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Abstract. Kähler geometry provides analytic techniques to extend results from the alge-
braic to the transcendental setting. Non-Kähler geometry is then the attempt to perform
a separate analysis of the complex and symplectic contributions. Cohomological invariants
and canonical Hermitian metrics are useful tools for a tentative classification of compact
complex manifolds.
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Introduction

“It’s not mathematics that you need to contribute to. It’s deeper than that: how

might you contribute to humanity, and even deeper, to the well-being of the world,

by pursuing mathematics?” (Bill Thurston)

We give an introduction on complex manifolds, focused on cohomologies and Hermitian
metrics.

We start by introducing complex manifolds as the objects in the category of holomor-
phic maps. We study the double complex of forms, its decomposition following Khovanov
and Stelzig, and the cohomologies associated to it. Beside de Rham (i.e. total) and Dol-
beault (i.e. column) cohomology, we can define also Bott-Chern and Aeppli cohomologies as
“bridges” to compare holomorphic and topological information. We give sheaf-theoretic and
analytic interpretations of these cohomologies; we also discuss their symmetries; we deduce
some inequalities between Betti numbers and Hodge and Bott-Chern numbers; we char-
acterize isomorphisms between cohomologies; and, finally, we consider locally homogeneous
manifolds of nilpotent Lie groups as a class of interesting examples for explicit computations.

In the second lecture, we focus on the property when the decomposition of forms move
in cohomology, namely, the so-called “∂∂-Lemma property”. It is a foundational result in
Kähler geometry, yielding Hodge decomposition in cohomology. In particular, we study
its behaviour under deformations of the complex structure and under modifications, to
the attempt to take advantage of this property in bimeromorphic classification of compact
complex manifolds. We sketch the parallel of the theory for symplectic structures, that
frames in the more general context of generalized-complex geometry. We also briefly discuss
the algebraic structure of cohomology in view of formality, that represents a topological
obstruction to the validity of ∂∂-Lemma, with the further scope to understand better the
role for Bott-Chern cohomology.

Among special metrics, Kähler metrics play a special role, and the tentative to generalize
their properties to a wider context is one of the main aims in complex non-Kähler geometry.
We already briefly resumed the analytic and transcendental techniques that allow to get
Hodge decomposition and further results on compact Kähler manifolds. (By the way, we just
cite locally conformally geometry as a first generalization of the Kähler condition, in other
works, as a “equivariant (homothetic) Kähler geometry”. This is a class in the classification of
Gray-Hervella [GH80].) We then investigate the existence of canonical metrics in Hermitian
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geometry: specifically, as a case study, we propose an analogue of the Yamabe problem
in the Hermitian setting, seeking for constant scalar curvature metrics with respect to the
Chern connection in a conformal class.
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Lecture I. Cohomological invariants of complex manifolds

Complex manifolds are the objects in order to define the category of holomorphic maps.
In this section, we first recall some properties of holomorphic functions (see e.g. the refer-
ences [dSSST06, GR09, Hör90, Car95, Nar95, LT11, Gun90a, Gun90b, Gun90c] for a more
complete and detailed account). Then we recall some basic properties of (almost-)complex
manifolds (references for this chapter are e.g. [Huy05, Dem12, Kod05, MK06, GH94, Voi02a,
Bal06, Mor07, BHPVdV04, Gau15, Uen75] and many others). We then focus on the differen-
tial analysis on complex manifolds, and we introduce the double complex of forms and their
cohomologies. On compact complex manifolds, we have an elliptic Hodge theoretic interpre-
tation. Finally, we introduce nilmanifolds, namely, compact locally-homogeneous manifolds
of connected simply-connected nilpotent Lie group, endowed with suitable invariant complex
structures, as a class of example where cohomology can be explicity computed by reducing
to the Lie algebra structure.

The main references for this Lecture are [Huy05, Ste18a, Sch07, Rol11, Ang14].

I.1. Complex and almost-complex manifolds

I.1.1. The algebra of holomorphic functions. We briefly recall that a function f : Ω→
C of class C1 defined on a domain Ω ⊆ Cn is holomorphic if, at any point x ∈ Ω, its
differential dfbx : TxΩ ' Cn → C is C-linear. In fact, by the Osgood theorem [Osg32], f is
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holomorphic if and only if it is continuous and it is separately holomorphic in each variable,
that is, it satisfies the Cauchy-Riemann equations

for any k,
∂

∂z̄k
f = 0. (CR)

Here, we are denoting coordinates on Cn, as complex space, by (zj = xj +
√
−1yj)j . The

differential of f ∈ C1(Ω;C) splits as

df =
∂f

∂zj
dzj +

∂f

∂z̄j
dz̄j ,

where the Einstein notation is assumed; more precisely, one computes

∂

∂zj
=

1

2

(
∂

∂xj
−
√
−1

∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+
√
−1

∂

∂yj

)
in terms of standard real coordinates (xj , yj)j . In particular, it follows that real and imagi-
nary parts of a holomorphic functions f = u+

√
−1 v are pluriharmonic, that is, harmonic

when restricted to any complex line.

The homogenous Cauchy-Riemann system (CR) is elliptic, see e.g. [Wel08, Example 2.6].
This has several consequences.

• The Green function identity for Dirichlet boundary value problem gives the Cauchy
integral formula:
for any z ∈ P (z0;R) b Ω, where z0 ∈ Ω and R ∈ Rn are fixed, we have the integral
representation

f(z) = (2π
√
−1)−n

∫
bP (z0;R)

f(ζ1, . . . , ζn)
dζ1 ∧ · · · ∧ dζn∏

j(ζj − zj)
.

(Here, polydiscs P (z0;R) :=
∏n
j=1D(zj0;Rj) and their Silov boundaries bP (z0;R) :=∏n

j=1 bD(zj0;Rj) take the place of discs and their boundaries in view of the separately
holomorphicity.)
• Hypoellipticity yields elliptic regularity:
indeed, as a consequence of Cauchy integral formula, the Cauchy estimates∣∣∣∣ ∂m1+···+mnf

(∂z1)m1 · · · (∂zn)mn
(z0)

∣∣∣∣ ≤∏
j

mj !

R
mj
j

· sup
P (z0;R)

|f |

yield that holomorphic functions are C∞; moreover, holomorphic functions are also
complex-analytic: for any point z0 ∈ Ω, we have the power series expansion

f(z) =
∑
m∈Nn

am · (z − z0)m

being normally convergent (i.e. uniformly convergent on compact subsets) in some
neighbourhood of z0. Here, one computes

am =
1∏
jmj !

· ∂m1+···+mnf

(∂z1)m1 · · · (∂zn)mn
(z0).
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• Maximum principle assures unique continuation:
if |f | admits a local maximum at a point z0 ∈ Ω, then f is constant in a neighbour-
hood of z0.

Later, we will use the following local solvability result:

Theorem I.1.1 (Dolbeault-Grothendieck Lemma). Let α be a form on Cn of type (p, q),
for q ≥ 1, and in class Ck, for k ≥ 1. That is, α =

∑
I,J αI,J̄dz

I ∧ dz̄J , where I and J
are multi-indices of length p and q respectively, and αI,J̄ ∈ Ck(Cn). If ∂α = 0, (that is,∑

k

∑
I,J

∂αI,J̄
∂z̄k

dz̄k ∧ dzI ∧ dz̄J = 0,) then there exists a form β of type (p, q− 1) and in class
Ck such that ∂β = α.

For vector-valued functions f = (f1, . . . , fm) : D → D′ for domainsD ⊆ Cn andD′ ⊆ Cm,
holomorphicity is meant for any component f j . The complex Jacobian matrix is

JC(f) :=

(
∂fα

∂zβ

)
α,β

.

From the real point of view: the real Jacobian determinant satisfies

det JR(f) = |det JC(f)|2. (1)

We recall two basic results:

• inverse function theorem:
for n = m, if det JC(f)(z0) 6= 0, then there exists an open neighbourhood U of z0

such that fbU : U → f(U) is biholomorphic;
• implicit function theorem:
for m ≤ n, if rk JC(f)(z0) = m, then there exist open subsets D1 ⊆ Cm and
D2 ⊆ Cn−m such that z0 ∈ D1 × D2 ⊆ D, and a holomorphic map g : D1 → D2,
such that

f(z)− f(z0) = 0 if and only if

z = (z1, . . . , zm, g1(z1, . . . , zm), . . . , gn−m(z1, . . . , zm)).

It gives local representation of complex submanifolds as zero locus of analytic func-
tions.

I.1.2. Complex manifolds. We recall that a holomorphic manifold (usually called as com-
plex manifold) is a second-countable Hausdorff topological space X with a covering X =⋃
j Uj where Uj are open sets homeomorphic to open set in Cn ' R2n via φj : Uj → Cn,

such that the transition functions φ−1
k ◦φj : φj(Uj ∩Uk)→ φk(Uj ∩Uk) are holomorphic. (In

particular, X is a paracompact topological space and a differentiable manifold of dimension
2n.) Note that n is actually independent of Uj , and it is the complex dimension of X.
The definition allows to define the notion of holomorphic map f : X → Y between complex
manifolds, by requiring that f is holomorphic when read in local charts.

In sheaf-theoretic terms, we can interpret complex manifolds as reduced local ringed
spaces over C with structure sheaf locally isomorphic to the model space (Ω,OΩ), where
Ω ⊂ Cn open subset, OΩ sheaf of holomorphic functions over Ω, see e.g. [Dem12].
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A holomorphic vector bundle of rankm over the complex manifoldX is given by a complex
manifold E, and a holomorphic map π : E → X that is locallly trivial, namely, there exists
a covering {Uj}j of X and trivializations τj : π−1(Uj)

'→ Uj × Cm such that they respect
the first projection pr1 : Uj × Cm → Uj , i.e. pr1 ◦ τj = π, and the transitions functions
τk ◦ τ−1

j are C-linear on each fibre Ex := π−1(x) and holomorphic in the variable x ∈ X, so
to be described by matrices with holomorphic coefficients. A holomorphic section of E π→ X

is a holomorphic map σ : X → E such that π ◦ σ = id. A holomorphic vector bundle
is called trivial if it admits a global trivialization as product. The notion of morphism
of vector bundles is clear. The construction of tensor products, symmetric and exterior
products, dual is clear. In particular, a holomorphic bundle of rank 1 is called a line bundle.
There are some natural holomorphic vector bundles associated to a complex manifold X of
complex dimension n, in particular: the holomorphic tangent bundle ΘX → X, of rank n; the
holomorphic cotangent bundle ΩX → X as the dual of the holomorphic tangent bundle; the
bundle of holomorphic p-forms Ωp

X := ∧pΘ∗X → X as the exterior power of the holomorphic
cotangent bundle; and finally the canonical line bundle KX := det ΩX = ∧nΩX .

I.1.3. Almost-complex manifolds. In particular, any complex manifold of complex di-
mension n is a differentiable manifold of dimension 2n. Moreover, it is orientable, thanks to
(1). Furthermore, it is locally “modeled” on Cn, whence its tangent spaces are complex vector
spaces, varying smoothly with the point. In other words, the underlying differentiable mani-
fold admits an almost-complex structure, that is, an endomorphism J ∈ End(TX) of the tan-
gent bundle such that J2 = −id. In local holomorphic coordinates

(
zj =: x2j−1 +

√
−1x2j

)
j
,

we have

J

(
∂

∂x2j−1

)
=

∂

∂x2j
, J

(
∂

∂x2j

)
= − ∂

∂x2j−1

(note the role of Cauchy-Riemann equations in assuring that this local definition does not
depend on the coordinate chart), that is:

J =


−1

1
. . .

−1

1

 .

Equivalently, we can intepret an almost-complex structure as a GL(n;C)-structure, (namely,
to a GL(n;C)-subbundle of the tangent frame bundle GL(X) of X,) and its integrability as
a GL(n;C)-structure corresponds to X having local holomorphic coordinates, namely, to X
being a complex manifold.

Conversely, the following theorem characterizes when an almost-complex structure un-
derlies a complex manifold:

Theorem I.1.2 (Newlander-Nirenberg integrability [NN57, Theorem 1.1]). Let X be a dif-
ferentiable manifold. An almost-complex structure J on X is the natural almost-complex
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structure associated to a structure of complex manifold (say, integrable) if and only if
NijJ = 0.

Here, NijJ denotes the Nijenhuis tensor

NijJ(_,_) := [_,_] + J [J _, _] + J [_, J _]− [J_, J _] ,

that is the torsion of any connection preserving the almost-complex structure.

I.1.4. Examples of complex manifolds. We give few examples of complex manifolds:

Riemman surfaces: Riemann surfaces are complex manifolds of complex dimension
one. Recall that, topologically, oriented surfaces are classified by their genus g as
g-holed tori. Because of GL(1;C) = CO(2;R), the choice of a(n almost-)complex
structure is equivalent to the choice of a conformal class of Riemannian metrics.
This is in fact the existence of isothermal coordinates.

compact complex surfaces: Compact complex surfaces are classified according to
the Enriques-Kodaira-Siu classification [Enr49, Kod64, Kod68b, Kod68a, Kod66,
Siu83]. (See [Nak84, BHPVdV04, Tel19].) It founds on the following invariants:
plurigenera are P` := dimCH

0(X; `KX) varying ` ∈ N; the Kodaira-Iitaka dimen-
sion is

Kod(X) := lim sup
`→+∞

log dimH0(X; `KX)

log `
,

(namely, the supremum of the ranks of the canonical maps Φ` : X \ BaseLocus →
PH0(X; `KX)∗;) the Hodge numbers hp,q(X) := dimCH

p,q

∂
(X) yield, in particular,

the irregularity q := h0,1, the geometric genus pg := h0,2, the arithmetic genus pa :=

pg − q. A complete classification of non-Kählerian surfaces is still missing, because
of surfaces of class VII: they have Kod(X) = −∞ and b1 = 1; when b2 = 0, they are
Hopf surfaces and Inoue(-Bombieri) surfaces [Bog76, Bog96, LYZ90, LYZ94, Tel94];
when b2 > 0, they are Inoue-Hirzebruch surfaces, Enoki surfaces, Kato surfaces; the
Global Spherical Shell conjecture states that minimal class VII surfaces with positive
second Betti number are Kato surfaces, and works by Andrei Teleman [Tel05, Tel10,
Tel17, Tel19] and references therein give positive evidences for the conjecture at least
for b2 small.

projective manifolds: Projective manifolds are compact complex submanifolds of
CPn :=

(
Cn+1 \ {0}

)/
(C \ {0}). By the Chow theorem [Cho49, Theorem V], see

also Serre GAGA [Ser56], (stating the equivalence between the category of coher-
ent algebraic sheaves on a complex projective variety and the category of coherent
analytic sheaves on the corresponding analytic space,) they are in fact algebraic man-
ifold, that is, they can be described as the zero set of finitely many homogeneous
holomorphic polynomials.

