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Zusammenfassung
Das Higgs-Boson ist das einzige Spin-0-Elementarteilchen im Standardmodell, dessen elek-
troschwachen Zerfälle ein Paar verschränkter Vektorbosonen produzieren. Die paritätsver-
letzenden Eigenschaften der elektroschwachen Kopplung der Z0-Bosonen ermöglichen es,
ihren Polarisationszustand anhand der leptonischen Zerfallsprodukte zu testen.
Die Cms- und Atlas-Kollaborationen haben vor kurzem den Nachweis für die Produktion
von off-shell Higgs im Endzustand von vier Leptonen erbracht. Der Zerfall von off-shell
Higgs Bosonen in Vektorbosonen bietet eine geeignete Plattform, die Verschränkung auf
der fundamentalsten Ebene zu untersuchen. Der Zerfall in Leptonen ist für eine solche
Analyse besonders geeignet, da die kinematischen Variablen der zerfallenden Teilchen mit
hoher Präzision aus den Endzustandsteilchen rekonstruiert werden können.
Ein Test der Quantenverschränkung wird formuliert als Suche nach transversalen Polarisa-
tionen der Z0-Bosonen in H∗ → ZZ unter Verwendung eines tiefen neuronalen Netzwerks
zur Unterscheidung der verschiedenen Polarisationszustände.

Stichwörter: Elektroschwache Wechselwirkung, Higgs Boson, Quantenverschränkung,
Deep Learning

Abstract
The Higgs boson is the only spin-0 elementary particle within the Standard Model. Its
electroweak decays yield a pair of entangled vector bosons. The parity-violating proper-
ties of the electro-weak coupling of the Z0 bosons allow for testing of their polarisation
state.
The Cms and Atlas Collaborations recently provided evidence for off-shell Higgs pro-
duction in the four lepton final state. The decay of the off-shell Higgs to vector bosons
offers a great stage to probe entanglement at the most fundamental level. The decay to
leptons is particularly suited for such an analysis because the kinematic variables of the
decaying particles can be reconstructed with high precision from the final state particles.
A test of quantum entanglement is reformulated as a search for transverse polarisations
of the Z0 bosons in H∗ → ZZ using a deep neural network to discriminate between the
different polarisation states.

Keywords: Electroweak Interaction, Higgs boson, Quantum Entanglement, Deep
Learning
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1. Introduction

Quantum entanglement is a feature of composite quantum systems where subsystems
cannot be described independently of each other. The physicists Einstein, Podolsky and
Rosen (EPR) expressed this in a paradox consisting of two entangled particles on which
one would perform incompatible measurements. Their Gedankenexperiment stated that
performing these measurements and the resulting collapse of the wave function of the en-
tangled system would violate the principle of locality and allow for information transport
faster than the speed of light. To counter this problem, a local real theory with hidden
parameters that predetermined the outcome of the measurement was proposed. Quantum
entanglement is one of the most distinct properties that separates classical from quantum
mechanics. Nevertheless, it remained uncertain how entanglement might be investigated
in an experiment. In recent decades, different experiments have been searching for evi-
dence of quantum entanglement in various systems.
The discovery of the Higgs boson by the Atlas and Cms Collaborations in the year 2012
was a major breakthrough in particle physics. The Higgs boson is a central piece in the
Standard Model and was predicted almost 60 years before its discovery. Its interaction
properties are crucial for humanity’s understanding of the most fundamental processes of
our universe.
Continuously testing and questioning the models humans use to describe nature is impor-
tant for scientific advance. Thus, it is important to see if the rules that govern quantum
mechanics apply regardless of the scale at which they are tested.
This work aims at testing if entanglement can be observed in the decay of an off-shell
Higgs boson to Z0 vector bosons. The decay channel H∗ → ZZ → 4ℓ is particularly
suited for such an analysis because charged leptons allow for a precise measurement of
their kinematic variables and efficient particle identification. Due to the flavour conver-
sation and Z0 on-shell condition a precise reconstruction of the Z0 kinematics becomes
possible.
This work starts with a brief overview of the Standard Model of particle physics, the the-
oretical framework describing the interaction of fundamental particles. This is followed
by a description of quantum entanglement and its appearance in the gg → H∗ → ZZ
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1. Introduction

process. Afterwards, the experimental setup, consisting of the Lhc and Atlas detector
is presented. The following chapter is dedicated to event generation in general and the
event generation employed in this work to model this specific process. The event selection
and analysis strategy that was used in this work is featured in Chapter 5. An assessment
of the event selection and the presentation of the result of the fitting procedure is done in
Chapter 6. The last chapter concludes the work done in this thesis and gives an outlook
into further research possibilities.
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2. Theory

2.1. The Standard Model of Particle Physics

2.1.1. Overview

The Standard Model of particle physics (SM) is the state-of-the-art theoretical framework
to describe the known particles and three of the four fundamental forces as the interac-
tions between these particles. The Higgs mechanism was the latest addition to the SM
and was introduced to account for the particle masses [2–7]. The SM is a renormalisable
quantum field theory and therefore predicts finite cross-sections. The structure of the
theory can be explained using the Lagrangian which gives rise to the properties of the
particles and their interactions with each other [8–20]. However, it shall be noted that
the Lagrangian does not account for the quantization of the theory.
As depicted in Figure 2.1, elementary particles of three types of spin occur. Those with
spin S = 1

2 are called fermions, those with S = 0/1 are called bosons. The Standard
Model has five gauge bosons with spin S = 1 and the Higgs boson with S = 0.
Three types of interaction exist within the Standard Model with each particle differing
in the way it participates in these interactions. The colour charge is responsible for
the strong interaction of particles, electric charge Q for the electromagnetic interaction.
The fermions can be divided into quarks and leptons. Quarks are colour-charged while
leptons are not. The particles are arranged as three generations of matter, where the
particle masses increase with each generation. Every fermion exists as a particle and as
an antiparticle. The antiparticle only differs in the additive quantum numbers such as an
oppositely signed electric charge. Two left-handed leptons or two left-handed quarks of
the same generation form a weak isospin doublet. The charge of two particles in one weak
isospin doublet differs by 1e. The right-handed particles each form a weak isospin singlet
with the third component of weak isospin I3 = 0. For quarks, the up-type quark has an
electric charge of Q = +2

3 and a third component of the weak isospin I3 = +1
2 and the

down-type quark Q = −1
3 and I3 = −1

2 . For leptons, each weak isospin doublet consists of
a particle with electric charge Q = −1 and the third component of weak isospin I3 = −1

2
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Figure 2.1.: Particles of the Standard Model of particle physics. The figure was created
using data from [1].

and a corresponding neutrino with electric charge Q = 0 and I3 = +1
2 .

There are five gauge bosons. The massless photon mediates the electromagnetic inter-
action. The massless gluon mediates the strong interaction. The three massive W±, Z0

bosons mediate the weak interaction. Gravitation as the fourth fundamental force is not
included in the SM.

2.1.2. The Strong Interaction (QCD)

Quantum chromodynamics (QCD) describes the strong interaction as the coupling of
colour-charged particles to the gluon. This coupling gives rise to the local SU(3) gauge
symmetry [25, 26]. Only the quarks and the gluon itself are colour-charged and thus
couple to the gluon field. Due to the non commuting structure of the SU(3) group, gluons
engage in self-interactions. The colour-charged particles are subject to the confinement
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2.1. The Standard Model of Particle Physics
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Figure 2.2.: Summary of measurements of αS as a function of the energy scale Q. The
Measurements were performed by various groups [21–24]. The figure is
taken from [1].

