ function squeezes the weighted sum between an upper and a lower bond. tanh or
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4. Neural networks

sigmoid functions are often chosen to stay between -1 and 1 and 0 and 1, respectively.
wi are the weighting factors, corresponding to one connection. C is called bias. The
NN learns, when it knows which combination of sub-components corresponds to which
output, when bias and weights are well chosen. Choosing weights and bias is done in the
training process, where the NN is fed with known data and weights and bias are adjusted.
The validation loss function is the function, which has to be minimized by the NN by
changing weights and bias.
NNs are especially helpful if there are serveral correlated variables with small but sig-
nificant separation power. Then, an NN is often able to combine given information and
result in a better separation power since it is able to use higher dimensional correlations,
which would not be possible to see by simple comparison of the data. There are some
functions and values to determine the quality of an NN. The receiver operating character-
istic (ROC) curve illustrates the ability of a binary classifier to sort events into the correct
category. It shows the background rejection over the signal efficiency. A perfectly working
binary classifier would have as a ROC curve a horizontal line at 1.0 (all background is
rejected) until a signal efficiency of 1.0 (e.g. total efficiency). The area under [the ROC]
curve (AUC) value is therefore a measurement of the ability of the binary classifier to
assign correct values to events. Its best value equals one. With aid of this graphs, one can
decide how much background one has to accept to have a certain amount of signal within
the data. The loss function is important to determine wether it is worth to increase the
number of epochs during the training. The training improves further, when the loss func-
tion is decreasing. Kolmogorov Smirnov statistic plots test wether the predictions of the
training data match the predictions of the testing data. This is useful to check over- and
undertraining, which can happen, when the NN gets sensitive to statistical fluctuations.
The perfect output would have all signal datapoints at 1 and all background datapoints
at zero. Test and training should give almost equal results, where the results from the
training are expected to be slightly better, since the NN was trained on them. There
are some methods to increase the performance of an NN. Adding dropout layers prevents
overfitting (rather fitting to a more simple function than a more complicated, it means
technically, that the cost to increase the complexity of a function is rather high). Also,
the choice of the working point influences the result. A working point is a cut, where a
chosen percentage of events are given a probability to belong to their (true) category. The
higher the working point, the more background will also be (mistakenly) classified into
this category. Finally, since the NN may end up in a minimum, k-fold cross validation
can be used. There, the data set is devided into k parts. Then, one part is trained against
the other k-1 parts. This is repeated k times and one is able to check wether all outputs
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are similar to each other.
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5. Monte Carlo samples

5.1. Description of the samples

This analysis uses samples generated with Madgraph 2.6.7 which contain decays of tt̄
pairs in association with a photon in the lepton + jets channel with different configurations
of the Wilson coefficients (see: section 2.4). Each of the 27 different samples contains
100 000 events with around 94 000 events with full particle content, the other 6 000 do not
have full particle content. In the samples, gluons, initial state quarks, top quarks, b quarks
and W bosons may be the mother particle of a photon. Here, one needs to pay attention
to the assignment of the photon. Physically, photon radiation from a gluon does not
exist. The “gluon radiation” corresponds to the emission of a photon from a virtual top
quark (see Feynman graph in Figure 2.2 middle, bottom). In the sample generation with
Madgraph, photons are assigned to the last on-shell particle. Therefore, the photons
from off-shell top quarks may have gluons as “mother” particles. The same happens for b
quarks. Final state b quarks have to be on-shell (forced by Madgraph), in consequence,
all radiating b quarks are off-shell and the photon is assigned to the on-shell top quark.
Thus, in the analysis photons from on-shell top quarks and from b-quarks are treated as
one category. Then, there is final state radiation from the W boson (FSR(W)) and initial
state radiation (ISR) coming from initial state light quarks. All samples are normalised
to the cross-section of the respective mode. For the analysis, the reference frame is the
laboratory frame.

5.2. Description of the variables

To comprehend the different properties of a photon emitted under modified coupling, one
has to analyse the behaviour of the variables. The studied variables are explained in the
following list:

• pT (γ) is the transverse momentum of the photon

• E(γ) is the energy of the photon

17



5. Monte Carlo samples

• ∆η(γ) is the difference in pseudorapidity of the photon and the nearest
top quark as defined in section 3.1

• ∆R(γ, top quark) is the distance in the η − φ plane between the photon and the
closest top quark as defined in section 3.1

• ∆R(γ, b quark) is the distance in the η − φ plane between the photon and the
closest b quark as defined in section 3.1

• cos(θ)(γ) is the angle between the z axis and the scattered particle (see:
section 3.1

• mmax(Wbγ) is the maximum invariant mass of a W boson, a b quark and the
photon (photon comes from either ISR, top quark or one of its decay products).