complex tori: Consider a lattice Γ in Cn, that is, a discrete subgroups of maximal
rank 2n (e.g. Γ = Z〈aτ+b, cτ+d〉 in C). Then the action of Γ over Cn is fixed-point-
free and properly-discontinuous, whence Cn/Γ is a manifold endowed with an induced
complex structure. It is homeomorphic to R2n/Z2n = (S1)n. One-dimensional tori



8 DANIELE ANGELLA

are algebraic: their embeddings in the projective space are elliptic curves, namely,
non-singular algebraic curves defined by equation of the form y2 = x3 + ax+ b. The
moduli space of complex structures (up to biholomorphisms) of 1-dimensional tori
is parametrized by the elliptic modular function J(τ) := aτ+b

cτ+d taking values in the
fundamental domain 

|τ | ≥ 1

−1
2 < <(τ) ≤ 1

2

−1
2 < <(τ) < 0⇒ |τ | > 1

 .

spheres: The only spheres that admit almost-complex structures are S2 and S6 [BS53],
see also e.g. [May99, Section 24.4]. Indeed, the Chern class of S2n is cn = χ =

2[S2n]∨ ∈ H2n(S2n;Z), and it must be divisible by (n − 1)!. This happens only for
n ≤ 3. For S2 and S6 we can construct explicitly an almost-complex structure by us-
ing quaternions and octonions. It is known that S4 does not admit almost-complex
structures. Any almost-complex structure on S2 is clearly integrable. The octo-
nionic almost-complex structure on S6 is not integrable. It is not known whether S6

admits integrable almost-complex structures, which is called Hopf problem [Hop48];
more in general, it is not known whether, in dimension 2n ≥ 6, there exist manifolds
admitting almost-complex structures and with no complex structure, which is called
the Yau problem [Gre93, Problem IV.52 at page 15]. In dimension 4, examples of
4-dimensional manifolds admitting almost-complex but no complex structures can
be found in [VdV66]. It has been proved by C. LeBrun [LeB87] that there is no in-
tegrable almost-complex structures on S6 that is compatible with the round metric;
this has been generalized for metrics in a certain neighbourhood of the round metric
by Bor and Hernández-Lamoneda [BHL99]. Some can be said about cohomological
properties of hypothetical complex structures on the sphere [Gra97b, Uga00a, McH],
in particular h0,1 ≥ 1, and its double complex can be described. Clearly, a hypo-
thetical complex structure X would be non-Kähler, not even Moishezon; in fact,
its algebraic dimension a(X) := tr degCM(X) where M(X) is the field of mero-
morphic functions is expected to be a(X) = 0 [CDP98]. Recently, there has been
great interest around the problems, with possible directions proposed by G. Etesi
[Ete15b, Ete15c, Ete15a] towards a positive answer, and by M. Atiyah [Ati16] to-
wards a negative answer to the existence of a complex structure on S6.

locally-homogeneous manifolds of solvable Lie groups: Let G be a connected
simply-connected Lie group, and let Γ be a co-compact discrete subgroup. Con-
sider X := Γ\G . If G is Abelian, then X is a torus. If G is nilpotent, then X

is called nilmanifold [Mal49, page 278]. More in general, if G is solvable, then X

is called solvmanifold. Taking an invariant complex structure on G with respect to
left-translations (namely, a linear complex structure on the associated Lie algebra
g satisfying the integrability condition by Newlander-Nirenberg) induces a complex
structure on X. Examples include: the Hopf surface C2 \ {0}/ 〈z 7→ 2z〉; the Inoue
surfaces; the Iwasawa manifold GL

(
3;Z

[√
−1
])∖

GL(3;C) ; the Nakamura manifold.
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E.g., as for nilmanifolds: on the one hand, non-tori nilmanifolds admit no Kähler
structure, [BG88, Theorem A], [Has89, Theorem 1, Corollary]; on the other hand,
the study of geometric structures can be often reduced at the level of the associated
Lie algebra, by averaging to invariant structures on the Lie group [FG04], and also
cohomologies [Nom54, Hat60, Con06]. As for 6-dimensional nilmanifolds: V. V. Mo-
rozov [Mor58] classified of 6-dimensional nilpotent Lie algebras, up to isomorphism,
in 34 classes; see also [Mag86], [Boc09, Table 15], [Gon98, §3]. S. M. Salamon [Sal01]
proved that 18 classes out of these 34 admit a linear integrable complex structure,
[Sal01, Theorem 3.1, Theorem 3.2, Theorem 3.3, Proposition 3.4]. The classifica-
tion, up to equivalence, of these linear integrable complex structures has been com-
pleted thanks to: L. Ugarte and R. Villacampa [UV14]; A. Andrada, M. L. Barberis,
and I. G. Dotti [ABDM11]; M. Ceballos, A. Otal, L. Ugarte, and R. Villacampa
[COUV16].

LVMB manifolds: Founded on the idea of the Hopf and Calabi-Eckmann manifolds,
López de Medrano and Verjovsky [LdMV97], Meersseman [Mee97, Mee00], and Bo-
sio [Bos01] proposed a construction of compact complex manifolds as follows. They
are leaf spaces of a foliation of CPn−1 given by suitable linear actions Cm 	 Cn. The
problem of embedding compact complex manifolds transversely to an algebraic folia-
tion in a complex projective algebraic variety is related to a conjecture by Bogomolov
[Bog96] and has been recently investigated in [DG14].

OT manifolds: Oeljeklaus-Toma manifolds [OT05] provide a family of examples of
compact complex non-Kähler manifolds, generalizing Inoue-Bombieri surfaces and
introduced as counterexamples to a conjecture by I. Vaisman concerning locally
conformally Kähler metrics. Because of their construction using number fields tech-
niques, many of their properties are encoded in the algebraic structure [OT05, Vul14,
Dub14], and their class is well-behaved under such properties [Ver14, Ver13]. They
generalize Inoue-Bombieri surfaces in class VII [Ino74, Bom73, Tri82], and they are
in fact solvmanifolds [Kas13c].

deformations of complex structures: A natural way to construct new complex
structures on a manifold is by deformations of a given complex structure.

Let B be a complex (respectively, differentiable) manifold. A family {Xt}t∈B
of compact complex manifolds is said to be a complex-analytic family of compact
complex manifolds if there exist a complex manifold X and a surjective holomorphic
map π : X→ B such that
(i) π−1(t) = Xt for any t ∈ B, and
(ii) π is a proper holomorphic submersion.
A compact complex manifold X is said to be a deformation of a compact complex
manifold Y if there exist a complex-analytic family {Xt}t∈B of compact complex
manifolds, and b0, b1 ∈ B such that Xb0 = Xs and Xb1 = Xt.

The theory of deformations of complex manifolds has been started and developed
by K. Kodaira, D. C. Spencer, L. Nirenberg, and M. Kuranishi [KS58, KS60, KNS58,
Kur62]. As a reference, see, e.g., [Kod05, MK06, Huy05].
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I.2. The double complex of forms on a complex manifold

Let X be a differentiable manifold of even dimension dimX = 2n. We consider J an
almost-complex structure, (that is, an endomorphism J ∈ End(TX) such that J2 = −id).
When it is integrable (i.e. NijJ(x, y) := [x, y] + J [Jx, y] + J [x, Jy] − [Jx, Jy] = 0 for any
x, y), then we can actually construct holomorphic coordinates (zj = xj +

√
−1yj)j on X

thanks to the Newlander and Nirenberg theorem, and X is then a complex manifold. Let
us focus on the integrable case.

We split the complexified tangent bundle in the eigenbundles of J :

TX ⊗ C = T 1,0X ⊕ T 0,1X

= span
{
Zj
}
j
⊕ span

{
Z̄j
}
j

= span

{
∂

∂zj
=

1

2

(
∂

∂xj
−
√
−1

∂

∂yj

)}
j

⊕ span

{
∂

∂z̄j
=

1

2

(
∂

∂xj
+
√
−1

∂

∂yj

)}
j

,

where {Zj}j is a local frame for T 1,0X, that we can take as Zj = ∂
∂zj

when the almost-
complex structure is integrable. (In the non-integrable almost-complex case, we can still
split the complexified tangent bundle in its C-linear and anti-C-linear part, but the local
frame is not induced by holomorphic coordinates: in this case, integrability can be restated
as T 1,0X being involutive for the Lie bracket.)

Similarly, we decompose the complexified cotangent bundle into eigenbundles for the dual
endomorphism Jα := α(J t_) = α(−J−1_) = α(J_) (note that different notations may be
used concerning the sign):

T ∗X ⊗ C = (T 1,0X)∗ ⊕ (T 0,1X)∗

= span
{
αj
}
j
⊕ span

{
ᾱj
}
j

= span
{
dzj = dxj +

√
−1dyj

}
j
⊕ span

{
dz̄j = dxj −

√
−1dyj

}
j
,

where {αj}j is the local dual coframe for (T 1,0X)∗ of {Zj}j , that we can take as αj = dzj

when the almost-complex is integrable. We get a decomposition for the bundle of forms

∧kT ∗X =
⊕
p+q=k

∧p(T 1,0X)∗ ⊗ ∧q(T 0,1X)∗,

where a smooth section of ∧p,qX := ∧p(T 1,0X)∗ ⊗ ∧q(T 0,1X)∗ is locally given by∑
i1<···<ip
j1<···<jq

ϕi1,...,ip,j1,...,jqα
i1 ∧ · · · ∧ αip ∧ ᾱj1 ∧ · · · ∧ ᾱjq

=
∑

i1<···<ip
j1<···<jq

ϕi1,...,ip,j1,...,jqdz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

for smooth functions ϕi1,...,ip,j1,...,jq , the second line holding when J is integrable.
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Since d sends functions to ∧1,0X ⊕ ∧0,1X, and 1-forms to ∧2,0X ⊕ ∧1,1X ⊕ ∧0,2X, since
every differential form is locally a finite sum of decomposable differential forms, and by
the Leibniz rule, the C-linear extension of the exterior differential a priori splits into four
components:

d = A+ ∂ + ∂ +A : ∧p,q X → ∧p+2,q−1X ⊕ ∧p+1,qX ⊕ ∧p,q+1X ⊕ ∧p−1,q+2X.

When local holomorphic coordinates exist, we have in fact just

d = ∂ + ∂ : ∧p,q X → ∧p+1,qX ⊕ ∧p,q+1X,

and the condition d2 = 0 reads as

∂2 = ∂∂ + ∂ = ∂
2

= 0.

In fact, integrability of almost-complex structure J is equivalent to the vanishing of the
components A and A of the exterior differential. In other words, for an integrable almost-
complex structure, we have the double complex

(
∧•,•X, ∂, ∂

)
.

We will depict it as in Figure 1, where each square consists of (p, q)-forms, horizontal arrows
represent the ∂ operator and vertical arrows represent the ∂ operator.

p− 2 p− 1 p p+ 1 p+ 2

q − 2

q − 1

q

q + 1

q + 2

Figure 1. Double complex of forms of a complex manifold.

The double complex has some symmetries: conjugation yields a symmetry around the
bottom-left/top-right diagonal; moreover, the duality given by any Hermitian metric is
expected to yield a symmetry around the bottom-right/top-left diagonal.

We focus on special objects in the diagram. In the following, each point represent the
1-dimensional C-vector spaces and arrows are isomorphisms:
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• zigzags of length ` + 1, where ` + 1 is the number of dots, and ` ∈ N counts the
number of arrows:

· · · •

•
∂

OO

∂
// •

. . .

∂

OO

∂
// •

•

∂

OO

· · ·

in particular, zigzags of length one are called dots;
• squares of isomorphisms:

• ∂

'
// •

•
∂ '
OO

∂

' // •
∂'
OO

Note that the French school prefers to consider instead (∧•,•X, d, dc) for the conjugate
differential

dc : ∧• X → ∧•+1X, dc :=
1

2
J−1dJ = −

√
−1

2
(∂ − ∂),

so that ddc =
√
−1 ∂∂.

The following folklore result cited by Greg Kuperberg in the MathOverflow discussion
at http://mathoverflow.net/questions/25723/ is originally attributed to Mikhail Kho-
vanov [Khote], and a complete proof has been finally given by Jonas Stelzig in his interesting
PhD Thesis:

Theorem I.2.1 (Stelzig [Ste18b]). Every bounded double complex can be decomposed as
direct sum of squares and zigzags, whose multiplicity is uniquely determined.

For example, once removed the infinite squares and the arrows arising from symmetries,
the double complex associated to a hypothetical complex structure on the 6-dimensional
sphere S6 should be as in Figure 2, where the labels count the number of respective objects
and α, h0,2, β, h1,0, h1,1 are unknown non-negative integers. This example is constructed
by using the results in [Gra97a, Uga00b] on the Dolbeault cohomology and the Frölicher
spectral sequence of a hypothetical complex structure on the six sphere.

Remark I.2.2. Note that, if E is a holomorphic vector bundle over the complex manifold X,
then there is a well-defined differential operator

∂ : ∧0,q (X;E)→ ∧0,q+1(X;E),

http://mathoverflow.net/questions/25723/
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0 1 2 3

0

1

2

3

1

α

h0,2 + 1 − α

h0,2 − β

h1,0

h1,1 − h0,2 + α− 1

β

1

Figure 2. The double complex of forms for a hypothetical complex structure
on the six-sphre.

where ∧0,q(X;E) denotes the space of sections of smooth forms with value in E, that
is, the section of the bundle (∧0,qT ∗X ⊗ C) ⊗ E. Then we have the differential complex
(∧0,•(X;E), ∂).

I.3. Cohomologies of complex manifolds

In the double complex above, we can just forget the horizontal arrows, and consider, for
any column p, the single complex (∧p,•X, ∂), see Figure 3. Its cohomology is the Dolbeault
cohomology

H•,•
∂

(X) =
ker ∂

im ∂
.

p− 2 p− 1 p p+ 1 p+ 2

q − 2

q − 1

q

q + 1

q + 2

Figure 3. Dolbeault cohomology.
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The following statements provide alternative points of view and further tools, respectively,
sheaf-theoretic and analytic.

Theorem I.3.1 (Dolbeault [Dol53]). On a complex manifold X,

Hp,q

∂
(X) = Hq(X; Ωp

X)

where Ωp
X denotes the sheaf of germs of holomorphic p-forms.

(For the following, please refer to Section III.10.1 for notation and details.)

Theorem I.3.2 (Hodge [Hod89]). On a compact complex manifold X endowed with a
Hermitian metric g, consider the adjoint operator ∂∗ of ∂ with respect to the L2 pairing
induced by g on ∧•,•X. Define the second-order self-adjoint elliptic differential operator
� := [∂, ∂

∗
] = ∂∂

∗
+ ∂

∗
∂. Then

H•,•
∂

(X) ' ker�.

In particular, hp,q(X) := dimCH
p,q

∂
(X) < +∞, and depends upper-semi-continuously under

small deformations of X.

Once fixed a Hermitian metric g and its volume vol, we have the C-linear Hodge-star-
operator ∗ : ∧p,q X → ∧n−q,n−pX, where dimCX = n, such that α ∧ ∗β̄ = 〈α|β〉 vol. Then
∂ = − ∗ ∂∗. This yields to the following symmetry:

Theorem I.3.3 (Serre [Ser55]). On a compact complex manifold X of complex dimension
n, the Hodge-star-operator of a Hermitian metric induces the isomorphism

Hp,q

∂
(X) ' Hn−p,n−q

∂
(X).