[27], which describes that colour-charged particles always appear in neutral colour-charged
bound states. This may be understood by the effective potential [28]

V (r) = −κ

r
+ r

a2 , (2.1)

with κ a constant related to the coupling strength of QCD, r the distance between quark
and anti-quark and 1

a2 a constant describing the strength of the linear term. This poten-
tial leads to increasing potential energy as quark and anti-quark are separated and thus
the creation of new quarks which form hadrons.
The coupling constant of the strong interaction depends on the energy scale of the inter-
action. One important feature of this energy dependence is the asymptotic freedom [29]
which refers to a decreasing coupling constant for high energy. The energy dependence of
the coupling constant is shown in Figure 2.2.

2.1.3. The Electroweak Interaction

The electromagnetic and weak interaction can be understood as corresponding to the
same gauge symmetry. The spontaneous symmetry breaking associated with the Higgs
mechanism explains how the different fields come into existence [8–12]. Quantum electro-
dynamics (QED) describes the coupling of electric charged particles to the photon field
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2. Theory

corresponding to the U(1) symmetry [30–37].
The weak interaction is mediated by three bosons W± and Z0. These bosons correspond
to the SU(2)L symmetry. The subscript L refers to the exclusive action on the left-handed
particles of the symmetry operation. The action of this symmetry group on the right-
handed singlets is trivial. These bosons are massive through their coupling to the Higgs
field. The W± both have the same mass, a weak isospin of I3 = ±1, and an electric charge
of Q = ±1. The Z0 has a different mass and vanishing weak isospin and electric charge.
The weak charged current interaction is the coupling of particles to the W± bosons. The
W± bosons couple exclusively to left-handed particles. This property is expressed by the
vertex factor for the weak interaction of leptons [10–12]

i
gw

2
√

2
γµ(1 − γ5) , (2.2)

as the 1 − γ5 term which projects a spinor on its left-handed component. Experimental
evidence for this property was first found in the Wu-experiment [38].
For the coupling of quarks to the W± bosons one has to consider the CKM-matrix [39, 40],
giving the vertex factor

i
gw

2
√

2
γµ(1 − γ5)Vij . (2.3)

The matrix elements Vij account for the transition from mass to flavour eigenstates of
the quarks. The modulus of these matrix elements is largest for diagonal elements, cor-
responding to interactions within one particle generation.
The weak neutral current is the coupling of particles to the Z0 bosons. Unlike the W±

bosons, the Z0 does not couple exclusively to left-handed particles but to left- and right-
handed particles in a different manner. The vertex factor is given by [9]

i
gz

2 γ
µ(2Q sin2(θW ) + I3(1 − γ5)) , (2.4)

where θW is the Weinberg mixing angle. From the vertex factor, it can be inferred that
the Z0 boson can couple to right-handed charged particles. Further, it is noteworthy that
the Z0 bosons coupling lacks the flavour mixing properties of the W± bosons.

2.1.4. The Higgs Mechanism

The Higgs mechanism describes how gauge bosons acquire their mass since mass terms in
the Lagrangian conflict with the gauge invariance. To avoid this, another field with a non-
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2.1. The Standard Model of Particle Physics

vanishing vacuum expectation value is introduced [2–4]. For the electroweak interaction,
this can be explained by the introduction of a doublet of complex scalar fields [9, 41]

ϕ =
ϕ+

ϕ0

 = 1√
2

ϕ1 + iϕ2

ϕ3 + iϕ4

 . (2.5)

Further, a potential term of the form [9]

V (ϕ) = −µ2(ϕ†ϕ) + λ(ϕ†ϕ)2 (2.6)

is added to the Lagrangian. Where µ2, λ are positive real constants. This potential takes
its minimal value for ⟨0|ϕ |0⟩ =

√
µ2

2λ
̸= 0 which corresponds to the non-vanishing vacuum

expectation value for the Higgs field.
Enforcing local gauge invariance under SU(2)L × U(1)Y yields the masses of the corre-
sponding bosons. The physical fields W±, Z0, γ appear as linear combinations of the
W i, B gauge fields. This process explains the different interaction properties of these
fields. The linear combination can be denoted as [8]

W±
µ = 1√

2
(W 1

µ ± iW 2
µ) (2.7)

Zµ = − sin(θW )Bµ + cos(θW )W 3
µ (2.8)

Aµ = cos(θW )Bµ + sin(θW )W 3
µ . (2.9)

Their masses can be parametrised as

mW = 1
2gWv (2.10)

mZ = 1
2v

g2
W

cos(θW ) (2.11)

mA = 0 (2.12)

where gW is the coupling constant of SU(2)L gauge field, and v =
√

µ2

λ
≈ 246 GeV is the

vacuum expectation value of the Higgs field [1].
The introduction of the scalar field into the Lagrangian also yields the Higgs boson as the
excitation of the Higgs field from its vacuum value. Further, it generates coupling terms
in the Lagrangian which correspond to interactions between the W± and Z0 bosons and
the Higgs boson as depicted in Figure 2.3. The mass of the Higgs boson itself is given as

mH =
√

2λv2 . (2.13)
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Figure 2.3.: Interaction vertices for the coupling of the Higgs boson to the (a) W boson;
(b) Z0 bosons.

Furthermore, the Higgs mechanism also predicts three- and four-point self-interactions of
the Higgs boson.
The mass of the fermions can be described by the Yukawa coupling of the fermions to the
Higgs field [9]. To do so, a term of the form

Lm = −gf

[
f̄LϕfR + f̄Rϕ̄fL

]
(2.14)

is introduced for every fermion. The factor gf is the coupling strength of the fermion to
the Higgs field. This yields the masses of the fermions as

mf = gfv√
2
. (2.15)

The Yukawa-coupling also implies interaction vertices of fermions to the Higgs boson.

2.1.5. Higgs Boson Production and Decay

The SM predicts different mechanisms for the production of the Higgs boson. For a pp-
collider such as the Lhc, the most dominant process is the gluon-gluon fusion (ggF) where
two gluons initiate a virtual quark loop which produces the Higgs boson. The production
of a Higgs boson is mediated by a top/bottom quark loop since it is the most massive
quark and thus couples strongest to the Higgs boson.
In vector boson fusion (VBF), two quarks radiate a W+W− or ZZ pair which couple
to the Higgs boson. Higgs Strahlung (WH and ZH) describes the process of coupling a
fermion and antifermion to a W± or Z0 boson which radiates a Higgs boson. Associated
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2.1. The Standard Model of Particle Physics

Production mode Cross section in pb

ggF 48.6+5.6%
−7.4%

VBF 3.78+2.1%
−2.1%

WH 1.37+2.0%
−2.0%

ZH 0.88+4.1%
−3.5%

tt̄H 0.50+6.8%
−9.9%

total 55.1

Table 2.1.: Cross section for different Higgs production modes at
√
s = 13 TeV for

mH = 125 GeV [1]. The sub- and superscripted values are the relative
uncertainties of each value.