• mmin(Wbγ) is the minimum invariant mass of a W boson, a b quark and the
photon

• mmax(Wb) is the maximum invariant mass of a W boson and a b quark

• mmin(Wb) is the minimum invariant mass of a W boson and a b quark.

The variable distributions of pT (γ), E(γ), ∆R(γ, top quark) and mmax(Wbγ) are plotted
in Figure 5.1. One can see the distribution of the SM sample as well as the one for EFT
sample ctwmctzpctgm1, and the ratio between both. This sample is chosen, because it
shows the highest deviation from the SM sample2. In Figure 5.1 the black histogram
corresponds to SM simulation and the pink one to EFT simulation. The difference in the
shape of the samples is for pT (γ), E(γ) and mmax(Wbγ) a slightly broader distribution
for the EFT sample, what can be nicely observed, looking at the ratio plot. This is
in agreement with the expectations. As explained in section 2.4, an EFT parametrises
the influence of new physics at high energy scales. Therefore, the influence of modified
couplings is higher, the higher the energy and photons obeying an EFT may be noticed
easier the higher the energy of the emitted photon. Taking this into account, all kinetic
variables should show the same behaviour. Indeed, the EFT distribution of E(γ) is slightly
shifted towards higher energies. Since for higher energies, the average opening angles are
larger, ∆R(γ, top quark) and ∆R(γ, b quark) should also be shifted towards higher values,

1Remark on notation: ctw refers to the Wilson coefficient of the operator representing the top-W boson
coupling, ctz represents the top-Z coupling and ctg the top-gluon coupling. m, p and 0 refer to the
negative and positive values listed in Table 2.1 or to set the coupling equals zero respectively.

2The ratio plots for the other variable distributions as well as the ones for a different sample may be
found in Figure A.1 and Figure A.3
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5.3. Separation power
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Figure 5.1.: The ratio plots for the variable distributions for pT (γ), E(γ), ∆R(γ, top
quark) and mmax(Wbγ) for the SM and for ctwmctzpctgm.

but this is not the case, the fluctuations in the ratio plots are due to less data points for
higher energies. For the invariant mass, the reasoning is different. If the coupling is
modified (with respect to SM) the distribution of mother particles of the photon may be
different and hence, the invariant mass.

5.3. Separation power

The more the variable distributions (see: section 5.2) differ between EFT and SM samples,
the better the NN will be able to separate the variables and sort them correctly into those
categories. To compare the separation power of the variables, one can define the separation
S:

S = 1
2

N∑
i=0

(si − bi)2

si + bi
.

Here, si is the normalised signal contribution and bi the normalised background contribu-
tion. The sum is over all bins. Table 5.1 shows the separation power for each variable for
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three different samples. ctwmctzpctgm and ctwmctzpctg0 are the samples with the highest
and second highest separation power. One further sample has separation powers in the
range of those two: ctwmctzpctgp (separation power of pT (γ) = 5.64%). The third sample
in Table 5.1, ctwpctzpctgp, has a separation power alike the ones of the other 24 samples3.
Naively, one could imagine that this sample (together with ctwmctzmctgm) has the highest
separation power since all operators are oriented in the same direction and so, would have
the highest influence on the sample distributions. But this is not the case.

Variable\Sample ctwmctzpctg0 [%] ctwmctzpctgm [%] ctwpctzpctgp [%]
pT (γ) 6.75 7.88 0.03
E(γ) 5.15 6.15 0.03
η(γ) 0.06 0.06 0.01
∆η(γ,top quark) 0.06 0.09 0.02
mmax(Wb) 0.10 0.20 0.01
mmin(Wb) 2.27 2.86 0.02
mmax(Wbγ) 5.71 5.74 0.02
mmin(Wbγ) 7.49 7.51 0.02
∆R(b quark) 0.22 0.27 0.03
∆R(top quark) 0.55 0.64 0.04
cos(θ) 0.07 0.09 0.03
η pT , highest 0.06 0.06 0.03
η pT , 2nd highest 0.03 0.03 0.02
η smallest |η| 0.04 0.05 0.04
η 2nd smallest |η| 0.04 0.04 0.03
event(top) 5.36 6.42 0.01
event(isr) 4.45 5.34 0.02
event(W) 2.92 3.64 0.02
event(b) 2.90 3.62 0.02

Table 5.1.: Separation power of three different samples, the meaning of the variables is
explained in section 5.2.