In general, there is no natural map connecting the Dolbeault and the de Rham cohomolo-
gies. But we have the following comparison:

Theorem I.3.4 (Frölicher [Frö55]). On a compact complex manifold X, the filtration F p(∧kX⊗
C) :=

⊕
r+s=k
r≥p

∧r,sX induce a spectral sequence with first page

Ep,q1 = Hp,q

∂
(X)⇒ Hp+q

dR (X;C)

and converging to the de Rham cohomology. In particular, for any k ∈ N,∑
p+q=k

hp,q ≥ bk

where bk denotes the kth Betti number.

An explicit description of the Frölicher spectral sequence can be found in [CFGU00b,
Theorem 1, Theorem 3]:

Ep,qr '
X
p,q
r

Y
p,q
r
,

where, for r = 1,

X
p,q
1 :=

{
α ∈ ∧p,qX : ∂α = 0

}
, Y

p,q
1 := ∂ ∧p,q−1 X,
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and, for r ≥ 2,

Xp,qr :=
{
αp,q ∈ ∧p,qX : ∂αp,q = 0 and, for any i ∈ {1, . . . , r − 1},

there exists αp+i,q−i ∈ ∧p+i,q−iX

such that ∂αp+i−1,q−i+1 + ∂αp+i,q−i = 0
}
,

Yp,qr :=
{
∂βp−1,q + ∂βp,q−1 ∈ ∧p,qX : for any i ∈ {2, . . . , r − 1},

there exists βp−i,q+i−1 ∈ ∧p−i,q+i−1X

such that ∂βp−i,q+i−1 + ∂βp−i+1,q+i−2 = 0 and ∂βp−r+1,q+r−2 = 0
}
,

and, for any r ≥ 1, the map dr : Ep,qr → Ep+r,q−r+1
r is given by

dr[α
p,q] := [∂αp+r−1,q−r+1].

We rephrase again this issue by noticing that the Dolbeault and de Rham cohomologies
do not suffice, in general, for detecting the complete structure of the double complex. For
example, zigzags of odd length do not contribute to the difference between Dolbeault and
de Rham cohomology. This means that symmetric zigzags of odd length cannot be detected
by the Frölicher spectral sequence. For example, the following diagrams have the same de
Rham and Dolbeault cohomologies:

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

The above diagrams differ as for the number of corners. Whence we get the need for
having an invariant that counts the corners. Let us introduce the Bott-Chern cohomology
[BC65] (see Figure 4) and its “dual” the Aeppli cohomology [Aep65] (see Figure 5)

H•,•BC(X) :=
ker ∂ ∩ ker ∂

im ∂∂
, H•,•A (X) :=

ker ∂∂

im ∂ + im ∂

in order to solve the issue of no natural map connecting the de Rham and the Dolbeault
cohomologies.

In the same spirit as de Rham cohomology is related to Maxwell equations of electromag-
netism, then Bott-Chern-Aeppli cohomologies play a role in Type II String Theory [TY14].

Also for Bott-Chern and Aeppli cohomologies, we have sheaf-theoretic and analytic inter-
pretations.
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p− 2 p− 1 p p+ 1 p+ 2

q − 2

q − 1

q

q + 1

q + 2

Figure 4. Bott-Chern cohomology.

p− 2 p− 1 p p+ 1 p+ 2

q − 2

q − 1

q

q + 1

q + 2

Figure 5. Aeppli cohomology.

Theorem I.3.5 (Schweitzer [Sch07]). On a complex manifold X, consider the complex L•p,q
of sheaves

· · · pr◦d→
⊕

r+s=p+q−3
r<p, s<q

Ar,s pr◦d→
⊕

r+s=p+q−2
r<p, s<q

Ar,s ∂∂→
⊕

r+s=p+q
r≥p, s≥q

Ar,s d→
⊕

r+s=p+q+1
r≥p, s≥q

Ar,s → · · · ,

which is quasi-isomorphic to the shifting of the complex B•p,q of sheaves

C (+,−)→ O⊕ O→ Ω1 ⊕ Ω
1 → · · · → Ωp−1 ⊕ Ω

p−1 → Ω
p → · · · → Ω

q−1 → Ω
q → 0. (2)

Then

Hp,q
BC(X) ' Hp+q−1(X;L•p,q) ' Hp+q(X;B•p,q),

Hp,q
A (X) ' Hp+q(X;L•p+1,q+1) ' Hp+q+1(X;B•p+1,q+1).

One can now define the integral Bott-Chern cohomology [Sch07] as

Hp,q
BC(X;Z) := Hp+q(X;B•Z(p))

where B•Z(p) is defined as in (2) by replacing C with Z(p) := (2π
√
−1)pZ.
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Theorem I.3.6 (Kodaira-Spencer [KS60], Schweitzer [Sch07]). On a compact complex man-
ifold X endowed with a Hermitian metric g, consider

∆̃BC :=
(
∂∂
) (
∂∂
)∗

+
(
∂∂
)∗ (

∂∂
)

+
(
∂
∗
∂
)(

∂
∗
∂
)∗

+
(
∂
∗
∂
)∗ (

∂
∗
∂
)

+ ∂
∗
∂ + ∂∗∂

and

∆̃A := ∂∂∗ + ∂∂
∗

+
(
∂∂
)∗ (

∂∂
)

+
(
∂∂
) (
∂∂
)∗

+
(
∂∂∗

)∗ (
∂∂∗

)
+
(
∂∂∗

) (
∂∂∗

)∗
,

which are 4th order self-adjoint elliptic differential operators. Then

H•,•BC(X) ' ker ∆BC , H•,•A (X) ' ker ∆A.

In particular, hp,qBC(X) := dimHp,q
BC(X) < +∞ and hp,qA (X) := dimHp,q

A (X) < +∞, and
depends upper-semi-continuously under small deformations of X.

Of course, the conjugation induces the symmetries

Hp,q
BC(X) ' Hq,p

BC(X), Hp,q
A (X) ' Hq,p

A (X).

Moreover, the following symmetry holds:

Theorem I.3.7 (Schweitzer [Sch07]). On a compact complex manifold X, endowed with a
Hermitian metric, the C-linear Hodge-star-operator induces the isomorphism

∗ : Hp,q
BC(X)

'→ Hn−q,n−p
A (X).

Note that it mixes up the two cohomologies and, in general, it is not internal to just
Bott-Chern cohomology, see Theorem II.8.2.

I.4. Cohomologies of quotients of Lie groups

In this section, we focus on “model” for cohomologies, in the sense of rational homotopy
theory, see e.g. [Sul76, FHT15, FOT08]. More precisely, we reduce the computation of
cohomologies for some classes of solvmanifolds Γ\G to the sub-complex of invariant forms,
namely, forms whose lift to the covering Lie group is invariant under the left-translations.
We notice that this is the same as the complex ∧•g∨ constructed over the Lie algebra.

I.4.1. Cohomologies of tori. As a first step, we prove that the de Rham cohomology of
tori is recovered by invariant forms. More in general:

Theorem I.4.1 (see e.g. [FOT08, Theorem 1.28]). Let M be a compact differentiable man-
ifold with an left-action of a compact connected Lie group G. Then the de Rham cohomology
of M is isomorphic to the cohomology of the complex of G-invariant forms.

Proof. Denotes by i : (∧•M)G → ∧•M the inclusion. We have to prove that the induced
map H(i) : H•(M ;R)G → H•(M ;R) is an isomorphism. We first notice that the space of
G-invariant form is actually a sub-complex ((∧•M)G, d) of the complex of forms (∧•X, d),
whose cohomology we denote by H•(M ;R)G. We then fix a bi-invariant volume form dg on
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G, thanks to [Mil76], see e.g. [FOT08, Proposition 1.29]. We consider the following average
map:

∧•M 3 α µ7→
∫
G
g∗αdg ∈ (∧•M)G.

It is easy to check that µ(α) is actually G-invariant. Moreover, µ(α) = α if and only if α
is itself G-invariant. Rewrite this as µ ◦ i = id. We also notice that dµ = µd, whence µ
induces a map in cohomology: H(µ) : H•(M R)→ H•(M ;R)G. In fact, by µ◦i = id, we get
H(µ) ◦H(i) = id whence H(i) is injective. It remains to prove that H(i) is surjective. This
follows by the fact that we can reduce integration to a neighbourhood of the identity in G,
in particular, to a contractible neighbourhod. Indeed it follows that µ is quasi-isomorphic
to the identity, whence H(i) is surjective. �

Remark I.4.2. Note that the same does not hold true, in general, for the Dolbeault coho-
mology, see also [Les93, Akh97].

I.4.2. Cohomologies of nilmanifolds. We prove now the Nomizu theorem:

Theorem I.4.3 (Nomizu [Nom54]). Let X = Γ\N be a nilmanifold, namely, a compact
quotiente of a connected simply-connected Lie group N by a cocompact discrete subgroup
Γ. Consider the Lie algebra n of N , and the sub-complex of invariant forms (∧•n∨, d) ↪→
(∧•X, d). Then the inclusion is a quasi-isomorphism.

Proof. The idea is the following, up to many technical details that we are deliberately
avoiding. We write X as a tower of torus-bundles over low-dimensional nilmanifolds. We
prove the statement for induction on the dimension of X. The base step corresponds to tori,
already considered in the previous statement. The induction step founds on the following.
For a fibre bundle

π : E
F→ B,

we consider the Leray-Serre spectral sequence. It is induced by the filtration

F p ∧p+q E := {ω ∈ F p+qE : ω(v1, . . . , vp+q) = 0 whenever vi1 , . . . , vip+1 ∈ ker dπ}.

Then
Ep,q2 = Hp(B;Hq(F ))⇒ Hp+q(E).

The induction hypothesis allows to compare the second pages of this spectral sequence,
and to the corresponding one at the level of Lie algebras, whence also the last pages are
isomorphic. �

Remark I.4.4. Similar results holds for the Dolbeault cohomology [Sak76, CFGU00a, CF01,
Rol09, Rol11], and for the Bott-Chern cohomology [Ang13, AK17a], whenever we can replace
the tower of torus-bundles by a tower of holomorphic complex torus-bundles. This happens
for example for almost any invariant complex structure on 6-dimensional nilmanifolds, here
including holomorphically-parallelizable Iwasawa [Sch07] and Nakamura manifolds. In other
words, this means that the inclusion of the double complex of invariant forms into the whole
double complex of differential forms is an E1-isomorphism in the sense of Stelzig [Ste18b].
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As a consequence, also Bott-Chern and Aeppli cohomologies are recovered by invariant forms
[Ang13, AK17a, Ste18b].

I.4.3. Cohomologies of special solvmanifolds. As for the de Rham cohomology of solv-
manifolds, when they are completely-solvable (in the sense that any adx ∈ End(g) has only
real eigenvalues), then a result similar to the above Nomizu’s theorem holds by [Hat60].
But in general left-invariant forms are usually not enough to recover the whole de Rham co-
homology: see, for example, the non-completely-solvable solvmanifold provided in [dBT06,
§3, §4, Corollary 4.2]. See also results in [Mos54, Gua07, CF11, Kas13a, Kas12a, CFK13,
Kas13b, Kas12a, Kas14, Kas12b, Kas15].

We briefly summarize here some results concerning the Dolbeault cohomology of a class
of solvmanifolds[Kas13a, Kas13b, AK17a], recalling the results on the computations of the
cohomologies of the Nakamura manifold as an example. Even if we can not use the dou-
ble complex of invariant forms, we can reduce in some case the computation of Dolbeault
cohomology to a finite-dimensional complex.

In the following result, by splitting-type in the sense of [Kas13b] we mean a solvmanifold
X = Γ\G endowed with a G-left-invariant complex structure J where G is a semi-direct
product Cn nφ N satisfying the following assumptions:

(1) N is a connected simply-connected 2m-dimensional nilpotent Lie group endowed
with an N -left-invariant complex structure JN ;

(2) for any t ∈ Cn, one has that φ(t) ∈ GL(N) is a holomorphic automorphism of N
with respect to JN ;

(3) φ induces a semi-simple action on the Lie algebra of N .

Theorem I.4.5 ([Kas13b, Corollary 4.2], [Kas12a, Corollary 6.2]). Let Γ\G be a solvman-
ifold endowed with a G-left-invariant complex structure. Suppose that

• either Γ\G is of splitting-type, with the nilpotent factor N such that the inclusion(
∧•,•n∗, ∂

)
↪→
(
∧•,•N, ∂

)
is a quasi-isomorphism, where n is the Lie algebra of N ,

• or Γ\G is holomorphically parallelizable.

Then there exists a finite-dimensional sub-complex B•,•Γ of the Dolbeault complex
(
∧•,•X, ∂, ∂

)
such that the inclusion (

B•,•Γ , ∂
)
↪→
(
∧•,• Γ\G , ∂

)
is a quasi-isomorphism.

Remark I.4.6 ([Kas13b]). In the case of solvmanifolds of splitting type, the sub-complex
B•,•Γ in the previous theorem is constructed as follows, see [Kas13b].

Consider the standard basis {X1, . . . , Xn} of Cn, and consider a basis {Y1, . . . , Ym} of
the im-eigen-space n1,0 of JN ∈ Aut(n) such that the induced action φ on n1,0 is repre-
sented by φ = diag (α1, . . . , αm) for α1 ∈ Hom(Cn;C∗), . . . , αm ∈ Hom(Cn;C∗) charac-
ters of Cn. Let

{
x1, . . . , xn, α

−1
1 y1, . . . , α

−1
m ym

}
be the basis of ∧1,0g∗C which is dual to

{X1, . . . , Xn, α1Y1, . . . , αmYm}.
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By [Kas13b, Lemma 2.2], for any j ∈ {1, . . . ,m}, there exist unique unitary characters
βj and γj of Cn such that αjβ−1

j and ᾱjγ−1
j are holomorphic. (By shortening, e.g., αI :=

αi1 · · · · · αik for a multi-index I = (i1, . . . , ik),) define B
•,•
Γ ⊂ ∧•,• Γ\G , for (p, q) ∈ Z2, as

Bp,q
Γ := C

〈
xI ∧

(
α−1
J βJ

)
yJ ∧ x̄K ∧

(
ᾱ−1
L γL

)
ȳL

: |I|+ |J | = p and |K|+ |L| = q such that (βJγL) bΓ= 1〉 .

The previous results allow to compute explicitly the de Rham, Dolbeault, and Bott-Chern
cohomologies of the completely-solvable Nakamura manifold and of the holomorphically
parallelizable Nakamura manifold, [Kas13b, AK17a].

Example I.4.7 (The completely-solvable Nakamura manifold, [Kas13b, Example 1], [AK17a,
Example 2.17]). The completely-solvable Nakamura manifold, firstly studied by I. Nakamura
in [Nak75, page 90], is an example of a cohomologically Kähler non-Kähler solvmanifold,
[dAFdLM92], [FMS03, Example 3.1], [dBT06, §3].

