Eddy Covariance measurements of stable CO_2 and H_2O isotopologue fluxes Ensuring sufficient instrument performance

Jelka Braden-Behrens & Alexander Knohl Bioclimatology Georg-August University of Göttingen, Germany

jbraden1@gwdg.de

Motivation

Figure 1: Isotopic Composition of CO_2 and H_2O for O_2 ferent ecosystem components and fluxes [4]

Analyzing the stable isotope composition of CO_2 and H_2O fluxes (such as $^{-3}$ C, 18 O and 2 H in H₂O and CO₂) has provided valuable insights into ecosystem gas exchange (see e.g. Yakir & Sternberg, 2000 [4]), building on differences in the isotope signature of different ecosystem components. In our measurement campaign planned for summer 2015, we want to use eddy covariance (EC) technique to measure net fluxes of different isotopologues in water vapor (H_2O^{16} ; H_2O^{18} ; HDO¹⁶) and carbon dioxide $(C^{12}O^{16}O^{16}; C^{12}O^{18}O^{16}; C^{13}O^{16}O^{16})$ on ecosystem scale using laser based techniques and use this information to estimate exchange processes and to contribute to enhance the understanding of these processes on ecosystem scale.

Planned Measurement campaign in 2015

During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO_2 and H_2Ov isotopologue fluxes with an EC-approach over a managed pure beech forest near Leinefelde, central Germany, with relatively homogeneous and even aged trees and a canopy height of app. 35 m. For this purpose we will add the following instruments to the EC-system (which is running at this site since 2002).

- CO₂-isotope analyzer: quantum cascade laser based system with TE-cooled detectors (QCLAS, Aerodyne Research Inc.)
- H_2O_v -isotope analyzer: off axis integrated cavity output spectrometer (OA-ICOS, Los Gatos Research Inc.)

Main Objectives

The objectives of this study are to ensure that the two analyzers are suitable for EC-measurements in terms of:

- 1. Fast enough **data acquisition frequency**
- 2. Sufficient **precision**
- 3. Adequate calibration strategy

Figure 2: Field site

Results

Data acquisition frequency

Both instruments are capable of measurements at a sufficiently high frequency of 5 Hz. In figure 3, the actual frequency is plotted for a 30-minutes period.

Figure 3: Frequency vs. time for the the CO_2 isotope analyzer (left) and for the H_2O_v isotope analyzer (right)

Precision

The Alan Variance plot for CO_2 (Figure 4,left) shows a generally comparable range to the measurements described in [2] and [3] who already successfully measured CO₂-isofluxes. The Alan variance plot of for H₂O (Figure 4,right) follows the white noise line and the short-term noise for δ^{18} O is comparable to the 10 Hz noise of app. 1.6 measured in [1].

Figure 4: Alan Variance Plot for the CO₂ isotope analyzer (left) and for thre H₂O isotope analyzer (right)

Calibration Strategy CO₂-isotope analyzer

Our calibration strategy for the CO_2 isotope analyzer is similar to the one described by [3] and includes hourly measurements (each for 2 minutes) of:

- a high standard (app. 450 ppm) and known isotopic composition
- a low standard (app. 300 ppm) and known isotopic composition • a zero gas
- Additionally will use 4 target standards with different isotopic composition and concentration. One of those is measured hourly and has to be exchanged after 2-3 month and the others are measured daily over the whole campaign.

H_2O_v -isotope analyzer

The calibration of the water vapor isotope analyzer was extensively tested in the lab and in the field, resulting in a 4 steps-calibration procedure:

- . Concentration calibration (c.f. Figure 5)
- 2. Concentration dependency of delta values (c.f. Figure 7)
- 4. Absolute δ scale (c.f. Figure 6)

Figure 5: Concentration Calibration, measured with a dewpoint generator on different days in the lab and in the field, constant linear relationship

References

- Boundary-Layer Meteorology, 137(2):307–326, July 2010.
- temperate forest. Agricultural and Forest Meteorology, 181:69-84, November 2013.
- 123(January):297–311, 2000.

Acknowledgements

This project was partly funded by the Dorothea-Schlözer-Fellowship programm and by the German Research Foundation DFG (project ISOFLUXES KN 582/7-1).

3. **Offset-correction** (measured hourly to correct for variations of C-dependency)

Figure 7: Dilution Calibration, measured daily with a water vapor isotope standard source (Los Gatos Research.)

[1] T J Griffis, S D Sargent, X Lee, J. M. Baker, J Greene, M Erickson, X. Zhang, K Billmark, N Schultz, Wei Xiao, and N Hu. Determining the Oxygen Isotope Composition of Evapotranspiration Using Eddy Covariance.

[2] P Sturm, Werner Eugster, and Alexander Knohl. Eddy covariance measurements of CO2 isotopologues with a quantum cascade laser absorption spectrometer. Agricultural and Forest Meteorology, 152:73–82, January 2012. [3] R. Wehr, J.W. Munger, D.D. Nelson, J.B. McManus, M.S. Zahniser, S.C. Wofsy, and S.R. Saleska. Long-term eddy covariance measurements of the isotopic composition of the ecosystem-atmosphere exchange of CO2 in a

[4] Dan Yakir and L da SL Sternberg. The use of stable isotopes to study ecosystem gas exchange. *Oecologia*,