5.4. Analysis of EFT samples

There are three samples having a significantly higher separation power in pT (γ) than
the other ones. These are ctwmctzpctg0 (S = 6.75%), ctwmctzpctgm (S = 7.88%) and
ctwmctzpctgp (S = 5.64%). Apparently, ctG has a small influence on the variable distri-
butions. The same can be observed for other sample combinations where ctG is modified.
That makes perfectly sense, since ctG has influence only on the top-gluon coupling and

3The separation power of those other samples can be found in Appendix B.
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therefore on the production of tt̄ but not the decay. Working with the separation power
values4 for pT (γ), one can see, that ctW differs a lot from the SM if set to −1.2 (see sam-
ple ctw0ctzpctgp (S = 0.55%), ctwmctzpctgp (S = 5.64%) and ctwpctzpctgp (S = 0.03%)).
However, for the samples ctw0ctzmctgm (S = 0.39%), ctwmctzmctgm (S = 0.06%) and
ctwpctzmctgm (S = 2.17%), the graduation in separation power is reversed. Obviously,
the separation power does not depend only on the value of some coupling but also on
interferences between the different couplings. Varying the last coupling, ctZ, also leads to
changes in the separation from the SM sample. Looking for example at the two sample sets
ctwmctzpctgm (S = 7.88%), ctwmctz0ctgm (S = 1.63%) and ctwmctzmctgm (S = 0.06%)
and ctwpctzpctgp (S = 0.03%), ctwpctz0ctgp (S = 0.37%) and ctwpctzmctgp (S = 1.82%),
one can see that the differences between one sample set is higher than for ctG, so this
coupling has a higher influence on physical behaviour than ctG. Here, the variation with
the negative value for ctZ has the highest separation power whereas in the other sample it
is the positive value. That means one cannot say wether a positive or negative value has
a bigger impact. The interaction between ctZ and ctW seems to be responsible for high
differences between the EFT and the SM sample. Opposite signs for two couplings within
a sample lead to higher separation from the SM. This explains why neither ctwmctzmctgm
nor ctwpctzpctgp have high separation values. Naively, one could expect that those two
could have the biggest difference from SM but apparently this is not true.

4See: Appendix B
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6. Application of a neural network
to separate the origin of the
photon to EFT samples

For the analysis an already existing neural network (NN) is used. It is able to separate
top quark radiation from initial state radiation (ISR), final state radiation from b quarks
(FSR(b)) and FSR(W). This NN will be referred to as NNtt̄γ. It is more sensitive to
the correct classification of top radiation since the top events were overrepresented (with
respect to the cross-section) in the training. NNtt̄γ has 3 layers with 16, 8 and 4 nodes.
The most important variables for the correct classification of the photon’s origin are the
invariant masses [6].
To analyse the performance of an NN, one uses confusion matrices, the one in Figure 6.1
shows the performance of NNtt̄γ for SM simulation. The rows indicate the true event
category and the columns the classification of NNtt̄γ. The probability in each field gives
the percentage of true events, classified into a certain category, hence, the sum over each
row is equals one (deviations come from rounding). The perfect confusion matrix, where
all events are classified into their correct category would have only ones on the diagonal
and zeros elsewhere. Some methods have been tried to further improve the performance
of NNtt̄γ. First, the variables have been rescaled such that they are all in the same range
for the training and the NN does not get biased by the size of the variables. This confusion
matrix is shown on the left in Figure 6.2. One can see, that top events are more often
classified as top events as without the rescaling. Anyway, also ISR events are more often
classified as top events. Changes of some percent are seen in almost all other categories.
The confusion matrix on the right in Figure 6.2 is for training, where input variables are
weighted according to their cross-section, e.g. the background got weighted higher since
top events where overrepresented in the samples. The value for top and ISR classifications
for ISR events has changed significantly. The other values show as well only changes of
a few percent. For the correct classification of top events, both methods do improve the
result. Even, if there is a higher correct classification on top events, this comes with
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6. Application of a neural network to separate the origin of the photon to EFT samples

Figure 6.1.: Confusion matrix for training data of an NN with 3 layers (16/8/4 nodes)
[6].