Consider the group

G := Cnφ C2 , where φ
(
x+
√
−1 y

)
:=

(
exp(x) 0

0 exp(−x)

)
∈ GL

(
C2
)
.

For some a ∈ R, the matrix

(
exp(x) 0

0 exp(−x)

)
is conjugate to an element of SL(2;Z).

Hence there exists a discrete co-compact subgroup

Γ :=
(
aZ + b

√
−1Z

)
nφ ΓC2

of G, where ΓC2 is a lattice of C2. The completely-solvable Nakamura manifold is the
completely-solvable solvmanifold X := Γ\G .

Consider holomorphic coordinates {z1, z2, z3} on X, where
{
z1 := x+

√
−1 y

}
is the

holomorphic coordinate on C (as a matter of notations, we shorten, for example, exp(−z1)dz121̄ :=

exp(−z1)dz1 ∧ dz2 ∧ dz̄1).

By A. Hattori’s theorem, [Hat60, Corollary 4.2], the de Rham cohomology of Γ\G does not
depend on Γ and can be computed using just G-left-invariant forms on Γ\G ; in Table 1, we
list the harmonic representatives of the de Rham cohomology classes with respect to the G-
left-invariant Hermitian metric g := dz1�dz̄1+exp(−z1−z̄1)dz2�dz̄2+exp(z1+z̄1)dz3�dz̄3.

As regards Dolbeault cohomology and Bott-Chern cohomology, they depend on the lattice,
see [Kas13b, AK17a]. In particular, following [Kas13b, Example 1], one has to distinguish
three different cases:

(i): b ∈ (2Z) · π;
(ii): b ∈ (2Z + 1) · π;
(iii): b 6∈ Z · π.

The Dolbeault cohomology of the completely-solvable Nakamura manifold was computed
in [Kas13b, Example 5.1] by using Theorem I.4.5. The Bott-Chern cohomology of the
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completely-solvable Nakamura manifold was computed in [AK17a, Example 2.17], and is
summarized in Table 2, see [AK17a, Table 4, Table 5, Table 3].

Finally, Table 3 summarizes the dimensions of the de Rham, Dolbeault, and Bott-Chern
cohomologies of the completely-solvable Nakamura manifold, [Kas13b, Example 1], [AK17a,
Example 2.17], see [AK17a, Table 6].

In particular, note that the completely-solvable Nakamura manifold in case (iii) satisfies
the ∂∂-Lemma (compare also [Kas13b, Kas14]).

Lecture II. Cohomological decomposition

In this Lecture, we review some relation between the cohomologies introduced above, so
to relate holomorphic and topological properties of complex manifolds. In particular, we
introduce the notion of ∂∂-Lemma property as a cohomological decomposition, which holds
in particular on compact Kähler manifolds; we give a numerical characterization of this
property in terms of the Betti numbers and the dimensions of the Bott-Chern cohomology;
and we study the behaviour of this property under deformations or modifications of the
complex structures. A similar theory can be formulated for compact symplectic manifolds
(the other side of Kähler geometry) and framed in the more general context of generalized-
complex geometry. Finally, we will review a topological consequence of the ∂∂-Lemma
property: if it holds, then the rational homotopy type of the complex manifold is a formal
consequence of its de Rham cohomology.

References for this Lecture are [DGMS75, AT13, ASTT17, RYY17, Ste19, Gua04, Gua11,
Cav05, AT15a].

II.5. Cohomological decomposition on complex manifolds: the ∂∂-Lemma

II.5.1. The ∂∂-Lemma property. Let X be a compact complex manifold, and let us
consider the double complex

(
∧•,•X, ∂, ∂

)
and its associated de Rham, Dolbeault, Bott-

Chern and Aeppli cohomologies. The identity map induces the following natural maps:

H•,•BC(X)

��xx &&
H•,•∂ (X)

&&

+3 H•dR(X;C)

��

H•,•
∂

(X)

xx

ks

H•,•A (X)

(3)

so allowing to compare the topological information contained in the de Rham cohomology
and the holomorphic contents of Dolbeault and Bott-Chern cohomologies. Here, we just
depicted H•,•∂ (X) ⇒ H•dR(X;C) for the Frölicher spectral sequence: we recall that it does
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not yield a natural map in cohomology, but just allows to compare the dimension via the
inequality

∑
p+q=k dimCH

p,q

∂
(X) ≥ bk(X).

Straightforward computations, which take advantage of ∂ and ∂ having different degree,
yield the following. It defines the notion of manifolds satisfying the ∂∂-Lemma:

Proposition II.5.1 (Deligne-Griffiths-Morgan-Sullivan [DGMS75]). On a compact complex
manifold, if the map H•,•BC(X) → H•,•A (X) is injective, then any map in diagram (3) is an
isomorphism. In this case, we say that X satisfies the ∂∂-Lemma.

Another equivalent restatement will be clearer in few minutes:

Theorem II.5.2 (Deligne-Griffiths-Morgan-Sullivan [DGMS75]). A compact complex man-
ifold X satisfies the ∂∂-Lemma if and only if its double complex is a sum of dots and
squares, if and only if the Hodge-Frölicher spectral sequence degenerates at the first page
and the natural filtration induces a Hodge structure of weight k on Hk

dR(X;C) (that is,
Hk
dR(X;C) =

⊕
p+q=k F

pHk
dR ⊕ F̄ qHk

dR).

We already recalled the Frölicher spectral sequence comparing the dimension of Dolbeault
cohomology and the Betti numbers in Theorem I.3.4. The following provides an analogue
of the Frölicher inequality for the Bott-Chern cohomology, and it can be interpreted as a
quantitative characterization of the ∂∂-Lemma property (an unnatural isomorphism forcing
a natural one).

Theorem II.5.3 (Angella-Tomassini [AT13]). On a compact complex manifold X, we have
the inequality à la Frölicher ∑

p+q=k

(hp,qBC + hp,qA ) ≥ 2 bk. (4)

Moreover, the equality holds for any k if and only if X satisfies the ∂∂-Lemma.

Idea of the proof. Let us understand the heuristic of the proof with the help of a concrete
example. The following diagram represents (up to some unneccessary squares) the double
complex of forms on the Iwasawa manifold

X := Z[
√
−1]3

∖
1 z1 z3

1 z2

1

 : z1, z2, z3 ∈ C

 ,

thanks to works by Nomizu and Sakane [Nom54, Sak76, Sch07, Ang13].

It is easy to see that the squares do not contribute to any cohomology. And that the
Bott-Chern cohomology counts the corners possibly having ingoing arrows, except for the
squares:

◦ // •

◦

OO
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0

0

1

1

2

2

3

3

Figure 6. The double complex of (left-invariant) forms on the Iwasawa manifold.

Dually, Aeppli cohomology counts the corners possibly having outgoing arrows, except for
the squares:

◦

• //

OO

◦

The following Figure 7 summarizes how to compute the cohomologies of the Iwasawa
manifold, and the final result can be found in Table 4, also for the small deformations as
given in [Nak75].

0

0

1

1

2

2

3

3

Dolbeault:
horizontal arrows

0

0

1

1

2

2

3

3

Bott-Chern:
ingoing arrows

0

0

1

1

2

2

3

3

Aeppli:
outgoing arrows

Figure 7. Cohomologies of the Iwasawa manifold.

So, the idea here is that Dolbeault cohomology does not care horizontal arrows, conjugate
Dolbeault cohomology does not care vertical arrows, Bott-Chern cohomology counts possibly
incoming corners, Aeppli cohomology counts possibly outgoing corners, with the exception,
in any case, of squares. Hence, just by combinatorial arguments, one recognizes that the
sum of the dimension of the Bott-Chern and Aeppli cohomologies is greater or equal than
the sum of the dimension of Dolbeault and conjugate Dolbeault cohomologies, which is
greater or equal than twice the Betti number by the Frölicher spectral sequence. Moreover,
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both equalities hold if and only if the double complex is direct sum of squares and dots.
That is, if the manifold satisfies the ∂∂-Lemma. A precise proof uses the Varouchas exact
sequence[Var86]:

0→ im ∂ ∩ im ∂

im ∂∂
→ ker ∂ ∩ im ∂

im ∂∂
→ H•,•

∂
(X)→ H•,•A (X)→ ker ∂∂

ker ∂ + im ∂
→ 0

and its dual, where ∂ :
(

ker ∂∂
ker ∂+im ∂

)p,q '→ (
im ∂∩ker ∂

im ∂∂

)p,q+1
. �

Remark II.5.4 (Andrei Teleman [Tel06]). As for compact complex surfaces, the degrees
∆k := hkBC + hkA − 2 bk are topological invariants. More precisely, ∆1 = 0 and ∆2 ∈ {0, 2}
according to the complex surface admitting Kähler metrics (by using also the Lamari and
the Buchdahl criterion). (Note that, while Theorem II.5.3 gives an inequality of algebraic
type, the result by Teleman founds on analytic properties: the ellipticity of the differential
operator D(f) := ddcf ∧ ωn−1 on functions, with index 0 and 1-dimensional kernel, where
ω is the associated (1, 1)-form to a metric and n is the complex dimension.)

Remark II.5.5. Notice that we do not have a topological upper bound: this is because of the
even-length zigzags, which contribute to the Dolbeault cohomology but not to the de Rham
cohomology. On the other side, we have an upper bound for the Bott-Chern cohomology in
terms of the Dolbeault cohomology [AT17]:

hkBC ≤ (n+ 1)
(
hk
∂

+ hk−1
∂

)
.

This is because a contribution to Aeppli cohomology arises from zigzags of positive length
`+ 1. Any such zigzag, when placed between total degrees k and k+ 1, creates exactly two
non trivial classes in either Dolbeault or conjugate Dolbeault cohomology at either degree
k or degree k + 1, and at most b`/2c + 1 classes in Aeppli cohomology at degree k. (In
particular, b`/2c+ 1 ≤ min{k + 1, (2n− k) + 1} ≤ n+ 1.) Use then the Schweitzer duality
and the Serre duality.

We conclude this section with a remark on conjectured results towards the Hopf problem:

Remark II.5.6 (Sullivan’s “scaling exponent” conjecture). We expect that
∑

k bk(X) ≥ 3 for
any compact complex manifold X of dimension dimX = n ≥ 3. See also [AM18]. We also
expect that

∑
p,q h

p,q
BC(X) ≥ n+ 1.

II.6. The ∂∂-Lemma property for compact Kähler manifolds

II.6.1. Kähler manifolds. Let us consider a complex manifold endowed with a Hermitian
metric, namely, a Riemannian metric g such that the complex structure J is an isometry:
g = g(J_, J_). Then ω := g(J_,_) is the associated (1, 1)-form. We will confuse g, ω, and
the associated Hermitian structure h = g −

√
−1ω when talking about a Hermitian metric

on X.

A very special case is when g osculates at the second order the Euclidean metric at any
point (the higher orders depending on the curvature): for every point x ∈ X, there exists a
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holomorphic coordinate chart
(
U,
{
zj
}
j∈{1,...,n}

)
, with x ∈ U , such that

g =
n∑

α,β=1

(δαβ + o(z)) dzα � dz̄β at x,

(see e.g. [GH94, pages 107–108], [Huy05, Proposition 1.3.12], [Mor07, Theorem 11.6].

This is equivalent to asking for the associated (1, 1)-form ω to be closed:

dω = 0,

that is, ω is a symplectic form (i.e. a non-degenerate closed form) compatible with J (i.e.
of type (1, 1)). In this case, we say that ω is a Kähler metric.

The notion of Kähler manifold has been studied for the first time by J. A. Schouten and
D. van Dantzig [SvD30], see also [Sch29], and by E. Kähler [Käh33], and the terminology
has been fixed by A. Weil [Wei58]. On a Kähler manifold, we have then three structures,

• a complex structure J ,
• a symplectic structure ω,
• a Hermitian structure g,

related each other by the condition

g = ω(_, J_).

This can be read as the Kähler geometry being pointwise (i.e. forgetting integrability even
at first order) governed by the structure group

U(n) = GL(n;C) ∩ Sp(2n;R) ∩O(2n;R)

= GL(n;C) ∩ Sp(2n;R) = GL(n;C) ∩O(2n;R) = Sp(2n;R) ∩O(2n;R).

Remark II.6.1. Note that, on a manifold X endowed with a symplectic form ω, there is
always a (possibly non-integrable) almost-complex structure J such that g := ω(_, J_)

is a Hermitian metric associated to ω, see e.g. [CdS01, Corollary 12.7]. (The space of
such almost-complex structures is contractible, see e.g. [AL94, Corollary II.1.1.7], [CdS01,
Proposition 13.1].)

Several equivalent definitions can be given for the compatibility. For example, on a
complex manifold X with a Hermitian metric g, one can prove the formulas

3dω(x, y, z) = 〈(∇xJ)y, z〉+ 〈(∇yJ)z, x〉+ 〈(∇zJ)x, y〉,

respectively,

3dω(x, y, z)− 3dω(x, Jy, Jz) = 2〈(∇xJ)y, z〉+ 〈x,NijJ(y, Jz)〉,

whence it follows that the following are equivalent:

• ∇J = 0;
• dω = 0.

In particular:
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Corollary II.6.2. Let X be a complex manifold endowed with a Hermitian structure g. Then
g is Kähler if and only if the Levi-Civita connection and the Chern connection coincide.

By the Poincaré Lemma, locally any Kähler ω can be written as

ω
loc
=
√
−1∂∂g,

for a smooth function g.

We notice that, by the Stokes theorem, if ω is a Kähler metric, then necessarily ωk is
closed not exact, for any k; in particular, b2k(X) > 0. Moreover, if j : N → X is a complex
submanifold of complex dimension k (namely, N is locally defined by n − k holomorphic
equations with C-linear independent differentials), then N is not a boundary.

For example, It follows that the Hopf surface S1×S3 admits no Kähler structure, because
b2(X) = 0. And the Hironaka example [Hir62], see also [Har77], admits no Kähler structure,
because it contains a complex submanifolds being a boundary.

II.6.2. Projective manifolds. The Kähler case is particularly interesting for at least two
reasons. First, every such a metric always exists on a projective manifold, namely, Kähler
manifolds can be intended as a (transcendental) generalization of projective (algebraic)
manifolds. Indeed, the so-called Fubini-Study metric [Fub04, Stu05] on CPn is a Kähler
metric. It is induced by the fibration S1 ↪→ S2n+1 → CPn; more precisely, by using the
homogeneous coordinates [z0 : · · · : zn], one has that the associated (1, 1)-form ωFS to the
Fubini and Study metric is

ωFS =

√
−1

2π
∂∂ log

(
n∑
`=0

|z`|2
)
.