Decay channel Branching ratio in %

H → bb̄ 58.2 +1.2%
−1.3%

H → W+W− 21.4 +1.5%
−1.5%

H → τ+τ− 6.27 +1.6%
−1.6%

H → cc̄ 2.89 +5.5%
−2.0%

H → ZZ 2.62 +1.5%
−1.5%

H → γγ 0.227 +2.1%
−2.1%

H → Zγ 0.153 +5.8%
−5.8%

H → µ+µ− 0.0218 +1.7%
−1.7%

Table 2.2.: Branching ratio for different decay channels of the Higgs boson [1]. The
sub- and superscripted values are the relative uncertainties of each value.
Note that these are the branching ratios of the on-shell Higgs decay. These
values differ for the case of an off-shell Higgs due to the phase space that is
available in the decay.

production with a top quark pair (ttH) refers to the coupling of two gluons to a tt̄ pair and
subsequent coupling of a top- or antitopquark to a Higgs boson. This process is favoured
with respect to other quarks, due to the top quark’s large mass and Yukawa coupling.
The Feynman diagrams for these processes are depicted in Figure 2.4.
Predictions for the cross section of the different Higgs production modes are shown in
Table 2.1.
Due to its large mass, the Higgs boson decays quickly via different channels. The predicted
branching ratios for different decay channels are given in Table 2.2.
The Atlas and Cms collaborations both reported the observation of a new boson with the
properties the SM predicted for the Higgs boson and a mass of mH = 125 GeV [42, 43].
The SM predicted the spin of the Higgs boson to be S = 0. This is supported by
observations of the Higgs at the Lhc excluding of the S = 2 hypothesis [44]. The parity
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Figure 2.4.: Feynman diagrams for the leading order processes of the Higgs production
(a) gluon fusion(ggF), (b) vector boson fusion(VBF), (c) Higgs Strahlung
(WH and ZH); and, (d) top fusion (ttH) at the Lhc at

√
s = 13 TeV [1].

of the Higgs boson was further observed to be positive.

2.1.6. H∗ → ZZ → 4ℓ

Decay channel Branching ratio in %
Z → qq̄ 69.967 ± 0.093
Z → e+e− 3.3632 ± 0.0042
Z → µ+µ− 3.662 ± 0.0066
Z → τ+τ− 3.6696 ± 0.0083
invisible 19.934 ± 0.098

Table 2.3.: Branching ratio measurements for the Z0 boson decay [45].
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2.2. Entanglement

The Z0 boson has a mass of mZ = 91.1875±0.0021 GeV [1]. With the Higgs bosons’ mass
being mH = 125 GeV, it has to be off-shell to decay into two on-shell Z0 bosons. The
branching ratios for the on-shell Higgs decay of the Z0 boson decay are given in Table
2.3. One can see that both Z0 bosons can further decay to leptons. These decays are
of particular interest since µ± and e± are well suited for a precise measurement of the
kinematic variable in the detector. Since the decay of the Z0 bosons contains the leptonic
flavour, the decay H∗ → ZZ → 4ℓ allows for a precise reconstruction of the Z0 bosons’
kinematics. To assess the number of events the cross section of the gg → H∗ → ZZ → 4ℓ
with ℓ = µ, e is calculated.
The cross section is computed at next to leading order using Madgraph. At a centre of
mass energy of

√
s = 13 TeV it is given by σ = 0.0002571 pb. Neglecting any detection or

reconstruction inefficiencies the expected number of events can be calculated as

N = σ · L . (2.16)

Here L refers to the integrated luminosity. With the integrated luminosity L ≈ 140 fb−1

the expected number of events amounts to N ≈ 71.988. For the High-Luminosity Large
Hadron Collider with L ≈ 3 ab−1, it increases to N ≈ 1, 542.600.

2.2. Entanglement

Entanglement refers to the inseparability of a state in a tensor product Hilbert space.
A tensor product Hilbert space usually corresponds to a system made up of multiple
particles. If a multi-particle system’s state is not separable, the particles can not be
described independently. Acting on one particle also changes the other particles’ states.
Consider a tensor product Hilbert space H = HA ⊗ HB. A state |ψ⟩ ∈ H is separable if

|ψ⟩ = |ϕ⟩A ⊗ |φ⟩B |ϕ⟩A ∈ HA, |φ⟩B ∈ HB . (2.17)

A density matrix is separable if

ρ =
∑

i

wiρA,i ⊗ ρB,i . (2.18)

For the most general case of a Hilbert space, no test for entanglement is known. However,
the Peres-Horodecki criterion [46, 47] provides a sufficient condition for entanglement.
For certain cases of limited dimensionality, the Peres-Horodecki criterion also becomes
a necessary condition. Generically this is only the case if we assume without loss of
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2. Theory

generality dim(HA) ≤ 2 and dim(HB) ≤ 3 but also for the case of the two Z0 bosons in
Higgs decays [48].

2.2.1. Entanglement in the H∗ → ZZ → 4ℓ Decay Mode

x

z

y

p1

p2

H

Z2

Z1

Figure 2.5.: Depiction of the reference system used in this analysis.

Consider the two Z0 bosons in the Higgs boson’s centre of mass reference frame. Here
and in the following, the z-axis is chosen such that it aligns with the Z0 bosons three
momentum. The x-axis is in the plane spanned by the incoming protons and the Z0

bosons. The y-axis is taken to be ŷ = ẑ × x̂. This choice of reference system is similar
to the one in [48, 49]. A graphical depiction of this choice of reference system is given
in Figure 2.5. The eigenstate of the third component of the spin will be denoted as
|−⟩ , |0⟩ , |+⟩. Since the Higgs boson is a scalar particle, the only non-vanishing elements
of the density matrix ρ of the spins of the two Z0 bosons are

⟨ui| ρ |uj⟩ , (2.19)

where |u1⟩ = |+−⟩ , |u2⟩ = |−+⟩ , |u3⟩ = |00⟩.
Thus the density matrix may be written as a linear combination [48]

ρ =
∑

pl |l⟩ ⟨l| pl ≥ 0,
∑

l

pl = 1 , (2.20)
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2.2. Entanglement

where

|l⟩ = α1 |+−⟩ + α2 |00⟩ + α3 |−+⟩
∑

i

|αi|2 = 1 . (2.21)

Due to the conservation of parity in the H → ZZ process for a particular event, the Z0

bosons spin state can be considered as

|ψ⟩ = 1√
2 + β2 (|−+⟩ − β |00⟩ + |+−⟩) . (2.22)

For the coefficient β one can find [48]

β = 1 + m2
H − (mZ1 +mZ2)2

2mZ1mZ2

. (2.23)

To obtain the density matrix for an ensemble of possible values for the mZ1 ,mZ2 an
integration over the phase space has to be performed. The dependence on chirality in
the weak decays allows for a reconstruction of the density matrix of the Z0 bosons using
the distribution of the kinematic variables of the leptonic decay products. The density
matrix itself has 81 terms, due to the dimension of the tensor product Hilbert space
being 9. Another component of the density matrix is fixed by the normalisation condition
Tr(ρ) = 1.
However, the form of the density matrix is constrained, since only 9 out of the 80 possible
terms are non-vanishing [48].

ρ = 1
2c+ w2



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 c 0 −y 0 c 0 0
0 0 0 0 0 0 0 0 0
0 0 −y 0 w2 0 −y 0 0
0 0 0 0 0 0 0 0 0
0 0 c 0 −y 0 c 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



(2.24)

Note, that the form of the state in Equation 2.22 fixes c = 1. It is, however, left as
a variable, since it allows to denote the condition for entanglement of this system in a
concise manner.
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2. Theory

The coefficients w, y are obtained via an integration over the phase space [48]

ρ =
∫
ρβ · P(β) dβ ,

ρβ = |ψ⟩ ⟨ψ| ,
(2.25)

where P(β) is the probability density function of the kinematic variable β. The state |ψ⟩
is given in Equation 2.22.
In the H∗ → ZZ process, the two masses mZ1,2 in Eq. 2.23 are fixed by the condition
that both Z0 are on-shell. The mass mH , however, is variable and it is evident that
for increasing values of mH the contribution of the transverse polarisation diminishes.
Thus, the state becomes primarily longitudinal polarised. Therefore, the form of the
density matrix and especially the off-diagonal elements depends on the cuts applied to
the system.
Note that the derivation in [48] was done for the case of an on-shell Higgs but is nonetheless
applicable here. Since, the Higgs coupling to Z0 bosons does not change for off-shell Higgs.
The constraint form of the density matrix ensures that the condition for entanglement in
this matrix is equivalent to any non-vanishing off-diagonal elements [48]. The condition
for entanglement can be more explicitly expressed as

y ̸= 0 ∨ c ̸= 0 . (2.26)