higher background and is therefore, no improvement of NNtt̄γ.
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6.1. How the neural network sorts the EFT samples

Figure 6.2.: Confusion matrix for training data of an NN with 3 layers (16/8/4 nodes)
for rescaled variables (left) and reweighted (right) training. The non-
modified confusion matrix is in Figure 6.1

6.1. How the neural network sorts the EFT samples

In Figure 6.3 the four classifiers of photon radiation for SM events are shown. The plots
show the probability given by NNtt̄γ to belong to a certain category, namely FSR(top)
(up left), ISR (up right), FSR(b) (bottom left) and FSR(W) (bottom right). In the plots
one still sees some edges. For our studies, the top probability is the most important one.
Since the four probabilities, that NNtt̄γ assigns to each event, need to add up to one, it
may happen, that one of the less important categories (e.g. background) gets the rest
probability and therefore those edges seen in the plots may occur (as in Figure 6.3 bottom
right plot for W boson around 0.6).
To figure out wether NNtt̄γ is able to distinguish between the categories, even when ap-
plying it on EFT samples, the classifiers for the four categories are plotted in Figure 6.4.
Each plot contains 8 histograms, four show the output for SM simulation, four the output
for the EFT sample ctwmctzpctgm. This sample is chosen, since the separation power of
this sample is the highest. For this reason one expects the highest deviation also within
the application of NNtt̄γ (see: section 5.3). Taking the upper left plot as an example,
the signal contribution are top events, the background are FSR(b), ISR and FSR(W),
in the upper right plot, the signal contribution would be ISR events and the others the
background. In all plots, one can see fluctuations between the samples for ISR, FSR(W)
and FSR(b) events. Between the top curves (black and grey) differences are observed. In
the top classifier, the black line is shifted towards the right (with respect to the grey one).
The EFT top events are not as well classified as the SM events. For the other classifiers,
the black histograms are shifted towards the left. The probabilities for the SM top events
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Figure 6.3.: Distributions for the classifiers for FSR(top) (up left), ISR (up right),
FSR(b) (bottom left) and FSR(W) (bottom right). NNtt̄γ has 3 layers
with 16, 8 and 4 nodes respectively.

to belong to the background are smaller than the ones for EFT top events.
NNtt̄γ does not sort (the most deviating) sample as well as the SM sample into the four dif-
ferent categories, but still may distinguish between FSR(top), ISR and FSR(b), FSR(W).
This was expected, since NNtt̄γ was trained with SM events.

The next question to answer is, wether NNtt̄γ helps distinguishing EFT and SM events
(for top radiation). This would be possible, if the classifier distributions for category top
look differently for EFT and SM events. The ratio plots in Figure 6.5 and Figure 6.6
examine the effect of different samples on the perfomance of NNtt̄γ. Figure 6.5 shows the
performance of the top classifier on events belonging to different samples and different
categories. Each plot shows one classifier, FSR(top) (up, left), ISR (up, right), FSR(b)
(bottom, left) and FSR(W) (bottom, right). Each plot contains five histograms, one is
the SM top classifier. The second is the SM classifier of this specific plot FSR(top), ISR,
FSR(b) or FSR(W), respectively. The other three histograms are the classifiers for three
different EFT samples, where one coupling is varied. Here, ctZ is varied, this was chosen,
since the two samples with the largest deviation from the SM are within this three (see:
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Figure 6.4.: The probability distributions NNtt̄γ assigned to the events to be FSR(top)
(up, left), ISR (up, right), FSR(b) (bottom, left) and FSR(W) (bottom,
right) applied on SM simulation and EFT sample ctwmctzpctgm.

section 5.3).
Figure 6.6 shows the effect of different EFT samples on different classifiers for top events.
In each plot one can see the distribution of probability to be a photon coming from the
top quark for SM simulation and the three samples described above. The upper left plot
shows the FSR(W) classifier distribution. On the right is the FSR(b) classifier and on the
bottom the ISR classifier. The distribution of the classification of each plot differs from
the SM. For example, EFT top events are far less often classified with a high probability
to be ISR than SM events.
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Figure 6.5.: The distributions for the classifiers for the four different categories. The
NN has 3 layers with 16, 8 and 4 nodes respectively. ctwm and ctzp remain
the same, ctg is varied. Each variation is shown with its ratio plot with
respect to the SM. 0, p and m refer to the corresponding Wilson coefficients
in Table 2.1.
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Figure 6.6.: The distributions for the four classifiers for top events. The NN has 3 layers
with 16, 8 and 4 nodes respectively. ctwm and ctzp remain the same, ctg is
varied. Each variation is shown with its ratio plot with respect to the SM.
0, p and m refer to the corresponding Wilson coefficients in Table 2.1.
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7. Training of a neural network to
distinguish EFT and SM events