By restrictions along analytic submanifolds, it follows that complex projective (algebraic)
manifolds are Kähler manifolds. On the other side:

Theorem II.6.3 (Kodaira embedding [Kod54, Theorem 4]). Let X be a compact complex
manifold admitting Kähler metrics. The following are equivalent:

• there exists a Kähler metric ω such that

[ω] ∈ H2
dR(X;R) ∩ im (H2(X;Z)→ H2

dR(X;R));

• there exists a positive line bundle, (namely, a holomorphic line bundle endowed with
a Hermitian metric with positive curvature; equivalently, its first Chern class is rep-
resented by a positive form;)
• there exists an ample line bundle, (namely, for some tensor power L⊗k, for some
k ≥ 1, a basis for H0(X;L⊗k) provides an embedding Φ of X into CPNk where
Nk := dimH0(X;L⊗k) − 1); moreover, L⊗k = Φ∗OCPN (1), where OCPN (1) is the
dual of the tautological bundle OCPN (−1);
• there exists a complex-analytic embedding of X into a complex projective space CPN .
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II.6.3. Hodge theory for Kähler manifolds. The second reason is that, by the very
definition, every local property just depending on the metric and its first derivatives is true
on a Kähler manifold if and only if it is true on the Euclidean space Cn. In particular,
this holds for the Kähler identities, that interrelate the action of the operators L := ω ∧_,
Λ := −ιω−1 , H = [L,Λ] of the symplectic structures, of the operators d, d∗ = − ∗ d∗ of the
Riemannian structures, and of the operators ∂, ∂ of the complex structure. We can prove
it by local calculation on Cn, or by exploting the sl(2)-representation of the symplectic
structures, as we do (see e.g. [Huy05, Proposition 3.1.12]); see also [Hod35, Hod89]; see
also [Dem86, Theorem 1.1, Theorem 2.12], and [Gri66], [Dem12, §VI.6.2], for commutation
relations on arbitrary Hermitian manifolds are provided).

Theorem II.6.4 (Kähler identities, [Wei58, Théorème II.1, Théorème II.2, Corollaire II.1]).
Let X be a compact Kähler manifold. Consider the differential operators ∂ and ∂ associated
to the complex structure, the symplectic operators L and Λ associated to the symplectic struc-
ture, and the Hodge-∗-operator associated to the Hermitian metric. Then, these operators
are related as follows:

(i) [∂, L] = [∂, L] = 0 and [Λ, ∂
∗
] = [Λ, ∂∗] = 0;

(ii) [∂
∗
, L] =

√
−1 ∂ and [∂∗, L] = −

√
−1 ∂, and [Λ, ∂] = −

√
−1 ∂∗ and [Λ, ∂] =

√
−1 ∂

∗.

Therefore, the 2nd order self-adjoint elliptic differential operators � := [∂, ∂∗], � :=
[
∂, ∂

∗
]
,

∆ := [d, d∗] , ∆̃BC and ∆̃A, are related as follows:

(iii) � = � = 1
2∆, and ∆ commutes with ∗, ∂, ∂, ∂∗, ∂∗, L, Λ;

(iv) ∆̃BC = �
2

+ ∂∗∂ + ∂
∗
∂, [KS60, Proposition 6], [Sch07, Proposition 2.4];

(v) ∆̃A = �
2

+ ∂∂∗ + ∂∂
∗.

Sketch of the proof. The previous identities can be proven either using the sl (2;C)-representation
〈L, Λ, H〉 → End• (∧•X ⊗ C), or reducing to prove the corresponding identities on Cn with
the standard Kähler structure (which are known as Y. Akizuki and S. Nakano’s identities,
[AN54, §3]) and hence using that every Kähler metric osculates to order 2 the standard
Hermitian metric on Cn.

We briefly recall the sl(2;R)-representation induces by a symplectic structure on the space
of forms. Let X be a manifold endowed with a symplectic structure ω. Denote by the map
ιξ : ∧• X → ∧•−2X the interior product with ξ ∈ ∧2 (TX), and by the map π∧kX : ∧•

X → ∧kX the natural projection onto ∧kX. Finally, the canonical Poisson bi-vector is
ω−1(_,_) := ω(I−1_, I−1_), where I : TX → T ∗X is the natural isomorphism induced by
ω. In a Darboux coordinate chart

(
U,
{
xj
}
j∈{1,...,2n}

)
, we have ω =

∑
dx2j−1 ∧ dx2j and

ω−1 loc
=
∑n

j=1
∂

∂x2j−1 ∧ ∂
∂x2j . Consider the following operators:

L := ω ∧_ : ∧• X → ∧•+2X,

Λ := −ιω−1 : ∧• X → ∧•−2X,

H :=
∑
k

(n− k)π∧kX : ∧• X → ∧•X.



28 DANIELE ANGELLA

Then we have the sl(2;R)-representation [Yan96, Corollary 1.6] of sl(2;R) ' 〈L,Λ, H〉 →
End• (∧•X), namely

[L,H] = 2L, [Λ, H] = −2Λ, [L,Λ] = H.

This sl(2;R)-representation have finite H-spectrum (namely, we can decompose ∧•X into
the direct sum of eigen-spaces of H and H has only finitely-many distinct eigen-values,
[Yan96, Definition 2.2]). Therefore it induces a decomposition of the space of the differential
forms, the Lefschetz decomposition:

∧•X =
⊕
r∈N

Lr Prim•−2rX,

where the space of primitive forms is

Prim•X := ker Λ = kerLn−k+1b∧kX .

Without relying on results on sl(2;R)-representations, we provide a concrete proof of this
last result. Denote by 2n the dimension of X. Recall that [L,Λ]b∧kX= (n − k) id, whence
by induction [L`,Λ]b∧kX= −j(k−n+ j− 1)Lj−1. For induction on j ≤ n−k, we show that
Lj−1b∧kX is injective. It follows also that Lkb∧n−kX : ∧n−kX → ∧n+kX is an isomorphism.
This says also that ker Λb∧kX= kerLn−k+1. By induction, we can now prove uniqueness and
existence of the Lefschetz decomposition.

We continue the proof of the Kähler identities. It suffices to prove that [Λ, d] = −(dc)∗ on
forms of type Ljβ with β ∈ PrimkX primitive, where dc = J−1dJ = −

√
−1 (∂ − ∂) with J

the complex structure, and its adjoint with respect to the metric structure is (dc)∗ = −∗dc∗.
Denote by n the complex dimension of X. By using that Ljb∧kX is injective for j ≤ n− k,
one shows that dα = β0 + Lβ1 with β0, β1 primitive forms. Use also

[Lj ,Λ]b∧kX= −j (k − n+ j.1)Lj−1.

It yields [Λ, d](Ljα) = −jLj−1α0 − (k − n + j − 1)Ljα1. On the other hand, to compute
(dc)∗(Ljα), we use the formula

∗LjbPrimkX= (−1)k(k+1)/2 j!

(n− k − j)!
Ln−k−jJ.

A straightforward computation yields −(dc)∗Ljα = −jLj−1α0 − (k − n+ j − 1)Ljα1, com-
pleting the proof.

The equality between the Laplacians follows by first showing that ∂∂∗+∂∗∂ = 0, and then
showing that � = �, and finally showing that ∆ = 2�, thanks to the previous identities.

In the same way, we get the commutation [∆, L] = 0. �

As a consequence of the last statement, with respect to a Kähler metric, the space of
harmonic forms with respect to the different Laplacians actually coincide, and we can move
from different Hodge decompositions. Thanks to the Hodge theory for the several Laplacians,
we get a decomposition in cohomology, which a priori depends on the chosen Kähler metric
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(actually, it is not, and this will be the contents of the ∂∂-Lemma): see, e.g., [Huy05,
Corollary 3.2.12], respectively [Huy05, Proposition 3.2.13].

Theorem II.6.5 (Hodge decomposition theorem, [Wei58, Théorème IV.3]). Let X be a
compact complex manifold endowed with a Kähler structure. Then there exist a decomposition

H•dR(X;C) '
⊕
p+q=•

Hp,q

∂
(X) ,

and isomorphisms
Hp,q

∂
(X) ' Hq,p

∂
(X) .

Moreover, the above decomposition is orthogonal with respect to the (possibly non positive-
definite) Hermitian form on Hk

dR(X;C) defined as

Hk(α, β) :=
√
−1

k
∫
ωn−k ∧ α ∧ β̄.

Theorem II.6.6 (Lefschetz decomposition theorem, [Wei58, Théorème IV.5]). Let X be a
compact complex manifold, of complex dimension n, endowed with a Kähler structure. Then
there exist a decomposition

H•dR(X;C) =
⊕
r∈N

LrPrimH•−2r(X),

where PrimH•−2r(X) :=
(
ker
(
Λ: H•−2r

dR (X;C)→ H•−2r−2
dR (X;C)

))
, and isomorphisms

Lk : Hn−k
dR (X;C)

'→ Hn+k
dR (X;C) .

Moreover, the above decomposition is orthogonal with respect to the (possibly non positive-
definite) Hermitian form on Hk

dR(X;C) defined as

Hk(α, β) :=
√
−1

k
∫
ωn−k ∧ α ∧ β.

The two decompositions are related by the following:

Theorem II.6.7 (Hodge index theorem). Let X be a compact complex manifold, of complex
dimension n, endowed with a Kähler structure. On Hk

dR(X;C), consider the (possibly non
positive-definite) Hermitian form on Hk

dR(X;C) defined as

Hk(α, β) :=
√
−1

k
∫
ωn−k ∧ α ∧ β.

Then, on Hp,q

∂
(X) ∩ PrimHkX, the Hermitian form

(−1)k(k−1)/2
√
−1

p−q−k
Hk

is positive-definite.

In particular, when n is even, the (symmetric) intersection form on Hn(X),

Q(α, β) =

∫
X
α ∧ β,

has signature ∑
a,b

(−1)a ha,b.
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A useful tool here is the formula

∗b∧p,qX∩PrimkX= (−1)k(k−1)/2
√
−1

p−q 1

(n− k)!
Ln−k.

As we announced above, the Hodge decomposition actually does not depend on the chosen
Kähler metric. In fact:

Theorem II.6.8 (Deligne-Griffiths-Morgan-Sullivan [DGMS75]). Compact Kähler mani-
folds satisfy the ∂∂-Lemma.

Proof. Once fixed a Hermitian metric, the Kähler identities ([ω∧_, d] = 0 and [ω∧_, d∗] =

dc) yield the comparison for the Laplacian:

∆̃BC = �
2

+ ∂∗∂ + ∂
∗
∂,

which yields an unnatural isomorphism between the cohomologies.

More precisely, argue as follows by using the Hodge decomposition once fixed a Hermitian
metric. Let α ∈ ∧p,qX be a ∂-closed ∂-closed d-exact form onX. In particular, by the Hodge
decomposition theorem for the de Rham cohomology, the formα is orthogonal to the space
of ∆-harmonic forms. Note that, by the Kähler identities, the space of ∆-harmonic forms
coincide with the space of �-harmonic forms and with the space of �-harmonic forms. Since
α is ∂-closed and orthogonal to the space of �-harmonic forms, the conjugate version of the
Hodge decomposition theorem for the Dolbeault cohomology yields α = ∂γ for some γ ∈
∧p−1,qX. By applying the Hodge decomposition theorem for the Dolbeault cohomology, to
the form γ, one gets a�-harmonic form hγ , a form β ∈ ∧p−1,q−1X, and a form η ∈ ∧p−1,q+1X

such that γ = hγ+∂β+∂
∗
η. By the Kähler identities, one has

[
∂, ∂

∗
]

= 0 and that hγ is also

�-harmonic. Hence α = ∂γ = ∂∂β− ∂∗∂η. It suffices to prove that ∂∗∂η = 0. Indeed, since

α is ∂-closed, one has ∂∂∗∂η = 0, and hence
∥∥∥∂∗∂η∥∥∥2

=
〈
∂
∗
∂η, ∂

∗
∂η
〉

=
〈
∂∂
∗
∂η, ∂η

〉
= 0.

Hence α = ∂∂β is ∂∂-exact. �

The ∂∂-Lemma property is extremely useful in Kähler geometry, for example, in reducing
the study of Kähler metrics belonging to a fixed Kähler class to their potential functions.
Let us look closely to the following problem, known as the Calabi-Yau problem. Given any
Kähler metric ω, its Ricci form ρ(ω) is a d-closed (1, 1)-form belonging to the first Chern
class c1(X) := c1(K−1

X ), which just depends on the complex structure. We ask whether
any representative in c1(X) is actually the Ricci form of some Kähler metric in the same
cohomology class as ω. By the ∂∂-Lemma, we can confuse de Rham cohomology classes
and Bott-Chern cohomology classes. Namely, given Ψ = ρ(ω) +

√
−1∂∂ψ ∈ c1(X), we are

looking for ω̃ = ω +
√
−1∂∂ϕ > 0 such that ρ(ω̃) = Ψ. By the local expression

RicCh
loc
=
√
−1∂∂ logωn,

this reduces to
√
−1∂∂ log(ω +

√
−1∂∂ϕ)n =

√
−1∂∂ logωn +

√
−1∂∂ψ,



COMPLEX NON-KÄHLER GEOMETRY 31

whence
(ω +

√
−1∂∂ϕ)n = exp(ψ + c)ωn,

where c is a constant. So we have reduced the problem to a scalar equation in φ, that can
be solve by using the continuity method and the Yau a priori estimates [Yau78].

II.6.4. Hodge conjecture for projective manifolds. Summarizing the contents of the
previous section, on X compact Kähler of complex dimension n, we have

Hk(X;C) = Hk(X;Z)⊗Z C = Hk(X;Z)/tor⊗Z C

and the Hodge decomposition

Hk(X;C) =
⊕
p+q=k

Hp,q(X) with Hp,q(X) = Hq,p(X).

In particular, we say that Hk(X;C) admits an integral Hodge structure of weight k, namely,
we have a torsion-free f.g. Abelian group VZ = Hk(X;Z)/tor and a decompositionHk(X;C) =

VZ ⊗Z C =
⊕

p+q=k V
p,q with V p,q = V q,p.

Moreover, the Kähler form ω induces a Hermitian form

H(α, β) =
√
−1

k
∫
X
ωn−k ∧ α ∧ β̄

onHk(X;C) with respect to which the Hodge decomposition is an orthogonal decomposition,
and we have that (−1)k(k−1)/2

√
−1

p−q−k
H is positive-definite on PrimHp,q(X). And the

Lefschetz decomposition and the above intersection form are well-defined over Hk(X;Z)

when [ω] ∈ H2(X;Z) ∩ H1,1(X), say it is a Hodge class; by the Kodaira embedding, this
happens if and only if X admits a holomorphic embedding in CPN .

Remark II.6.9. Note that a Hodge decomposition determines a Hodge decreasing filtration
F pVC =

⊕
r≥p V

r,k−r such that VC = F pVC ⊕ F k−p+1VC. Conversely, such a filtration
determines a Hodge decomposition by setting V p,q = F pVC ∩ F qVC.

We want to understand better the geometric meaning of integral classes of type (k, k).