2.2.2. Decay of Polarised Z0 Bosons

Due to the chiral-dependent nature of the Z0 boson coupling, the decay amplitude of the
Z0 boson is dependent on its spin. This can be expressed via the decay density matrix of
the Z0 boson. It contains the angular decay distribution for the corresponding spin states
of the Z0 boson. For the case of the Z0 boson, it is given by [50]

Γ = 1
4


1 + cos2(θ) + 2ηℓ cos(θ) 1√

2(sin(2θ) − 2ηℓ sin(θ))eiφ (1 − cos2(θ))ei2φ

1√
2(sin(2θ) − 2ηℓ sin(θ))e−iφ 2 sin2(θ) − 1√

2(sin(2θ) + 2ηℓ sin(θ))eiφ

(1 − cos2(θ))e−2iφ − 1√
2(sin(2θ) + 2ηℓ sin(θ))e−iφ 1 + cos2(θ) − 2ηℓ cos(θ)


(2.27)

where

ηℓ = 1 − sin2(θW )
1 − 4 sin2(θW ) + 8 sin4(θW ) . (2.28)
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2.2. Entanglement

The angles θ, φ are the azimuthal and polar angle of the negative lepton in the Z0 bosons
centre-of-mass frame. The decay amplitude of a certain spin state |ψ⟩ can be evaluated
as

1
σ

dσ

dΩ = ⟨ψ| Γ |ψ⟩ . (2.29)

For a mixed state, the decay amplitude can be computed as

1
σ

dσ

dΩ = Tr (ρ · Γ) . (2.30)

Two notable cases for the spin state of the Z0 shall be discussed here. First the case of
longitudinally polarized Z0 boson. Its differential cross-section simply reads

1
σ

dσ

dΩ = ⟨0| Γ |0⟩ = 1
2 sin2(θ) . (2.31)

Now consider the case of two transverse polarised Z0 bosons originating from a Higgs
decay. Their spin state can be denoted as [48]

|ψ⟩ = 1√
2

(|+−⟩ + |−+⟩) . (2.32)

The state of each Z0 boson can be described as a pure state. It is, however, described by
the density matrix

ρ1 = 1√
2

(|+⟩ ⟨+| + |−⟩ ⟨−|) . (2.33)

Using this state and Eq. 2.30 the differential cross section is given by

1
σ

dσ

dΩ = Tr(ρ1 · Γ) = Tr


1 + cos2(θ) + 2ηℓ cos(θ) 0 0

0 0 0
0 0 1 + cos2(θ) − 2ηℓ cos(θ)


= 1

2
(
1 + cos2(θ)

)
.

(2.34)

The differential cross section of the ZZ → 4ℓ process can for a mixed state of the ZZ
system be written as [48]

1
σ

dσ

dΩ1dΩ2
=
( 3

4π

)2
Tr
(
ρ · (Γ1 ⊗ Γ2)T

)
. (2.35)
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2. Theory

Taking advantage of the constraint form of the density matrix of the ZZ system as in
Chapter 2.2.1, one can decompose it into three separate parts

ρZZ = ρLL + ρT T + ρLT . (2.36)

The three matrices are given as

ρLL = 1
2c+ w2



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 w2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



, (2.37)

ρT T = 1
2c+ w2



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 c 0 0 0 c 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 c 0 0 0 c 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



, (2.38)

ρLT = 1
2c+ w2



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −y 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −y 0 0 0 −y 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −y 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



. (2.39)

Here ρLL is the density matrix corresponding to the longitudinal polarisations of the ZZ
system, ρT T corresponds to the transverse polarisation and ρLT to the remaining off-

16



2.2. Entanglement

diagonal elements. Note that the ρT T part also contains off-diagonal elements. Using the
linearity of the trace, the differential cross section can be written as

dσ

dΩ1dΩ2
(ZZ) = µLL

dσ

dΩ1dΩ2
(ZLZL) + µQE

(
dσ

dΩ1dΩ2
(ZTZT ) + dσ

dΩ1dΩ2
(ZLZT )

)
.

(2.40)

The norm factor is fixed to µQE = 1, but is added for convenience. The amplitudes are
related to density matrices in the form of

dσ

dΩ1dΩ2
(ZLZL) ∝ Tr(ρLL · Γ) , (2.41)

dσ

dΩ1dΩ2
(ZTZT ) ∝ Tr(ρT T · Γ) , (2.42)

dσ

dΩ1dΩ2
(ZLZT ) ∝ Tr(ρLT · Γ) . (2.43)

The decay density matrix accounts for the angular distribution of the decay products
and not for the total cross section. Thus, the amplitudes are only determined up to a
proportionality constant.
Note, that the matrices ρT T and ρLT are proportional to the factors c, y. From this
relation it follows that the condition for entanglement in Equation 2.26 is equivalent to
any non-vanishing amplitudes from components other than dσ

dΩ1dΩ2
(ZLZL) [51].

The condition for entanglement can be turned into a binary test between two hypotheses:

1. (Separable): The ZZ systems’ state is made up of only longitudinally polarised Z0

bosons. This corresponds to µQE = 0.

2. (Entangled): The ZZ systems’ state contains other polarisation contributing to the
decay amplitude. This corresponds to µQE ̸= 0.
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3. Experimental Setup

3.1. The LHC

The Large Hadron Collider (Lhc) at Cern is a synchrotron designed to accelerate protons
and lead nuclei. This work focuses on the proton-proton collisions during Run 2. During
Run 2 from 2015 to 2018, the Lhc operated at a centre of mass energy of

√
s = 13 TeV

with an integrated luminosity of Lint ≈ 140 fb−1 [52].
After completion of Run 3 in Dec. 2025 and an operational pause, the Lhc will oper-
ate with increased luminosity as the High-Luminosity Large Hadron Collider (HL-Lhc).
During this phase, it is planned to accumulate data with an integrated luminosity of
L = 3 ab−1 [53].

3.2. The Detector

The Atlas detector is a general-purpose particle detector at the Lhc at Cern. It can
roughly be separated into three elements: the inner detector, the calorimeter and the
muon spectrometer [54].

3.2.1. The Coordinate System

The interaction point marks the origin of the Atlas coordinate system. The z-axis is
orientated along the beamline, the x-axis points towards the centre of the Lhc and the
y-axis points upwards.
Using this convention several kinematic variables are defined. One of which is the trans-
verse momentum defined as

pT =
√
p2

x + p2
y (3.1)

Because of the cylindrical shape of the Atlas detector and the cylindrical symmetry of
the interactions, the azimuthal angle is used as another variable. The polar angle relative
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3. Experimental Setup

to the z-axis can be used to define the pseudorapidity which can also be expressed in
terms of the momentum

η = − ln
(

tan
(
θ

2

))
= ln

(
|p⃗| + pz

|p⃗| − pz

)
. (3.2)

In the ultra-relativistic limit m ≪ |p⃗| the pseudorapidity is equal to the rapidity defined
as

y = 1
2 ln

(
E + pz

E − pz

)
. (3.3)

These variables are convenient for the usage in the Atlas experiment because pT , ϕ, and
differences of η are invariant under Lorentz-boost along the z-axis.

3.2.2. The Inner Detector

Figure 3.1.: Schematic cross section of the inner detector of the Atlas detector (©
Cern).