7.1. Correlation matrices

Since it is not possible to distinguish SM and EFT samples with NNtt̄γ with the shape of
the classifer, a new network was trained to explicitely differentiate SM and EFT events.
This binary NN will be referred to as NNEFT. In order to find out which variable is useful
for the training, one can calculate the correlation between variables. If the correlation
between two variables is high, the NN does not learn additional information when using
both variables instead of one. To train a network, the best would be serveral variables
with less correlation and high separation power. An NN might also be able to use higher
dimensional correlations, not seen in the correlation matrices or correlations appearing in
for example EFT variables but not in SM variables. The variables considered for training
are listed in section 5.2 and eight more variables in the following list. Furthermore, the
distributions for the variables as well as the ratio plots with respect to the SM can be
found in Figure 5.1, Figure A.1 and Figure 6.6.

• η pT ,highest is the η−distribution of the quark with the highest pT

• η pT , 2nd highest is the η−distribution of the quark with the second highest pT

• η smallest |η| is the η−distribution of the quark with the smallest absolute value
of η

• η 2nd smallest |η| is the η−distribution of the quark with the second smallest ab-
solute value of η

• event top is the output for the top quark classifier for NNtt̄γ discussed in
chapter 6

• event ISR is the output for the ISR classifier for NNtt̄γ discussed in chapter 6
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• event b is the output for the b quark classifier for NNtt̄γ discussed in
chapter 6

• event W is the output for the W boson classifier for NNtt̄γ discussed in
chapter 6

In Figure 7.1 and Figure 7.2 the correlation matrices for the EFT sample ctwmctzpctgm and
SM sample are shown. High correlations can be seen between pT (γ), E(γ), mmax(Wbγ)
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Figure 7.1.: Correlation matrix for the SM sample.
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Figure 7.2.: Correlation matrix for the EFT sample ctwmctzpctgm.

andmmin(Wbγ). This is due to the photon 4-vector entering the calculus of these variables.
High anticorrelation values are found for the output of NNtt̄γ in top events with W and
b events, respectively. This is also not astonishing since those events already have been
sorted by NNtt̄γ.
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7.2. Training

7.2. Training

For the training, the sample ctwmctzpctgm was used, since its variable distributions differ
the most from the SM (see: section 5.3). The following variables were used for training:
pT (γ), E(γ), mmin(Wbγ), mmax(Wb), mmin(Wb), event top, event ISR, event W and
event b. They are explained in section 5.2 and section 7.1. Those variables have been
chosen because they all have separation power higher than 1%. The others were sorted
out to reduce the number of variables. This is appreciated because less variables will need
less time for training. Also, understanding the NN is easier with less variables, as well as
applying performance checks. Serveral methods have been tried to improve the NN:

• different architectues: combinations of between one and nine layers and one and 150
nodes

• three different scalers, to transform the simulation set into a more suitable represen-
tation of the simulation for further processing. The first scaler subtracts the mean
and scales to unit variance, the second scales each feature to the range between 0
and 1 and the third scales each feature by its maximum value.

• full and reduced (see above) variable content

• weighting the samples according to the number of training events

• use of batch normalization and dropout layers

There are two neural networks with a good performance. The signal corresponds to EFT
samples, the background are SM events. The separation power of the one with one layer
of 64 nodes (and the output layer) for training is 7.35% and for testing 7.31%, remember,
the separation power of pT (γ) is 7.88%, discussed in section 5.3. Kolmogorov-Smirnov
plot, ROC and loss function are shown in Figure 7.3. For this NN, the cross validation
plot is shown (see: Figure 7.3, left plot), which indicates, that the NN did not find a local
minimum but the global one. The second NN has another architecture. It has five layers
with 64, 40, 40 and eight nodes (plus the one node output layer). Its separation power is
for training 7.53% and for testing 7.22%.
Even though many options were tried or modified to improve the performance of NNEFT,
the separation power is less than the one of the variables (see: section 5.3).
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7. Training of a neural network to distinguish EFT and SM events
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Figure 7.3.: NN output for a binary NN with one layer of 64 nodes.