Consider an analytic subset of a complex manifold X, namely, a closed subset Z ⊂ X that
is locally expressed as zero set of holomorphic functions. By the Implicit Function Theorem,
any complex submanifold is an analytic subset; on the other side, any analytic subset Z has a
dense open smooth regular part Zsmooth and a nowhere-dense singular analytic subset Zsing.
The analytic subset Z is called irreducible if Zsmooth is connected, and in this case we can
define its dimension as the dimension of the smooth part. By the Weierstrass Preparation
Theorem, we get that an analytic subset is stratified by closed analytic subsets Zk of strictly
decreasing dimension such that Zk \ Zk+1 is a closed submanifold of X \ Zk+1.

By the exact sequence of relative cohomology, if Y ⊂ X is a complex sumanifold of
codimension k, then the map Hj(X;Z) → Hj(X \ Y ;Z) is an isomorphism for j < 2k.
This yields that, for an analytic subset Z of codimension r, the class [Z] ∈ H2r(X;Z) is
well-defined as the Poincaré dual of its smooth part [Zsmooth].
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More concretely, [Z] is the class ϕ 7→
∫
Z ϕ :=

∫
Zsmooth

ϕ, where the integral is well-defined
because locally Zsmooth is a d-sheeted ramified covering on a disc; for the same reason, the
Stokes theorem still holds. This makes clear that, if X admits a Hodge structure (e.g. X is
projective), then [Z] ∈ H2r(X;Z) ∩Hr,r(X).

We define the analytic cycles of codimension r as the group Zr(X) generated by analytic
subsets of codimension r. By the previous argument, we have the cycle class map

Zr(X)→ H2r(X;Z).

Its image H2r(X;Z)an is called the group of analytic classes. On a Kähler manifold, an-
alytic classes are Hodge classes of degree 2r, namely, integer classes of type (r, r), i.e. in
H2r(X;Z)an ⊆ Hr,r(X). In the projective algebraic case, we speak of algebraic classes, say
H2r(X;Z)alg.

Conjecture II.6.10 (rational Hodge conjecture). Let X be a projective manifold. Then
any Hodge class of type degree 2k is represented by an integer multiple of the class of an
algebraic cycle, that is,

H2k(X;Q)alg = H2k(X;Q) ∩Hk,k(X).

Remark II.6.11. Originally, the formulation of the Hodge conjecture [Hod89, Hod52] was
"more ambitious". But Grothendieck [Gro69] pointed out that it was "false for trivial
reasons". In the integral setting, the conjecture is false because of torsion classes [AH62],
and also in the torsion-free case by Kollár [BCC92]. In the Kähler case, Voisin [Voi02b]
provided a counter-example. As far as now, the conjecture is known to be true: for projective
threefolds (as consequence of the Leftschetz (1, 1) theorem see below); for uniruled projective
manifolds of dimension 4; when the cohomology is generated in degree 2, for example, for
general Abelian varieties [Mat58], for products of elliptic curves [Tat65], for simple Abelian
varieties of prime dimension [Tan82].

The Hodge conjecture is known to be true at the level of divisors, namely, codimension
1 analytic cycles; as a corollary, thanks to the Hard Lefschetz Theorem, it holds true for
threefolds.

Theorem II.6.12 (Lefschetz (1, 1) theorem). On a projective manifold, it holds

H2(X;Z)alg = H2(X;Z) ∩H1,1(X).

The steps in the proof are summarized in the following.
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Here, the first Chern class is defined taking the exponential sequence

0→ Z 2π
√
−1→ OX

exp→ O×X → 0,

and taking the associated long exact sequence in cohomology:

H1(X;Z) // H1(X;OX) // H1(X;O×X)

ss
H2(X;Z) // H2(X;OX).

Here, the last map can be factorized as H2(X;Z)→ H2(X;C)→ H0,2

∂
(X) where the second

map is induced by the projection. The group H1(X;O×X) parametrized the line bundles over
X: it is called the Picard group of X. Finally, the map

c1 : H1(X;O×X)→ H2(X;Z)

associates to any line bundle its first Chern class, which is an integral class that sits
in H1,1(X). In particular, Pic0(X) := ker c1 ' H1(X;OX)/H1(X;Z) is a torus that
parametrizes line bundles with zero first Chern class, called the Picard torus; when X is
projective, then the Picard torus is an Abelian variety.

Remark II.6.13. For a complex manifold X, the determinant of the holomorphic cotangent
bundle determines a line bundle, the canonical bundle. The first Chern class of the manifold
is then defined as the first Chern class of its canonical bundle. A metric on the manifold
determines a metric on the canonical bundle by the volume. By the previous result, we can
prescribe the curvature in c1(X) of the metric on the canonical bundle. On the other side,
to realize such a metric on the canonical bundle as the determinant of a metric h on X, we
need to prescribe the volume of h. This is the Calabi conjecture, solved by Yau [Yau78].

We also recall that, once fixed a Hermitian structure on a line bundle, there exists unique
the Chern connection that preserves the Hermitian structure and whose (0, 1)-components
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on sections of L is given by the holomorphic operator of L. Its curvature is represented by
a closed (1, 1)-form, then it induces a cohomology class in H1,1(X). We have the following.

Theorem II.6.14. On a line bundle with a Hermitian structure, the class of the curvature
of the Chern connection is c1(L). Conversely, on a line bundle, for any representative
ω ∈ c1(L), there exists a Hermitian structure on L whose curvature is ω.

The vertical map follows by the long sequence associated to the exact sequence of sheaves

0→ O∗ →M∗ → M∗

O∗
→ 0.

In particular, there appears H1(X;O∗) = Pic(X) and H0(X; M∗

O∗ ) = Div(X) the group of
divisors of X. The map Div(X)→ Pic(X) is shown to be surjective.

We first notice that c1 is surjective onto the space of Hodge classes of degree 2, namely,
the right-hand side in the statement of the Hodge conjecture equals the Néron-Severi group

im
(
c1 : Pic(X)→ H2(X;Z)

)
.

The statement follows by the Lelong theorem, stating that c1(O(D)) = [D] for D divisor,
making the diagram commutative..

Corollary II.6.15. The Hodge conjecture holds true for projective threefolds.

II.7. Behaviour of the ∂∂-Lemma under deformations and modifications

II.7.1. Behaviour of the ∂∂-Lemma under deformations. We recall that the existence
of Kähler metric is stable under small deformations, namely, it is an open property in
the space of deformations, thanks to a result by Kodaira and Spencer [KS60], that makes
advantage of elliptic operators and Hodge theory for Kähler metrics.

More in general, the validity of the ∂∂-Lemma property is stable under small deformations.
The following result is due to Wu, and different proofs appeared in the literature [Voi02a,
Tom08, AT13]: we give an argument exploiting the numerical characterization in Theorem
II.5.3 by [AT13].

Theorem II.7.1 (Wu [Wu06]). The property of satisfying the ∂∂-Lemma is stable under
small deformations of the complex structure.

Proof. Indeed, the rhs of (4) is constant under small deformation by the Ehresmann lemma,
while the lhs varies upper-semi-continuously, whence the equality remains true and Theorem
II.5.3 applies. �

On the other side:

Theorem II.7.2 (Angella-Kasuya [AK17b]). The property of satisfying the ∂∂-Lemma is
not closed under deformations.

Proof. Explicit computations on the Lie group Cndiag(exp z,exp(−z)) C2, see Section I.4.3. �
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II.7.2. Behaviour of the ∂∂-Lemma under modifications. The following result allow
to enlarge the class of Mǒıšezon manifolds [Mǒı67] and of manifolds in class C of Fujiki
[Fuj78] in the class of compact complex manifolds satisfying the ∂∂-Lemma:

Theorem II.7.3 (Deligne-Griffiths-Morgan-Sullivan [DGMS75]). Let X and Y be compact
complex manifolds of the same dimension, and let f : X → Y be a holomorphic birational
map. If X satisfies the ∂∂-Lemma, then also Y satisfies the ∂∂-Lemma.

Proof. Indeed, one has that, if X and Y are complex manifolds of the same dimension, and
π : X → Y is a proper surjective holomorphic map, then the maps

π∗ : H•dR (Y ;C)→ H•dR (X;C) and π∗ : H•,•
∂

(Y )→ H•,•
∂

(X)

induced by π : X → Y are injective. �

Conversely, we expect to prove that the ∂∂-Lemma is defined inside the localization of
the category of holomorphic maps with respect to bimeromorphisms. A first partial result
is given by:

Theorem II.7.4 (Stelzig [Ste18a]; see also Angella-Suwa-Tardini-Tomassini [ASTT17];
Rao-Yang-Yang [RYY17]). Let X be compact complex manifold, Z be a complex submanifold.
If both X and Z satisfy the ∂∂-Lemma, then also the blowup BlZX satifies the ∂∂-Lemma.

The following are natural questions. Is the ∂∂-Lemma property preserved by submani-
folds? In the following proof [ASTT17], we will also assume Z to have a holomorphic tubular
neighbourhood: does the MacPherson deformation to the normal cone work to avoid this
assumption?

Note that existence of Hodge structures in cohomology is not preserved by blowups (see
Voisin, Vuletescu). By using the Weak Factorization Theorem for bimeromorphic maps in
the analytic category, proven by Abramovich, Karu, Matsuki, Włodarczyk [AKMW02]:

Corollary II.7.5 (Stelzig [Ste18a]). For compact complex threefolds, the ∂∂-Lemma is a
bimeromorphic invariant. The same happens in higher dimension, if we can prove that it is
a restriction invariant.

Sketch of the proof of Theorem II.7.4 as in [ASTT17]. The several proofs essentially found
on the derivation of a formula for the Dolbeault cohomology of the blowup, and then con-
cluding thanks with arguments of the type of the E1-isomorphism notion in [Ste18a].

We will prove Theorem II.7.4 by sheaf-theoretic, more precisely Čech-cohomological ar-
guments, under the assumption that the center Z admits a holomorphically contractible
neighbourhood, and another technical assumption that will appear later.

Let us start by looking at the de Rham cohomology [Voi02a]. Consider the long ex-
act sequence for pairs (Xn, Xn \ Zn−k) and (X̃n, X̃n \ En−1), use excision on a tubular
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neighbourhood of Z in X, and the Thom isomorphism:

· · · // Hh−1(X \ Z;C) //

'

��

Hh(X,X \ Z;C) //

'
��

Hh(X;C) //

��

Hh(X \ Z;C) //

'

��

· · ·

Hh−2k(Z;C)

66

��
Hh−2(E;C)

((
'
��

· · · // Hh−1(X̃ \ E;C) // Hh(X̃, X̃ \ E;C) // Hh(X̃;C) // Hh(X̃ \ E;C) // · · ·

If the diagram commutes, as it happens both in the Kähler [Voi02a] and in the non-Kähler
case, one deduces that Hh(X̃, X̃ \ E;C) is the pushout of the diagram Hh−2(E;C) ←
Hh−2k(Z;C)→ Hh(X;C).

We would like to do the same for the Dolbeault cohomology. Consider the long exact
sequence for pairs. Assume that there exists a holomorphically contractible neighbourhood
U of Z in X, and use the Suwa’s Thom isomorphism [Suw09]:

· · · // Hp,q−1(X,X \ Z) //

'

��

Hp,q(X,X \ Z) //

��

Hp,q(X) //

��

Hp,q(X \ Z) //

'

��

· · ·

Ȟp,q

∂
(U,U \ Z)⊕Hp−k,q−k(Z)

55

��
'
��

Ȟp,q

∂
(Ũ , Ũ \ E)⊕Hp−1,q−1(E;C)

))��

· · · // Hp,q−1(X̃, X̃ \ E) // Hp,q(X̃, X̃ \ E) // Hp,q(X̃) // Hp,q(X̃ \ E) // · · ·

Under another technical assumption, see [ASTT17], we can assure that the diagrams are
commutative and that Hp,q(X̃) is the pushout of Hp−1,q−1(E;C) ← Hp−k,q−k(Z;C) →
Hp,q(X).

By the naturality of the limit, we conclude that, if the ∂∂-Lemma holds for both Z and
X (and clearly it holds for E, that is just the projectivization of the normal bundle of Z in
X, and whose cohomology can be explicitly described), then it holds also for X̃. �

II.8. Topological obstructions for the ∂∂-Lemma

A topological obstruction to the validity of ∂∂-Lemma is given by the notion of formality
that we explain now.

Let us focus on the differential graded algebra structure on the space of forms given by
the wedge product and the exterior differential, and on the de Rham cohomology. By the
Leibniz rule, it induces a structure of algebra in cohomology. We look at HdR as a functor
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inside the category dga of differential Z-graded algebras:

HdR : dga dga .

We ask for what objects X this functor can be made “concrete”, that is, when it can be
realized as a composition of quasi-isomorphisms and formal inverses of quasi-isomorphisms
in dga: e.g.,

X //

qis ��

HdR(X)

C1 C2qis
oo C3qis

oo
qis
// · · ·

qis
// Ch−1 Chqis

oo
qis

;;

By the existence of minimal models, this corresponds to the dga of forms and the dga of
de Rham cohomology sharing the same model. A compact complex manifold whose double
complex of forms satisfies such a property is called formal in the sense of Sullivan [Sul76].
Note that the minimal model contains informations on the rational homotopy groups of
the manifold [Sul76]: hence the rational homotopy type of formal manifolds is a formal
consequence of their de Rham cohomology.

In fact, this can always be done in the category of A∞-algebras (that is, strongly homo-
topy associative algebras), thanks to the Homotopy Transfer Principle by Kadeishvili. By
[LPWZ09], the induced A∞-structure in cohomology yields the Massey products, up to sign.

With these notations, a compact complex manifold is formal in the sense of Sullivan if
there exists a system of representatives H• for the cohomology such that the induced A∞-
structure on H• is actually an algebra structure. (A particular case is when the chosen
representatives are actually the harmonic representatives with respect to some Hermitian
metric. This last situation is referred as geometric formality in the sense of Kotschick
[Kot01].)

The “Main Theorem” in [DGMS75] is the following:

Theorem II.8.1 (Deligne-Griffiths-Morgan-Sullivan [DGMS75]). Let X be a compact dif-
ferentiable manifold. If X admits a complex structure such that the ∂∂-Lemma holds, then
the differential graded algebra (∧•X, d) is formal. In particular, all the Massey products of
any order are zero.

Proof. Indeed, if X satisfies the ∂∂-Lemma, then the inclusion ker dc → ∧•X (where dc :=

J−1dJ) and the projection ker dc → ker dc

im dc induce the quasi-isomorphisms

(ker dc, d)

qisxx qis &&

(∧•X, d)
(

ker dc

im dc , 0
)

proving that (∧•X, d) is equivalent to
(

ker dc

im dc , 0
)
, and hence formal. �
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II.8.1. Duality for Bott-Chern cohomology. A Dolbeault homotopy theory has been
developed in [NT78]. Let us focus now on the algebraic structure of Bott-Chern and Aeppli
cohomologies. Note that the wedge products on forms induces an algebra structure in
Bott-Chern cohomology, and just a HBC-module structure in Aeppli cohomology. The
duality pairing given by any fixed Hermitian metric is internal in de Rham and Dolbeault
cohomologies by Poincaré and Serre dualities, and it yields an isomorphism between Bott-
Chern and Aeppli cohomologies.