The inner detector (ID) is the innermost part of the Atlas detector. It is used for
tracking charged particles, particle identification, and primary and secondary vertexing
[54]. The ID consists of three different sub-detectors. Their rough structure is depicted in
Figure 3.1. The ID is encapsulated with a solenoid magnet providing a 2 T axial magnetic
field on the inside of the ID. The magnetic field is crucial to measure the momentum of a
charged particle. The transverse momentum is measured as the curvature of the particle’s
track due to the Lorentz force.
The detector part closest to the beam pipe is the pixel detector. It consists of 1744
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3.2. The Detector

modules arranged in three barrel layers. Each module hosts 47232 silicon pixels with a
size of 50 × 400µm2. The pixels are semiconductor trackers used to detect the traversing
of charged particles.
The following part of the detector is the semiconductor tracker (SCT). It consists of
4088 modules arranged in four layers to guarantee four position measurements of charged
particles. Each module consists of four silicon sensors. The sensors offer a 17µm resolution
in-plane lateral and 580µm in-plane longitudinal.
The outermost part of the inner detector is the transition radiation tracker (TRT). It
consists of polyimide drift (straw) tubes with a 4 mm diameter that are arranged in a
528 mm thick cylindrical layer around the beam pipe. The straw tubes are interleaved
with fibres for the readout. The transition radiation tracker utilizes the transition light
emitted by charged particles traversing the interface between two media with different
indices of refraction. The TRT offers a measurement of charged particles and electron
identification.

3.2.3. Calorimeter

Figure 3.2.: Computer generated image of the Atlas calorimeter (© Cern).

The calorimeters are the detector layers following the inner detectors. Its structure is
divided into the Electromagnetic calorimeter (ECal) and the hadronic calorimeter (HCal).
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Electromagnetic Calorimeter

The ECal is used for the energy and position measurement of electric charged particles
and photons. It utilizes bremsstrahlung and pair production to create a cascade of charged
particles which are measured. It offers full azimuthal coverage and is equipped with end
caps in the longitudinal direction of the beam pipe. The Atlas ECal is a sampling
calorimeter operating with lead as the passive and liquid Argon as the active medium.
The innermost part of the ECal is a presampler which detects if the particle started
showering before reaching the ECal.

Hadronic Calorimeter

The HCal measures the energy and position of baryons and mesons through strong inter-
actions with the nuclei. In the range of |η| < 1.7 it is a sampling calorimeter with steel
as the passive and scintillators as the active medium. For the end cap, liquid Argon is
deployed as the active medium. The HCal works with the same principle as the ECal but
offers less precise measurements.
In the range of 3.1 < |η| < 4.9 ECal and HCal are substituted with the forward calorime-
ters (FCal) which are made up of three modules to fulfil the function of both calorimeters.
In combination with the FCal a total range of |η| < 4.9 is covered by the calorimeters.
A computer-generated image of the structure of the different calorimeters used in the
Atlas detector is shown in Figure 3.2.

3.2.4. Muon Spectrometer

The muon spectrometer is the outermost part of the Atlas detector. Its purpose is to de-
tect charged particles exiting the calorimeters and measure their momentum in the range
of |η| < 2.7. A detector dedicated to the measurement of muons is necessary because their
mass makes them minimal ionizing particles in the energy range of the Lhc collisions.
The amount of energy loss due to bremsstrahlung is not sufficient to develop showers
necessary to measure their energy. The muons’ transverse momenta can be measured
in the ID. Like the inner detector, the muon spectrometer utilizes a magnetic field to
conduct a measurement of the particle’s momentum. In the muon spectrometer, however,
a solenoid magnet is used to allow for the measurement of the muon’s momentum along
a different direction. Combining the measurements, one obtains full knowledge of the
muons four-momentum. Further, does the high rate of stopped electrons and hadrons in
the calorimeters enable a high specificity in the muon detection.
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3.2. The Detector

3.2.5. Trigger System

With a bunch spacing of 25 ns [52] collisions happen at a rate of 40 MHz. Each collision
involves up to hundreds of particles. To reduce the data to a feasible amount, triggers
are employed to filter less interesting events. Different layers of triggers operate either
at the hardware or software level. The L1 trigger is a hardware level trigger and acts as
the first filter for the events. It makes decisions in less than 2.5µs. The subsequent L2
trigger is a software level trigger and makes decisions in less than 200µs. Combined the
trigger system reduces the event rate from 40 MHz to 1000 Hz which are then stored at
the Cern data centre.
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4.1. Monte Carlo Event Generation

Figure 4.1.: Schematic depiction of a decay cascade involving hadronic interaction at
different energy scales [55].

The Monte Carlo event generation is the simulation of the physical process of a particle
collision. The procedure for the calculation of these events usually consists of three
different steps. These steps use different theories and approximations to deal with the
different regions of the phase space and extreme values of αS. A schematic depiction of a
decay cascade is shown in Figure 4.1.
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Matrix element generation refers to the computation of the hard scattering of the
partons. These calculations are usually done by considering a fixed order of the pertur-
bation theory. This perturbative description is only applicable for αS ≪ 1 which is the
case for energies Q > O(100 GeV) [13]. The hard scattering is depicted as the red dot in
the centre of Figure 4.1.

Parton showers refers to secondary QCD processes. They can occur from both the
partons of the proton and the products of the underlying event. Parton showers describe
the successive emission of other partons like gluons and quarks which are called showers.
The resulting particles can be measured as jets in the detector. Various models are used
to simulate the processes that lead to the formation of hadronic jets. This process takes
place at energies of around Q ∼ O(10 GeV). The Parton showers are shown as the red
lines in Figure 4.1.

Hadronization refers to the process of creating bound states out of the partons. This
process usually sets in as particles reach low energy scales of Q ∼ O(1 GeV) where the
coupling constant of QCD approaches αS = 1. Due to the value of αS, a perturbative
description is not possible. Therefore, the simulation of this process is done using heuristic
models like the Lund-String model or the cluster model [56–59]. This process is depicted
as the green arrows and dots at the outermost part of Figure 4.1.

4.2. Detector Simulation

The Atlas detector is limited in its detection capabilities. It is not able to directly identify
the type of particles, but it can only measure the energy deposited by the particles.
Further, there are uncertainties in the measurements due to its statistical nature and
efficiencies in the detection of the particles. To compare the data with generated events,
the latter are run through a detector simulation. A detector simulation uses the events
generated by the Monte Carlo event generator and turns them into detector signals. This
process has to take the inefficiencies, the uncertainties and the triggers of the detector
into account. Atlas uses Geant for the simulation of its detector [60].

4.3. Signal and Background Simulation

Table 2.1 shows that most of the Higgs production originates from the ggF process. The
Signal is modelled via gg → H∗ → ZZ at next to leading order. The main irreducible
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Figure 4.2.: The leading-order Feynman diagrams for the gg → ZZ channel [61]. (a)
is the gg → H∗ → ZZ signal process and (b) the gg → ZZ background
process.

background comes from gg → ZZ and qq → ZZ production. The gg → ZZ process is
modelled using Madgraph [62] and the qq → ZZ is simulated using Sherpa [63]. The
Madgraph modelling of the gg → ZZ channel consists of an event generation of the
gg → H∗ → ZZ process and an inclusive event generation of the gg → ZZ process. Since
the inclusive modelling of the gg → ZZ process includes gg → H∗ → ZZ events, the
modelling of the gg → ZZ background is done differentially as

σ(gg → ZZ Background) = σ(gg → ZZ) − σ(gg → H∗ → ZZ) . (4.1)

Such a treatment ensures that the interference between signal and background process
is accounted for in the simulation. The two leading order Feynman diagrams for the
signal and background process are depicted in 4.2. In the following, whenever referred to
gg → ZZ, the background process and its interference with the signal gg → H∗ → ZZ

process is meant.
Due to current limitations in the model used to generate the gg → ZZ samples using
Madgraph, only events in the µ+µ−e+e− final state are modelled.
The simulation and analysis are performed at particle level, thus not taking detector
or reconstruction inefficiencies into account. Therefore, the reduced cross section in the
Madgraph samples can be adjusted by reweighting them with a factor of 2. Such a
procedure does not corrupt the scaling of the samples because the branching ratio for the
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Channel Cross section σ(m(4ℓ) > 180 GeV) in fb
gg → ZZ → 4ℓ (inclusive) 3.31
gg → H → ZZ → 4ℓ 0.0148
qq → ZZ → 4ℓ (inclusive) 53.3

Table 4.1.: Cross section for the different processes calculated for a pp-collider at
√
s =

13 GeV at next-to-leading order. The calculations were performed using
Sherpa for the qq → ZZ process and Madgraph for the gg → ZZ and
gg → H → ZZ process respectively. Note, that this includes the object
definitions for the leptons as defined in Section 5.1.

for ZZ → 4e, 4µ and ZZ → 2µ2e are approximately identical, as seen in Table 2.3. Note
that to prevent any imbalance due to the object definitions and acceptance ranges, the
object definitions for µ and e have to be identical.