7.3. Analysis of the performance of NNEFT

7.3.1. Analysis of events classified as EFT

The Kolmogorov-Smirnov plots in Figure 7.3 and Figure 7.4 show blue bumps around 0.9.
This is the probability given by NNEFT to belong to the category “EFT sample”. For this
analysis, a probability higher than 0.8 for an EFT event is called a “correctly” classified
event. For an SM event, the probability to be “correctly” classified would be less then
0.2. “Wrongly” classified events are SM events with a probability higher than 0.8 or EFT
events with a probability less than 0.2. To understand where the peaks in the figures come
from, one may have a look at Figure 7.5. Plots of the variable distributions for the SM
(pink) and three plots corresponding to the EFT sample are shown, whereas the blue line
shows all events, the green one all events with a probability given by NNEFT

1 higher than
0.8 (so the blue-bump events) and the black one shows events lower than 0.82. one can

1NNEFT’s architecture had 64/40/40/8/1 nodes
2The distributions for the other variables are shown in Appendix C.
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7.4. How the neural network works on other samples
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Figure 7.4.: NN output for a binary NN with five layers of 64, 40, 60, 8 and one node
respectively.

see, that as expected from the variable distributions in section 5.2, the NN understands
high pT (γ), E(γ), mmax(Wbγ) values as EFT events. In the pT (γ) distribution, there is
a small overlap of the green and the pink line but above ≈ 160GeV, all EFT events are
declared as EFT events. Therefore, there are wrongly declared SM events in this region
as well.

7.4. How the neural network works on other samples

Even though NNEFT is trained on EFT sample ctwmctzpctgm, it is able to separate also
some EFT events of other EFT samples from the SM. In Figure 7.6, ratio plots are drawn
to analyse the performance of NNEFT on different EFT samples. In each ratio plot, two
couplings remain the same and one is varied in the three variations explained in Table 2.1.
The ratio plots are constructed with respect to the SM sample, drawn are only the true
EFT events. The left ratio plots show the output of NNEFT when two couplings are set to
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Figure 7.5.: Variable distributions of events with a high given probability to be EFT.
The distributions for transverse momentum and the maximum invariant
mass (Wbγ) are plotted.

zero, so the closest samples to the SM. The right side shows samples with high separation
power. In the first row, the first coupling ctW is varied, in the second one ctZ and in the
third, ctG.
Note, that samples with high separation power (see: section 5.3 and section 5.4) are
separated well by NNEFT. Also the ratio plots show, that ctG does not have a huge
impact on the variables since the output of NNEFT is either almost identical to SM or for
all three variations equal. For the other two couplings, it looks like the ctwm and ctzp
variations have the highest impact on the sample.
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7.4. How the neural network works on other samples
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Figure 7.6.: Ratio Plots of the NNEFT output on different samples with respect to the
SM sample. On top of the legend the samples are declared. 37





8. Conclusion and outlook

NNtt̄γ separates the origin of the photon within EFT samples almost as well as within
SM samples. EFT events may not be separated from SM events by the shape of NNtt̄γ’s
output distributions. Therefore, a second network was trained
The second network is not better than the separation power of the single variable pT (γ).
Nevertheless, it is interesting to notice, that one network may also separate different EFT
samples.

To further improve the results of this thesis, a deeper understanding of the EFT samples is
nessecary. Therefore, I suggest to look more detailed into the EFT samples. Analyse, why
the ∆R distributions do not show broader distributions in case of EFT samples even if one
might expect this due to the relation between higher energies and larger opening angles.
Also one should analyse, which operator has which effects on the variable distributions
and find out, what kind of interferences are in between the operators. This may be done
via the generation of more EFT parameter points, for example with larger variations.
ctG has little influence on the output (as analysed in section 5.3). That makes sense
considering, that the top-gluon coupling is only important for the production of tt̄ pairs,
not for their decay. ctW and ctZ are both electroweak couplings and therefore have an
electroweak component, which results in the modification of the photon behaviour.
To use NNtt̄γ on real data, it is nessecary to adapt the network to reconstruction level, that
means to reconstruct the W boson and b quark variables from their decay products and
jets. As discussed in chapter 6, the invariant masses are the crucial factor for NNtt̄γ. Since
the invariant masses do have different distributions for EFT and SM samples, training of
a new NN on reconstruction level on EFT samples may be considered. Then, even EFT
photons may be classified correcly. It would be interesting to see if the performance of an
NN, trained on EFT samples may work for SM simulation.
For both networks, but especially for NNEFT, feature importance is a nice technique to
figure out the functioning of an NN. Here, one shuffles the entries of one variable such
that the values do not belong anymore to their event. In the later training, one can see,
depending on the output, whether a variable has been important for the training. Feature
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8. Conclusion and outlook