This is an important issue, for example, in defining Massey products for Bott-Chern
cohomology. In [AT15b], see also subsequent works by Tardini and Tomassini, triple Aeppli-
Bott-Chern Massey products are defined, starting from Bott-Chern class, and yielding a
class in Aeppli cohomology, up to indeterminacy.

If we want to force Massey products to be defined inside Bott-Chern cohomology, we
would like to ask for the following property.

Say that a compact complex manifold X of complex dimension n satisfy the Schweitzer
qualitative property if the natural pairing

H•,•BC(X)×H•,•BC(X)→ C , ([α], [β]) 7→
∫
X
α ∧ β

induced by the wedge product and by the pairing with the fundamental class [X] is non-
degenerate.

Unfortunately:

Theorem II.8.2 (Angella-Tardini [AT17]). Let X be a compact complex manifold. If it
satisfies the Schweitzer qualitative property, then it satisfies the ∂∂-Lemma.

Proof. We prove that X satisfies the ∂∂-Lemma if and only if∑
k∈Z

∣∣∣hkBC − hkA∣∣∣ = 0.

Recall that the Bott-Chern cohomology counts the corners with possible incoming arrows,
and the Aeppli cohomology counts the corners with possible outcoming arrows, with the
exceptions of squares. Therefore the hypothesis can be restated as: for any anti-diagonal,
the number of ingoing arrows equals the number of outgoing arrows, except for squares.
Since no ingoing arrow can enter the anti-diagonal of total degree 0, it follows that there is
no zigzag of positive length in the whole diagram. That is, the ∂∂-Lemma holds. �

II.9. Generalized complex geometry and cohomological decompositions on
symplectic manifolds

In this section, we frame complex geometry in the setting of generalized-complex geometry
and then we draw the parallel between the cohomological theory of complex and symplectic
manifolds.

Let X be a compact differentiable manifold of dimension 2n. Note that a complex struc-
ture is given by an endomorphism J : TX → TX satisfying an algebraic condition (J2 = −1)
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and an analytic condition (NijJ = 0). Similarly, a symplectic structure is given by a non-
degenerate 2-form that can be interpreted as an isomorphism ω : TX → T ∗X with an
algebraic condition (being a 2-form) and an analytic condition (dω = 0).

Therefore, more in generale, let us consider the bundle TX ⊕ T ∗X endowed with the
natural symmetric pairing

〈X + ξ|Y + η〉 :=
1

2
(ξ(Y ) + η(X)) .

Fix a d-closed 3-form H on X. On the space C∞ (X; TX ⊕ T ∗X) of smooth sections of
TX ⊕ T ∗X over X, define the H-twisted Courant bracket as

[_, _]H : C∞ (X; TX ⊕ T ∗X)× C∞ (X; TX ⊕ T ∗X)→ C∞ (X; TX ⊕ T ∗X) ,

[X + ξ, Y + η]H := [X, Y ] + LXη − LY ξ −
1

2
d (ιXη − ιY ξ) + ιY ιXH

(where ιX denotes the interior product with X ∈ C∞(X;TX) and LX := [ιX , d] denotes
the Lie derivative along X ∈ C∞(X;TX)); the H-twisted Courant bracket can be seen also
as a derived bracket induced by the H-twisted differential dH := d + H ∧ _, see [Gua04,
§3.2], [Gua11, §2].

An H-twisted generalized complex structure on X, [Gua04, Definition 4.14, Definition
4.18], [Gua11, Definition 3.1] is an endomorphism J ∈ End (TX ⊕ T ∗X) such that

(i) J2 = −idTX⊕T ∗X , and
(ii) J is orthogonal with respect to 〈_|_〉, and
(iii) the Nijenhuis tensor

NijJ,H := − [J_, J_]H + J [J_, _]H + J [_, J_]H + J [_, _]H

of J with respect to the H-twisted Courant bracket vanishes identically.

Equivalent definitions are given in [Gua04, Proposition 4.3] in terms of the
√
−1-eigen-

bundle of the C-linear extension of J to (TX ⊕ T ∗X) ⊗R C), and in [Gua04, Theorem 4.8]
in terms of the Clifford action.

By definition, the type of a generalized complex structure J on X, [Gua04, §4.3], [Gua11,
Definition 3.5], is the upper-semi-continuous function

type (J) :=
1

2
dimR (T ∗X ∩ JT ∗X) .

A generalized complex structure J on X induces a Z-graduation on the space of com-
plex differential forms on X, see [Gua04, §4.4], [Gua11, Proposition 3.8], whose pieces will
be denoted as U•JJ . Accordingly, the differential splits in the components ∂JJ and ∂JJ .
One can then consider generalized Dolbeault and Bott-Chern cohomologies, and defne the
dHd

J
H -Lemma property. An analogue of the Frölicher inequality for generalized Bott-Chern

cohomology holds [AT15a].

Symplectic structures and complex structures provide the fundamental examples of gener-
alized complex structures; in fact, the following generalized Darboux theorem by M. Gualtieri
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holds. (Recall that a regular point of a generalized complex manifold is a point at which the
type of the generalized complex structure is locally constant.)

Theorem II.9.1 ([Gua04, Theorem 4.35], [Gua11, Theorem 3.6]). For any regular point
of a 2n-dimensional generalized complex manifold with type equal to k, there is an open
neighbourhood endowed with a set of local coordinates such that the generalized complex
structure is a B-field transform of the standard generalized complex structure of Ck×R2n−2k.

The standard generalized complex structure of constant type n (that is, locally equivalent
to the standard complex structure of Cn), the generalized complex structure of constant
type 0 (that is, locally equivalent to the standard symplectic structure of R2n), and the
B-field transform of a generalized complex structure are then the fundamental blocks.

• Let X be a compact 2n-dimensional manifold endowed with a complex structure J
[Gua04, Example 4.11, Example 4.25]. Consider the (0-twisted) generalized complex
structure

JJ :=

(
−J 0

0 J∗

)
,

where J∗ denotes the dual endomorphism of J . Hence, one gets the decomposition
in types [Gua04, Example 4.25],

U•JJ =
⊕
p−q=•

∧p,qJ X ,

and that
∂JJ = ∂J and ∂JJ = ∂J .

The dHdJH -Lemma property correpondes then to the classical ∂∂-Lemma property.
• Let X be a compact 2n-dimensional manifold endowed with a symplectic structure
ω ∈ ∧2X ' Hom (TX;T ∗X) [Gua04, Example 4.10]. Consider the (0-twisted)
generalized complex structure

Jω :=

(
0 −ω−1

ω 0

)
,

where ω−1 ∈ Hom (T ∗X;TX) denotes the inverse of ω ∈ Hom (TX;T ∗X). One gets
the type decomposition [Cav06, Theorem 2.2],

Un−•Jω
= exp

(√
−1ω

) (
exp

(
Λ

2
√
−1

)
(∧•X ⊗ C)

)
,

where Λ := −ιω−1 . By considering the natural isomorphism

ϕ : ∧• X ⊗ C→ ∧•X ⊗ C ,

ϕ(α) := exp
(√
−1ω

) (
exp

(
Λ

2
√
−1

)
α

)
,

one gets that, [Cav06, Corollary 1],

ϕ (∧•X ⊗ C) ' Un−• ,

ϕd = ∂Jωϕ and ϕdJω = −2
√
−1∂Jωϕ .
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In particular, one gets the symplectic Frölicher inequality [AT14]

dimH•(d,dΛ;ddΛ) (X) + dimH•(ddΛ;d,dΛ) (X) ≥ 2 dimH•dR(X;R) ,

and the equality holds if and only if X satisfies the Hard Lefschetz Condition:

Theorem II.9.2 ([Mat95, Corollary 2], [Yan96, Theorem 0.1], [Mer98, Proposition
1.4], [Gui01], [TY12, Proposition 3.13], [Cav05, Theorem 5.4], [AT14, Remark 2.3]).
Let X be a compact manifold endowed with a symplectic structure ω. The following
conditions are equivalent:
(1) every de Rham cohomology class of X admits a representative being both d-

closed and dΛ-closed, namely, Brylinski’s conjecture [Bry88, Conjecture 2.2.7]
holds on X;

(2) the Hard Lefschetz Condition holds on X;
(3) the natural map H•

(d,dΛ;ddΛ)
(∧•X)→ H•dR(X;R) induced by the identity is sur-

jective;
(4) the natural map H•

(d,dΛ;ddΛ)
(∧•X) → H•dR(X;R) induced by the identity is an

isomorphism;
(5) the bounded Z-graded R-vector space ∧•X endowed with the endomorphisms

d ∈ End1 (∧•X) and dΛ ∈ End−1 (∧•X) satisfies the ddΛ-Lemma;
(6) the decomposition

H•dR(X;R) =
⊕
r∈N

LrH(0,•−2r)
ω (X;R) ,

holds;
(7) the equality in dimH•

(d,dΛ;ddΛ)
(X) + dimH•

(ddΛ;d,dΛ)
(X) ≥ 2 dimH•dR(X;R)

holds for any degree.

Lecture III. Special Hermitian metrics on complex manifolds.

In this Lecture, we focus on special metrics on complex manifolds, in particular, we
propose and study an analogue of the Yamabe problem for Hermitian manifolds.

References for this Lecture are [Huy05, Gau97, ACS17, ACS19]

III.10. Geometry of Hermitian and Kähler metrics on complex manifolds

A Hermitian metric h on a complex manifold X of complex dimension n is a smoothly
varying Hermitian form (i.e. sesquilinear positive-definite form) on each fibre of the holomor-
phic tangent bundle T 1,0X. In this section, we first recall some basic notions of Hermitian
geometry, here including the notion of Chern connection (more details can be found e.g. in
[Bło13, Voi02a, Bal06, Mor07, Gau15, Huy05, Aub98, Bes08]; in particular, we try to follow
closely [Bło13, §2] for notations), then we focus on the metric aspects of Kähler geometry
(the reader can consult e.g. the references [Bło13, Voi02a, Bal06, Mor07, Huy05, Szé14,
Joy07, War83, Ara12, Wel08, BDP02, Sch07]).
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III.10.1. Hermitian metrics on complex manifolds. Let X be a complex manifold of
complex dimension n, which is assumed to be connected; denote by J its complex structure.

A Hermitian structure

h = g −
√
−1ω

on a complex manifold X of complex dimension n is a smoothly varying Hermitian form
(i.e. sesquilinear positive-definite form) on each fibre of the holomorphic tangent bundle
T 1,0X. In other words:

• h := 〈_|_〉 is a Hermitian structure on X:
here, hx : T 1,0

x X × T 1,0
x X → C is a sesquilinear positive-definite structure on T 1,0

x X,
varying smoothly with x ∈ X; note that (TxX, J) can be identified with (T 1,0

x X,
√
−1)

as C-linear vector space, so hx can be considered as a Hermitian structure on TxX
as a C-vector space with respect to J , as well as on TxX ⊗R C with the C-linear
extension of J ; in other words, we can set hx(X̄, Ȳ ) := hx(X,Y ) and extend h as a
sesquilinear form on TxX ⊗R C = T 1,0

x X ⊕ T 1,0
x X by linearity;

• g := <h:
it is (the C-linear extension, say complexification of) a Riemannian structure on the
underlying smooth manifold, such that it is J-invariant, namely, g(J_, J_) = g;
• ω := −=h:
it is (the C-linear extension, say complexification of) a real 2-form, such that it is J-
invariant, namely, ω(J_, J_) = ω, and positive on the J-lines, namely, ω(X,JX) >

0 for any non-zero X; it is called the associated (1, 1)-form;
• they are related by:

ω = g(J_,_) , g = ω(_, J_) .

In the following, we will often confuse h, g, ω.

Note that any complex manifold is orientable. Indeed, fix any local frame {u1, . . . , un} of
TX as C-vector bundle, and consider the orientation given by the local frame {u1, Ju1, . . . , un, Jun}
as R-vector bundle; the orientation does not depend on the choice of the initial local frame
because of the Cauchy-Riemann equations. Since ω is almost-symplectic, it defines a canon-
ical volume form:

vol := ωn,

(which is often replaced by 1
n!ω

n.)

The Hermitian structure is a pointwise-Hermitian structure on vector fields. It gives a
duality

|_〉 : TX → T ∗X

between tangent and cotangent bundle. By means of this duality, it induces pointwise-
Hermitian structure on 1-forms. By extending it to the exterior powers, we get a pointwise-
Hermitian structure on forms: more precisely, it is given by the determinant on simple
elements, extended to zero on forms of different degrees. We will denote it by 〈_|_〉.
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IfX is compact, we have a Hermitian L2-pairing on global differential forms by integrating
the pointwise-pairing with respect to the measure of the volume:

〈α|β〉L2 :=

∫
X
〈α|β〉 ωn .

The (C-linear) Hodge-∗-operator is defined by:

∗ : ∧p,q X → ∧n−q,n−pX , 〈α|β〉 ωn = α ∧ ∗β .

It satisfies ∗b2∧kX= (−1)k(2n−k) id = (−1)k id. In abstract term, it is given by the composition
p−1 ◦ m, where: p : ∧n−p,n−q X → HomC(∧p,qX;∧n,nX) ' HomC(∧p,qX;C) is given by
wedge product and by the C-linear identification ∧n,nX ' C thanks to connectedness; and
m : ∧p,q X → HomC(∧p,qX;C) is given by the Hermitian structure.

III.10.2. Levi-Civita connection. Let us focus on the Riemannian structure g. Any tensor
is extended by C-linearity to the complex tangent bundle.

We recall that, on a Riemannian manifold, the Levi-Civita connection

∇ := ∇LC : C∞(X;TX)→ C∞(X;TX ⊗ T ∗X)

is the unique connection (i.e. R-linear map satisfying the Leibniz rule) on the tangent bundle
being compatible with the metric and torsion-free, that is,

∇g = 0, T (X,Y ) := ∇XY −∇YX − [X,Y ] = 0.

where T is the torsion. It is given by:

2 g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

+g([X,Y ], Z)− g([Y,Z], X) + g([Z,X], Y ).

In general, take a local coordinate system {xh}h. The (non-tensorial) Christoffel symbols
determine the connection:

∇ ∂

∂xj

∂

∂xh
= Γkjh

∂

∂xk
.

The Riemann curvature is

R(X,Y ) := ∇2
X,Y −∇2

Y,X = (∇X∇Y −∇∇XY )− (∇Y∇X −∇∇YX)

= [∇X ,∇Y ]−∇[X,Y ] ∈ ∧2(X; End(TX)).

We also use the tensor:

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

The Levi-Civita connection satisfies the further symmetry known as first (algebraic)
Bianchi identity: ∑

σ∈G
R(σx, σy)σz = 0. (1Bnc)
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(This follows by the Levi-Civita connection being torsion-free, and by the Jacobi identity for
the Lie bracket [_,_].) More in general, for a metric connection ∇ with possibly non-zero
torsion T , we have (compare e.g. [Gau15, §1.16]):∑

σ∈G
R(σx, σy)σz = d∇T (x, y, z).