4.3.1. Modelling of Polarised H∗ → ZZ Samples

To model the contribution of the different polarisation states of the ZZ system, specialised
Madgraph samples containing only ZLZL and ZTZT events are generated [64]. The
contribution of entangled polarisation states can not be modelled directly. Assuming
the total cross section of the ZZ system can be decomposed according to Eq. 2.40, the
contribution of the entangled polarisation states is obtained via

dσ

dΩ1dΩ2
(ZLZT ) = dσ

dΩ1dΩ2
(ZZ) − dσ

dΩ1dΩ2
(ZLZL) − dσ

dΩ1dΩ2
(ZTZT ) . (4.2)

On a more practical note, this means that there are no events with ZLZT to process, but
the distribution is obtained by subtracting the histograms containing ZLZL respectively
ZTZT events from the one generated from the inclusive gg → H∗ → ZZ process.
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5.1. Object Definition

Lepton candidates are required to have a pT > 7 GeV. The limited coverage of the
Atlas detector also imposes constraints on the leptons’ angular acceptance. Therefore,
lepton candidates must satisfy |η| < 2.47. Since the influence of the crack region on this
analysis was expected to be minuscule, it was not considered in the object definition.
These acceptance ranges do not reflect the exact nature of the Atlas detector, because
its efficiency differs between electrons and muons. However, to ensure equivalent object
definition of the leptons (as mentioned in Sec 4.3), of each criterium the stricter one was
chosen.
Jets are defined using the anti-kt algorithm [65, 66] with radius parameter R = 0.4.
They are required to have |η| < 4.5 and pT > 30 GeV. These cuts and requirements are
implemented to take limitations of the detector coverage into account and to limit the
number of considered leptons and jets not originating from hard scattering processes.
Since this analysis is done on particle level, no elaborate reconstruction is necessary. This
would, however, become necessary when performing this analysis on actual data taken by
the Atlas Collaboration.

5.2. Preselection

The overall event selection strategy employed in this work follows the one of the Atlas
collaboration in the search for off-shell Higgs production [61].
The preselection requires that events contain two same flavour opposite sign (SFOS) lepton
pairs, where ℓ = e, µ. Only events with m(4ℓ) > 180 GeV are considered, which is the on-
shell ZZ production threshold. The Z0 bosons’ kinematics are reconstructed by combining
the same-flavour opposite signed (SFOS) lepton pairs. In the 4e, 4µ final states, where
two pairings are possible, the first Z0 boson is reconstructed as the pairing of leptons with
the mass being closest to the actual Z0 mass. The sub-leading Z0 boson, Z2, is obtained
by combining the remaining two leptons. The reconstructed Z0 boson candidates are
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required to pass a Z0 mass window cut which is defined as m(ℓ+ℓ−) ∈ [70 GeV, 110 GeV].
From here on, if not specified otherwise, all variables are taken in the laboratory system.

5.3. Event Selection

To suppress the different background contributions and obtain a pure signal and control
region, a binary classification approach using a dense neural network (DNN) is used to
separate signal and background events.
For this, a DNN is trained to distinguish between the gg → H∗ → ZZ and qq → ZZ,gg →
ZZ processes. Since the qq → ZZ background process has the highest cross section of
the processes involved (see Table 4.1), suppressing its contribution in the signal region
is the primary aim of this event selection. For the training of this DNN, the generated

Variable Description
pT (ℓi) transverse momentum of the i-th lepton
η(ℓi) pseudorapidity of the i-th lepton
E(ℓi) energy of the i-th lepton
m(Zi) invariant mass of the i-th Z0 boson
η(Zi) pseudorapidity of the i-th Z0 boson
Njets number of jets
E̸T missing transverse energy

∆R(ZZ) angular difference of the Z0 bosons:
√

(∆η)2 + (∆ϕ)2

Table 5.1.: Input variables of the OHZZ
NN DNN.

Variable Description
pT (ℓi) transverse momentum of the i-th lepton
η(ℓi) pseudorapidity of the i-th lepton
ϕ(ℓi) polar angle of the i-th lepton
E(ℓi) energy of the i-th lepton
E(Zi) energy of the i-th Z0 boson

CoM Zi η(ℓ+) pseudorapidity of the positive lepton emitted by
Zi in its centre of mass frame

Zi ∆ϕ(ℓ+ℓ−) angle between the two leptons emitted by
Zi in the four-lepton centre of mass frame

Table 5.2.: Input variables of the OT T
NN DNN.

samples of the qq → ZZ are used as background and gg → H∗ → ZZ as the signal. Note
here, that the gg → ZZ is not used for the training of the DNN. The modelling of the
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Region Requirement Variable
SR OHZZ

NN > 0.2 OT T
NN

CR OHZZ
NN ≤ 0.2

m(4ℓ) ∈ [180 GeV, 400 GeV] m(4ℓ)

Table 5.3.: Definition of Signal and Control Regions.

gg → ZZ process is done inclusively. Thus, the sample contains events originating from
gg → ZZ background processes as well as those from the gg → H → ZZ signal process.
So training the DNN to treat these events as background limits its ability to separate
the gg → H∗ → ZZ events, because the inclusive gg → ZZ samples contains as much
gg → H∗ → ZZ events as the sample containing exclusively gg → H∗ → ZZ events.
The most promising way would be, to simulate a gg → ZZ sample not containing the
gg → H∗ → ZZ process and use it in the training. This was however not done, because
such a sample was not accessible, at the time of this work. The input variables utilised
by the DNN are given in Table 5.1. The layout for this DNN is chosen as four layers each
with 30 nodes.
Another DNN is trained to separate between events of the form gg → H∗ → ZLZL and
gg → H∗ → ZTZT . This is done to obtain a variable, that is sensitive to the polarisation
state of the ZZ system. Since events originating from gg → H∗ → ZLZT processes are
not directly accessible, as elaborated in Chapter 4.3.1. Thus, the DNN can not be trained
to be sensitive to both gg → H∗ → ZLZT and gg → H∗ → ZTZT . Instead, it is trained
to separate among the gg → H∗ → ZLZL and gg → H∗ → ZTZT events, which are
accessible via the Madgraph modelling mentioned in Chapter 4.3.1. The input variables
used for this DNN are given in Table 5.2. The layout of the DNN was chosen as five lay-
ers with 30 nodes each. The more complex structure was used because the Madgraph
samples contained more events and thus limiting the effects of overtraining. The training
and validation of the DNN are done via a k-fold with two folds. A hyper-parameter op-
timization was not performed for either of the DNNs because a more thorough analysis
of the deployment possibilities of deep learning is beyond the scope of this work. The
distribution of the input variables can be found in the appendix.
These event selection flags are used to define a Signal Region (SR) and a Control Region
(CR). The regions are defined in Table 5.3. The definition of these regions is chosen to
reduce the dominant qq → ZZ and gg → ZZ background in the signal region and en-
sure a precise normalisation of the background contribution. The very loose criterium of
OHZZ

NN > 0.2 is chosen to prevent a significant reduction of the ZTZT and ZLZT contribu-
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tions (More to be found in Chapter 6.1).
The small cross section makes it impractical to define multiple signal regions or con-
trol regions because each of them would have small yields and therefore large statistical
uncertainties. Aside from that, it comes with practical complications because the ZTZL

component is modelled as the difference of ZZ and ZLZL, ZTZT (see Chapter 4.3.1), which
can lead to negative entries in some bins causing problems during the fitting procedure.