importance can help as well, to figure out, if it is even possible to further improve the
performance of an NN. If then, an output has a better result, one should think about
systematic uncertainities of the NN. Here, this is not important since the NN output is
not satisfying1.
The aim was, that serveral variables with separation power in the range of 5% would have
a higher separation power, when combined in an NN. Maybe, NNEFT can be improved
focussing on the use of little correlation variables. Here, variables with high separation
power have been used, unfortunately, the correlation was checked afterwards and it turned
out to be high for the used variables. Thus, using different variables could improve the
network, even when having little separation power. In either way, I recommend to check
the correlation before deciding, which variables shall be used for training. In this thesis,
feedforward networks were used. Different, more advanced types of NN could maybe
give a better result as for example recurrent neural networks, if they find higher order
correlations between variables.
To conclude: The found separation power of the trained NNEFT is not better than the one
of the single variable pT (γ), which has the highest separation power. However, if NNEFT

shall be applied on real data, it has to work on reconstruction level. Then the separation
power on reconstruction level can be found in fitting both, NNEFT output and the pT (γ)
distribution on real data. Based on these fits, limits for the Wilson coefficients can be
found. Here, then is the question wether the limits for the single variable distribution or
NNEFT are better e.g. with smaller allowed regions for the EFT parameters.

1means here: better than the separation power of a single variable
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A. Variable distributions - Comparison of EFT and SM sample
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Figure A.1.: Ratio plots of the variable distributions for the variables listed in sec-
tion 5.2. For each variable the SM and the ctwmctzpctgm sample histogram
is plotted.
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Figure A.2.: Ratio plots for the variable distributions for the variables listed in sec-
tion 5.2. For each variable the SM and the ctwmctzpctg0 sample histogram
is plotted, it is the one with the second highest separation power.
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A. Variable distributions - Comparison of EFT and SM sample
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Figure A.3.: Ratio plots for the variable distributions for the variables listed in sec-
tion 5.2. For each variable the SM and the ctwmctzpctg0 sample histogram
is plotted, it is the one with the second highest separation power.
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B. Separation power

variable\sample 00p[%] 00m[%] 0m0[%] 0mp[%] 0mm[%] 0p0[%] 0pp[%] 0pm[%]
pT (γ) 0.01 0.03 0.44 0.36 0.39 0.65 0.55 0.89
E(γ) 0.01 0.03 0.28 0.23 0.24 0.35 0.29 0.53
η(γ) 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02
∆η(γ,topquark) 0.01 0.04 0.02 0.03 0.04 0.04 0.03 0.04
mmax(Wb) 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01
mmin(Wb) 0.01 0.01 0.11 0.07 0.12 0.08 0.06 0.11
mmax(Wbγ) 0.01 0.03 0.25 0.18 0.2 0.31 0.25 0.44
mmin(Wbγ) 0.01 0.03 0.35 0.29 0.3 0.41 0.33 0.65
∆R(b quark) 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.03
∆R(top quark) 0.02 0.04 0.04 0.04 0.05 0.05 0.03 0.04
cos(θ) 0.01 0.03 0.03 0.03 0.03 0.04 0.03 0.02
η pT , highest 0.02 0.03 0.05 0.04 0.04 0.04 0.40 0.04
η pT , 2nd highest 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02
η smallest |η| 0.01 0.03 0.03 0.03 0.03 0.05 0.03 0.03
η 2nd smallest |η| 0.01 0.02 0.03 0.02 0.03 0.04 0.03 0.03
event(top) 0.01 0.01 0.25 0.19 0.25 0.28 0.21 0.43
event(isr) <0.00 0.02 0.19 0.14 0.2 0.20 0.16 0.32
event(W) <0.00 0.01 0.13 0.09 0.16 0.10 0.07 0.15
event(b) 0.01 0.01 0.14 0.09 0.15 0.10 0.08 0.15