In particular, it follows g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z), and

R∇ ∈ S2 ∧2 X. (Symm)

We also have the second (differential) Bianchi identity:

(∇XR)(Y,Z) + (∇YR)(Z,X) + (∇ZR)(X,Y ) = 0

(it can be read as d∇R = 0 [Gau15, page 44]).

The first Ricci curvature and the second Ricci curvature are, respectively, the traces

Ric(i)(x, y) = trR(x, y) ∈ ∧2X,

Ric(ii)(z, w) = trgR(_,_, z, w) ∈ ∧2X ⊂ End(TX).

Thanks to (Symm), they coincide. The scalar curvature is

Scal = trgRic(i) = tr Ric(ii) ∈ C∞(X;R).

The sectional curvature at a point p of a plane σp := span{X,Y } in the tangent space at
p is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p.
More precisely,

K(X,Y ) :=
g(R(X,Y )X,Y )

|X|2|Y |2 − g(X,Y )
.

The sectional curvature determines the curvature tensor completely.

III.10.3. Chern connection of Hermitian metrics. We have seen that, in general, the
Levi-Civita connection does not preserve the complex structure. This happens only for
Kähler metrics. Hence we consider Hermitian connections, namely, connections on the
holomorphic tangent bundle preserving the Hermitian structure: that is, both metric and
complex structure. In general they have torsion. Prescribed torsion components T 1,1

b = 0

yields to the notion of canonical connection in the Lichnerowicz-Gauduchon family [Gau97].

In particular, we focus now on the Chern connection ∇Ch. It is the unique connection on
T 1,0X preserving g and J , (i.e. ∇Chg = ∇ChJ = 0,) and such that its part of type (0, 1)

coincides with the Cauchy-Riemann operator ∂ associated to the holomorphic structure,
(equivalently, its curvature is a (1, 1)-form,) [Gau97]. We will see that, (up to C-linear
extension,) it coincides with the Levi-Civita connection in case of Kähler metrics. The same
definition work to define the Chern connection of a holomorphic vector bundle E → X,
reducing to the former in case E = T 1,0X.

The Chern connection ∇ := ∇Ch satisfies the type condition symmetry:

R∇ ∈ ∧1,1(X; End(T 1,0X)),
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namely,
R∇(x, y, z, w) = R∇(x, y, Jz, Jw) = R∇(Jx, Jy, z, w) . (Cplx)

(The J-invariance in the third and fourth arguments, namely the propertyR∇ ∈ ∧2(X; End(T 1,0X)),
follows from ∇J = 0 and g(J_, J_) = g(_,_). The conclusion follows from ∇0,1 = ∂ yield-
ing (∇0,1)2 = 0 and by ∇ being real.)

For Chern connection, some formulas take a more natural expression. E.g. the Chern
Ricci curvature is locally given by

RicCh
loc
=
√
−1∂∂ logωn, (5)

the Chern scalar curvature is

SCh =
√
−1 trω∂∂ logωn,

and the Chern Laplacian is

∆Chϕ = 〈ω|ddcϕ〉 = 2
√
−1 trω∂∂ϕ.

This motivates the study of Kähler metrics: where we use compatibility to relate complex
structure (Chern connection) and Riemannian properties (Levi-Civita connection). In this
case, we derive further symmetries for the curvature tensors (compare [?]).

Remark III.10.1. Many of the results that follow make sense also for other canonical con-
nections in the Lichnerowicz-Gauduchon family, that are characterized by

g(∇txy, z) = g(∇LCx y, z) +
1− t

4
T (x, y, z) +

1 + t

4
C(x, y, z),

where
T := Jdω := −dω(J_, J_, J_), C := dω(J_,_,_),

varying t ∈ R. Distinguished connections are the Chern connection ∇Ch = ∇1 and the
Bismut connection ∇+ = ∇−1.

III.11. Constant Chern-scalar curvature metrics in conformal classes

In Riemannian geometry, the Yamabe problem, answered by Yamabe, Trudinger, Aubin,
and Schoen, states the existence of constant scalar curvature metrics in any conformal class.
We state an analogue in the Hermitian context, making advantage of the Chern connection,
and attempting to notions of canonical Hermitian metrics on complex manifolds

Let X be a compact complex manifold of complex dimension n. Once fixed ω Hermitian
metric on X, we will denote by {ω} its conformal class. Note that any conformal metric is
still Hermitian.

We look for {ω′ ∈ {ω} : Scal(ω′) is constant}. Note that GX({ω}) := HConf(X; {ω})×
R+ acts on this space, by biholomorphisms preserving the conformal class and by homo-
theties respectively. We quotient out its action and we consider the Chern-Yamabe modui
space

ChYa(X; {ω}) :=
{
ω′ ∈ {ω} : Scal(ω′) is constant

}
/GX({ω}).
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We refer to the problem of studying CY(X; {ω}) (being empty, compact, . . . ) as the Chern-
Yamabe problem.

Remark III.11.1. In the non-Kähler context, the Chern-Yamabe problem is actually different
from the classical Yamabe problem, and from the almost-complex Yamabe problem intro-
duced by Del Rio and Simanca in [dRS03]. This follows as Liu-Yang [LY12] showed that
the totale Chern-scalar curvature being equal to the total scalar curvature (respectively, to
the total J-scalar curvature) forces the metric to be Kähler.

It is not difficult to write down the transformation equation for the Chern-scalar curvature
under conformal changes:

SCh(exp
2f

n
ω) = exp(−2f

n
)
(
SCh(ω) + ∆Ch

ω (f)
)
.

Here, on smooth functions,

∆Ch
ω (f) = 〈ω|ddcf〉ω = 2

√
−1trωdd

cf

is the Chern-Laplacian, and it differs by the Hodge-de Rham Laplacian ∆d,ω = [d, d∗ω] by a
first-order term:

∆Ch(f)ω = ∆d,ω + 〈df |θ〉ω
where θ is called the (balanced) Lee form and is characterized by

dωn−1 = θ ∧ ωn−1.

Two special cases are of interest:

• when θ = 0, equivalently, dωn−1 = 0, namely, ω is known as balanced in the sense of
Michelsohn [Mic82], then ∆Ch = ∆d on functions;
• when d∗ωθ = 0, equivalently, ∂∂ωn−1 = 0 namely, ω is known as standard in the sense
of Gauduchon [Gau77], then

∫
X ∆Chfωn = 0. A foundational theorem by Gauduhon

assures the existence of a unique Gauduchon metric of volume one in any conformal
class, that we will denote as η and take as reference metric.

Since we are mod out the homothethies, we can choose to normalize the conformal factor
f in exp 2f

n ω ∈ {ω} in order to have

{ω}1 :=

{
exp

2f

n
ω :

∫
X

exp
2f

n

ηn

n!
= 1

}
.

Note that this is not the volume one normalization.

At the end of the day, we are reduced to solve the equation

∆Ch
η f + SCh(η) = λ · exp

2f

n
(ChYa)

for f smooth function and λ constant, equal to the expected constant Chern-scalar curvature.
Thanks to the chosen normalization,

λ =

∫
X
SCh(η)

ηn

n!
=

1

(n− 1)!

∫
X
cBC1 (K−1

X ) ∧ [ηn−1]
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is an invariant depending just on the complex structure and on the conformal class, and it
is known as Gauduchon degree of the conformal class ΓX({ω}).

Here ΓX({ω}) is the degree of the anticanonical line bundle K−1
X with respect to the

Gaduchon metric in {ω}. Then, by [Gau77], it is equal to the volume of the divisor associated
to any meromorphic section of K−1

X by means of η. In particular:

Proposition III.11.2 ([Gau77]). If Kod(X) ≥ 0, then any conformal class has ΓX({ω}) ≤
0.

On the other hand, by Teleman, Inoue surfaces have Kod(X) = −∞ and ΓX({ω}) ≤ 0

for any conformal class.

Theorem III.11.3 (DA-Calamai-Spotti [ACS17]). If ΓX{ω} ≤ 0, then CY(X; {ω}) = {ωp}.

That is, for conformal classes with non-positive Gauduchon degree, we have existence and
uniqueness; moreover, such a unique metric is canonical in the sense that HConf(X; {ω}) =

HIsom(X;ωp).

Proof. The case Γ = 0 is reduced to a linear PDE

∆Chf = −SCh(η)

so it suffices to note that −SCh(η) ∈ C⊥ = (ker(∆Ch)∗)⊥ = im∆Ch because of Γ({ω} =∫
SCh(eta)η

n

n! = 0.

For the case Γ < 0, we first use conformal technique to find a reference metric in the
conformal class such that SCh(ω) < 0 everywhere. Then we apply the continuity method to

∆Ch(f) + tSCh(ω) = λ exp
2f

n
− λ(1− t).

The openness follows by the linearization Dv = ∆Chv − λ exp 2f
n

2v
n being elliptic, thanks

to indexD = index∆Ch = 0.

The closedness follows by uniform L∞-bounds thanks to the Maximum Principle, where
the sign of the Gauduchon degree play a role.

The standard theory by Calderon-Zygmund, Ascoli-Arzelà, bootstrap, Schauder conclude
the existence. The uniqueness follows by Maximum Principle. �

Some remarks in the positive case:

• Hopf surfaces C2 \ 0/(z 7→ 2z) have Kod = −∞ and Γ({ω}) ≥ 0 for any conformal
class. The standard metric ωC2/|z|2 has constant positive Chern-scalar curvature.
• Implicit function theorem applies when ‖SCh(ω)‖C0,α small, which gives more exam-
ples.
• Assuming bounds on the volumes, we can prove compactness of the Chern-Yamabe
moduli space even if non-empty.
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• As de Lima-Piccione-Zedda [dLPZ12] do in the classical Yamabe case, we can use
(non-variational) bifurcation techniques to show non-uniqueness in the positive cur-
vature case.
• The Chern-Yamabe problem is in general non-variational. Indeed, it is variational
if and only if h 7→

∫
X h〈df |θ〉ω

ωn

n! is cloased (whence exact), but this happens if and
only if θ = 0, that is, the conformal class is balanced. Even in this case, we are not
able to bound the functional F(f) = 1

2

∫
X |df |

2
η
ηn

n! +
∫
X S

Ch(η)η
n

n! .

III.12. Chern-Einstein metrics

As we have seen, there are a priori three different ways to trace the Chern curvature

Θ(ω)
loc
= Θij̄k ¯̀

√
−1dzj ∧ dz̄j ⊗

√
−1dzk ∧ dz̄`.

• Ric1 := trΘ(ω)
loc
= h

¯̀kΘij̄k ¯̀
√
−1dzi ∧ dz̄j ∈ cBC1 (X) ∈ H1,1

BC(X);

• Ric2 loc
:= hj̄iΘij̄k ¯̀

√
−1dzk ∧ dz̄` ∈ ∧1,1

R X;

• Ric3 :=
loc
:= h

¯̀iΘij̄k ¯̀dz̄j ⊗ dzk.

We have then three different Chern-Einstein problems, j ∈ {1, 2, 3}:

Ricj(ω) = λω

for some smooth Einstein factor λ (non necessarily constant).

As for the first Chern-Einstein problem, we notice that, either λ = 0 and then the
metric is non-Kähler Calabi-Yau in the sense of Tosatti [Tos15]; or λ 6= 0 and the metric is
conformally-Kähler [ACS19]. Therefore, in the non-Kähler situations, the only interesting
case is completely covered by the following:

Theorem III.12.1 (Tosatti [Tos15]). If cBC1 (X) = 0, then any conformal class contains a
Chern-Ricci-flat metric.

As for the second-Chern-Einstein problem, we note that:

• A second-Ch-Ei metric is Hermitian-Einstein on the holomorphic tangent bundle
with respect to itself. It follows that Bogomolov-Lübke and Kobayashi-Hitchin give
obstructions.
• if the Ch-Ya conjecture on the existence of constant Chern-scalar curvature metrics
in any conformal class holds, then we can assume λ to be constant.
• We have some examples. In case λ > 0 just take Hopf surfaces, or the homogeneous
spaces by Podestà [Pod18]. In case λ = 0, we have non-compact solvable Lie groups.
In case λ < 0, we have non-compact Lie groups; see [ACS19]. We do not know any
compact example in the non-positive curvature case.
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Hk
dR (X;C) g-harmonic representatives dimCH

k
dR (X;C)

k = 1 dz1, dz̄1 2

k = 2 dz23, dz11̄, dz23̄, dz32̄, dz2̄3̄ 5

k = 3 dz123, dz231̄, dz123̄, dz132̄, dz12̄3̄, dz21̄3̄, dz31̄2̄, dz1̄2̄3̄ 8

k = 4 dz1231̄, dz121̄3̄, dz232̄3̄, dz131̄2̄, dz11̄2̄3̄ 5

k = 5 dz1232̄3̄, dz231̄2̄3̄ 2

Table 1. A basis of harmonic representatives for the completely-solvable
Nakamura manifold with respect to the metric g := dz1�dz̄1+exp−z1−z̄1 dz2�
dz̄2 + expz1+z̄1 dz3 � dz̄3.
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H•,•] (X)
case (i) case (ii) case (iii)

dR ∂ BC ∂ BC ∂ BC

(0,0) 1 1 1 1 1 1 1

(1,0)
2

3 1 1 1 1 1

(0,1) 3 1 1 1 1 1

(2,0)

5
3 3 1 1 1 1

(1,1) 9 7 5 3 3 3

(0,2) 3 3 1 1 1 1

(3,0)

8

1 1 1 1 1 1

(2,1) 9 9 5 5 3 3

(1,2) 9 9 5 5 3 3

(0,3) 1 1 1 1 1 1

(3,1)

5
3 3 1 1 1 1

(2,2) 9 11 5 7 3 3

(1,3) 3 3 1 1 1 1

(3,2)
2

3 5 1 1 1 1

(2,3) 3 5 1 1 1 1

(3,3) 1 1 1 1 1 1 1

Table 3. The dimensions of the de Rham, Dolbeault, and Bott-Chern coho-
mologies of the completely-solvable Nakamura manifold, [Kas13b, Example
1], [AK17a, Example 2.17], see [AK17a, Table 6].

classes h1
∂

h1
BC h1

A h2
∂

h2
BC h2

A h3
∂

h3
BC h3

A h4
∂

h4
BC h4

A h5
∂

h5
BC h5

A

(i) 5 4 6 11 10 12 14 14 14 11 12 10 5 6 4

(ii.a) 4 4 6 9 8 11 12 14 14 9 11 8 4 6 4
(ii.b) 4 4 6 9 8 10 12 14 14 9 10 8 4 6 4

(iii.a) 4 4 6 8 6 11 10 14 14 8 11 6 4 6 4
(iii.b) 4 4 6 8 6 10 10 14 14 8 10 6 4 6 4

b1 = 4 b2 = 8 b3 = 10 b4 = 8 b5 = 4

Table 4. Dimensions of cohomologies for the small deformations of the Iwa-
sawa manifold.
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