32
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Testing Properties

6.1. Assessment of the Event Selection

(a) (b)

Figure 6.1.: The output variable of the event selection DNN OHZZ
NN for the signal and

background contribution in (a) and the different polarisation states of gg →
H∗ → ZZ in (b). Each distribution is normalised to unity.

The output of the event selection DNN OHZZ
NN is shown in Figure 6.1. The shape of the

distribution belonging to the qq → ZZ and gg → ZZ processes in Figure 6.1(a), indicates
that for high values of OHZZ

NN the signal purity is high. It is notable, that this variable
suppresses both the qq → ZZ and gg → ZZ background, even though, it was not trained
to suppress the gg → ZZ background. In Table 6.1 the signal-to-background ratio is
shown for different cuts on OHZZ

NN . A cut at 0.9 would give a signal-to-background ratio
of 13.8%. So this variable can suppress the background and give a pure signal region.
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Sample OHZZ
NN > 0.8 OHZZ

NN > 0.9 Total
gg → ZZ 698.5 62.5 12509.2
qq → ZZ 9259.9 2472.7 142049.5

gg → H∗ → ZZ 671.0 349.7 1183.5
SG/BG-Ratio 0.067 0.138 0.0077

Table 6.1.: Yields and signal-to-background-ratio for different cuts on OHZZ
NN .

In Figure 6.1(b) the distributions of the polarisation states of the ZZ system for the
OHZZ

NN are depicted. One can see that the shape of these distributions differs. The OHZZ
NN -

distribution of gg → H∗ → ZTZT events resembles the distributions of the background
processes. This distribution peaks at low values of OHZZ

NN but has a broad tail with near-
constant behaviour for values of OHZZ

NN > 0.4. For the gg → H∗ → ZLZT events, the
distribution has less significant peaks but comes with a double-peaked structure with
peaks at low and high values of OHZZ

NN and near constant behaviour in between.
The receiver operator characteristics (ROC) curve of a binary classifier is a graph depicting
its separation qualities. It displays the false positive rate as abscissa and the true positive
rate as ordinate for varied thresholds of the classifier as a discriminator.
A quantity derived from the ROC curve is the area-under-curve (AUC). It is the area under
the ROC curve of a classifier and takes values between 0.5 and 1. The AUC is a direct
measure of the separation qualities of a binary classifier, with higher values corresponding
to a better separation. An AUC of 1 would correspond to a perfect classifier, whereas a
value of 0.5 would correspond to a random classifier.
The permutation importance provides a measure of the influence a variable has on the
output of the classifier. It is given by

AUCnom − AUC
AUCnom

(6.1)

where AUCnom is the AUC of the classifier itself and AUC is the AUC of the classifier, but
with the input of the examined variable substituted with random noise. Higher values
correspond to a larger influence of the variable on the classifier.
Figure 6.2 shows evaluation plots for the DNN of OHZZ

NN . From the permutation im-
portance of the input variables depicted in Figure 6.2, it can be concluded that the pT

values of the leptons have the biggest impact on the DNNs output. Considering that
the invariant mass of the four lepton system was not provided as an input variable, this
appears only natural because the pT is highly correlated with m(4ℓ). The invariant mass
of the m(4ℓ) however is one of the most important variables in terms of separation of
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Figure 6.2.: Evaluation plots for the DNN of OHZZ
NN . Figure (a) shows the permutation

importance of the input variables, which is a measure of the contribution
of this variable to the output calculated by the DNN. Figure (b) shows the
ROC curves for validation and training for the two folds. Figure (c) and
(d) show the loss value over the course of the training of the DNN for the
two folds.

gg → H∗ → ZZ from [61]. This behaviour of the system is also evident from Figure 6.7,
showing the distribution of the invariant mass for the different channels. For high values
of m(4ℓ) the contribution of the gg → H → ZZ signal events dominates. The ROC
curve depicted in Figure 6.2(b) shows small differences between the two folds for each of
the training curves. The validation curve for one of the two folds does not only differ
significantly from the training curve of the same fold but also from the curves belonging
to the other fold. This indicates that the training of this DNN is limited by the num-
ber of events in the sample. Since the two folds show some statistical fluctuations. The
smaller AUC for training than for the validation sample, indicates effects of overtraining
in the training process of the DNN. Overtraining is also featured in the loss curves of the
DNN training process depicted in Figure 6.2(c) and 6.2(d). Here the effect is again more
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6. Study of the Entanglement Testing Properties

significant in one of the two folds. The shape of the ROC curve and the AUC of around
0.86 show the limited separation qualities of this classifier. Note, that the calculations
of all these evaluation plots are done only considering the samples that were used in the
training procedure. For this DNN these are the two samples containing gg → H → ZZ

and qq → ZZ events.

(a) (b)

Figure 6.3.: The output variable of the event selection DNN OT T
NN for the signal and

background contribution in (a) and the different polarisation states of gg →
H∗ → ZZ in (b). Each distribution is normalised to unity.

The classifier for the polarisation states has a high sensitivity for longitudinally and trans-
verse polarised events. These events are well separated, as seen in Figure 6.3(b): The
number of ZLZL events peaks at low values of OT T

NN and the number of ZTZT events
peaks at high values of OT T

NN . The sensitivity for the entangled contributions on the other
hand is low. These events show a double-peaking structure at values close to 0 or 1. This
is linked to the training of the DNN. Because the DNN was not trained to separate the
ZTZT and ZTZL component from ZLZL but only ZTZT and ZLZL, due to the inaccessibil-
ity of ZTZL events. However, as seen in Figure 6.4(a), when only taking gg → H∗ → ZZ

events into account, the OT T
NN is very sensitive for transverse and entangled events since

they make up most of the yields at high values of OT T
NN .

From the shape of the signal and background distributions for OHZZ
NN which is depicted in

6.3(a), it can be seen that the two background channels peak at 1 while the signal events
peak at 0. The latter is expected, because the gg → H∗ → ZZ is mostly made up of
longitudinally polarised events, which the DNN is trained to suppress.
The evaluation plots for this DNN are shown in 6.5. From the permutation importance
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6.1. Assessment of the Event Selection

(a) Preselection Cuts (b) Signal Region

Figure 6.4.: The distribution of OT T
NN for the gg → H∗ → ZZ process (a) with only

preselection cuts and (b) in the signal region.

depicted in 6.5(a), the separation angles ∆ϕ(ℓ+ℓ−) between the two leptons emitted by
one of the Z0 bosons in the centre of mass of the four leptons is identified as the most
important variable. Within the centre-of-mass frame of each of the Z0 bosons, the two
leptons are back-to-back. The angle in the four leptons reference frame, however, is dis-
torted by the Lorentz boost between the two systems. The effect of this is dependent on
the γ-factor of the Lorentz boost and the direction of the two leptons relative to the Z0

movement axis. The γ factor of this transformation is given by

γ = E(Zi)
m(Zi)

(6.2)

Since the Z0 mass is fixed, γ is linearly dependent on the energy Z0. The energy of the
Z0 within the four leptons rest frame on the other hand is directly related to the m(4ℓ),
because the two Z0 are back-to-back their energy is given by

E(Z) = m(4ℓ)
2 . (6.3)

Therefore, the γ-factor itself is linearly dependent on the invariant mass of the four lepton
system.
The angle θ between the leptons and the Z0 axis of movement also influences the angle
between the lepton in the four lepton rest frame. Larger values of θ lead to smaller values
for ∆ϕ(ℓ+ℓ−). From Equation 2.31 and 2.34 it is known, that the longitudinally polarised
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Figure 6.5.: Evaluation plots for the DNN of OT T
NN . Figure (a) shows the permutation

importance of the input variables, which is a measure of the contribution
of the variable on the output calculated by the DNN. Figure (b) shows the
ROC curves for validation and training for the two folds. Figure 6.5(c) and
6.5(d) show the loss value over the course of the training of the DNN for
the two folds.