Table B.1.: Separation power of different EFT samples. The meaning of the variables
is explained in section 5.2. 00p refers to EFT sample ctw0ctz0ctgp.
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B. Separation power

variable\sample m00[%] m0p[%] m0m[%] mm0[%] mmp[%] mmm[%] mpp[%]
pT (γ) 1.22 0.92 1.63 0.03 0.03 0.06 5.64
E(γ) 0.74 0.51 1.02 0.04 0.03 0.04 4.31
η(γ) 0.02 0.02 0.03 0.02 0.02 0.02 0.03
∆η(γ,topquark) 0.03 0.03 0.04 0.03 0.04 0.04 0.05
mmax(Wb) 0.02 0.01 0.03 0.01 <0.00 0.01 0.12
mmin(Wb) 0.20 0.12 0.33 0.02 0.02 0.02 1.74
mmax(Wbγ) 0.61 0.45 0.93 0.03 0.02 0.04 3.87
mmin(Wbγ) 0.92 0.64 1.29 0.05 0.02 0.05 5.19
∆R(b quark) 0.05 0.04 0.06 0.04 0.03 0.03 0.14
∆R(top quark) 0.07 0.04 0.10 0.04 0.03 0.04 0.38
cos(θ) 0.03 0.03 0.03 0.03 0.02 0.03 0.04
η pT , highest 0.03 0.03 0.05 0.04 0.03 0.04 0.05
η pT , 2nd highest 0.03 0.04 0.03 0.03 0.03 0.04 0.04
η smallest |η| 0.03 0.03 0.04 0.03 0.03 0.04 0.04
η 2nd smallest |η| 0.03 0.04 0.03 0.04 0.03 0.03 0.04
event(top) 0.68 0.45 0.97 0.02 0.01 0.03 4.37
event(isr) 0.50 0.33 0.74 0.02 0.02 0.03 3.57
event(W) 0.25 0.14 0.43 0.01 0.01 0.02 2.27
event(b) 0.25 0.15 0.42 0.01 0.01 0.02 2.27

Table B.2.: Separation power of different EFT samples. The meaning of the variables
is explained in section 5.2. m00 refers to EFT sample ctwmctz0ctg0.
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variable\sample p00[%] p0p[%] p0m[%] pm0[%] pmp[%] pmm[%] pp0[%] ppm[%]
pT (γ) 0.34 0.37 0.37 1.94 1.82 2.17 0.05 0.02
E(γ) 0.22 0.24 0.27 1.38 1.24 1.56 0.03 0.05
η(γ) 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02
∆η(γ,topquark) 0.03 0.03 0.03 0.04 0.05 0.04 0.03 0.03
mmax(Wb) 0.01 0.01 0.01 0.04 0.05 0.04 0.01 0.01
mmin(Wb) 0.09 0.06 0.09 0.56 0.57 0.76 0.03 0.02
mmax(Wbγ) 0.18 0.20 0.22 1.22 1.09 1.39 0.02 0.03
mmin(Wbγ) 0.28 0.27 0.30 1.81 1.68 2.06 0.03 0.02
∆R(b quark) 0.03 0.04 0.03 0.06 0.06 0.06 0.03 0.03
∆R(top quark) 0.04 0.04 0.04 0.12 0.14 0.13 0.04 0.04
cos(θ) 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03
η pT , highest 0.04 0.03 0.04 0.03 0.04 0.04 0.04 <0.00
η pT , 2nd highest 0.04 0.02 0.03 0.04 0.04 0.03 0.03 <0.00
η smallest |η| 0.04 0.04 0.04 0.04 0.03 0.04 0.03 <0.00
η 2nd smallest |η| 0.03 0.03 0.02 0.03 0.04 0.03 0.03 <0.00
event(top) 0.20 0.20 0.20 1.33 1.28 1.59 0.02 0.01
event(isr) 0.16 0.16 0.16 1.04 1.02 1.29 0.02 0.01
event(W) 0.11 0.08 0.12 0.74 0.73 0.95 0.01 0.01
event(b) 0.11 0.08 0.12 0.73 0.72 0.94 0.01 0.02

Table B.3.: Separation power of different EFT samples. The meaning of the variables
is explained in section 5.2. p00 refers to EFT sample ctwpctz0ctg0.
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C. Analysis of events classified as
EFT
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Figure C.1.: Distributions for the classifiers for SM or EFT sample ctwmctzpctgm. The
green line shows the distribution of the events classified as EFT with a
probability higher than 0.8. The black line shows the distribution for a
probability below 0.8 and the other two the distribution for SM and EFT
respectively. Here, one tries to understand which events NNEFT declares
as EFT events.
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