Z0 boson decay preferably perpendicular to the axis of movement of the Z0 whereas the
transverse polarised Z0 bosons decay preferably collinear with the axis of movement. This
circumstance can also be seen in Figure A.10. The distribution of cos(θ) shows the be-
haviour theoretically predicted in Chapter 2.2.2 for the case longitudinally and transverse
polarised Z0 boson pairs.
Thus, this angular variable is potent in separating the polarisation states because it com-
bines two distinct features of these; the dependence on the four-lepton invariant mass and
the emittance angle of the leptons relative to the Z0 bosons momentum. The distribution
of this variable can be found in Figure B.10(e) and B.10(f).
The ROC curve in Figure 6.5(b) for the different folds show no visible difference and the
AUC coincides up to the third decimal. The loss curves in Figure 6.5(c) and 6.5(d) show
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6.1. Assessment of the Event Selection

little difference between the training and validation sample, indicating that the effects of
overtraining are quite low for this DNN. This behaviour can be explained by the larger
number of events in the Madgraph samples. The AUC of 0.92 is high, showing that
the classifier performs well at separating the two processes. Note, that the calculations
of all these evaluation plots are done only considering the samples that were used in the
training procedure, which for this DNN are, the two samples containing gg → H → ZLZL

and gg → H → ZTZT events.
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6. Study of the Entanglement Testing Properties

(a) qq → ZZ (b) gg → ZZ

(c) gg → H∗ → ZLZL (d) gg → H∗ → ZT ZT

(e) gg → H∗ → ZLZT

Figure 6.6.: Plots showing the distribution of the two DNN output variables for the
different decay channels and background processes.
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6.1. Assessment of the Event Selection

In Figure 6.6 the two classifiers are plotted. These graphs show a concentration of events
at either OHZZ

NN = 0 and OT T
NN = 1 or OHZZ

NN = 1 and OT T
NN = 0. This indicates a negative

(a) (b)

Figure 6.7.: Distribution of the invariant mass of the four lepton system. Each distribu-
tion is normalised to unity. (a) shows the distribution of the background
processes gg → ZZ, qq → ZZ, and the signal process gg → H → ZZ
respectively. (b) shows the distribution of the different polarisation states
of the signal process.

correlation between the two classifiers. Such a behaviour heavily limits the possibility
to define signal regions, with a high number of gg → H∗ → ZZ without losing the
sensitivity to the contribution of ZTZT and ZTZL. From Chapter 2.2.1 it is known, that
events with higher invariant mass m(4ℓ) tend to be more longitudinally polarised. The
invariant mass is also an important variable to separate the gg → H∗ → ZZ process
from its background [61]. From Figure 6.7 it can be seen, that the gg → H∗ → ZZ

contribution becomes largest for high values of m(4ℓ). As a consequence, cuts on OHZZ
NN

lead to a reduction of the ZTZT component. Such a behaviour is problematic, because
even though the OHZZ

NN allows for the definition of a signal region with a high signal-to-
background ratio as presented in Table 6.1 which however would have no significance for
transverse polarised Z0 boson decays.
From the event yields depicted in Table 6.2 one can calculate the ratio of gg → H∗ → ZZ

and background events in the signal region. For the different regions this ratio amounts
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Sample SR CR
ZLZL 1010 ± 80 22.5 ± 1.9
ZTZT 49.3 ± 2.1 14.4 ± 1.0
ZLZT 74.5 ± 3.1 13.1 ± 0.6
gg → ZZ 8700 ± 400 3550 ± 250
qq → ZZ 85200 ± 3300 46500 ± 3100
Total 95000 ± 4000 50100 ± 3300

Table 6.2.: Yields of the different processes in the fit regions (for their definition see
Chapter 5.3). Note that the uncertainties given here, are purely statistical
uncertainties, as systematic uncertainties are not included in this analysis.

to

RSR = N(gg → H∗ → ZZ)
N(Background) = 0.0121 ± 0.0009 (6.4)

RCR = = 0.00099 ± 0.00005 . (6.5)

The acceptance of the event selection differs substantially for the different polarisation
states. They are given by

ϵLL = N(ZLZL, SR)
N(ZLZL) = 0.97 ± 0.09 , (6.6)

ϵT T = N(ZTZT , SR)
N(ZTZT ) = 0.77 ± 0.04 , (6.7)

ϵLT = N(ZLZT , SR)
N(ZLZT ) = 0.85 ± 0.05 . (6.8)

Here N(x, SR) refers to the number of events of sample x within SR. From this, one can
see that the number of entangled and transverse polarised events is decreased substantially
more than the number of longitudinally polarised events. This leads to a loss of significance
for the test of entanglement in the signal region. This effect can also be seen in Figure
6.4 where the distribution of OT T

NN is shown with preselection cuts only and in the signal
region. From there, it can be seen that a lot of the sensitivity for the contribution of
transverse polarisation states is lost in the signal region. Note, that this effect increases
with a more restrictive cut on OHZZ

NN as it can be seen from the shape in Figure 6.1(b).
The reasons for this behaviour were elaborated in the analysis of the two DNN outputs.
The distributions of the various kinematic variables depicted in the Appendix B show
a strongly fluctuating behaviour for the gg → H∗ → ZLZT process. This circumstance
is a consequence of the way this process was modelled. The number of events per bin
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is calculated as the difference of the full gg → H → ZZ process and the number of
events originating from longitudinal respectively transverse polarised ZZ states. Thus,
the uncertainties for the gg → H∗ → ZLZT process are enhanced, which also results in
the fluctuation observable in the plots.

6.2. Fitting Setup

To test for entanglement, a binned profile likelihood fit is performed. The distribution
in the ZZ channel can be decomposed into contributions coming from gg → ZZ and
qq → ZZ. The gg → ZZ can now be further separated into different parts, giving

σ(ZZ) = σ(qq → ZZ) + σ(gg → ZZ) + σ(gg → H∗ → ZZ) + σ(Interference) . (6.9)

The term σ(Interference) describes the interference of the gg → ZZ process without the
Higgs propagator and the gg → H∗ → ZZ process. As this work aims to examine the
quantum entanglement of the ZZ system, the gg → H∗ → ZZ part is split up into the
different polarisation states, giving

σ(ZZ) = σ(gg → H∗ → ZLZL) + σ(gg → H∗ → ZTZT ) + σ(gg → H∗ → ZLZT )
+ σ(qq → ZZ) + σ(gg → ZZ) + σ(Interference) .

(6.10)

To get an estimate of the significance at which entanglement can be probed, an Asimov fit
is performed. This refers to a fit where the stacked histograms of signal and background
are used for the distribution to be fitted against. A detailed analysis of the systematic
uncertainties of this process would be out of the scope of this work. Due to the small cross
section of the Higgs off-shell process in general and the H∗ → ZZ process in particular,
the statistical uncertainties in this process are expected to dominate. Therefore, only
statistical uncertainties are considered in this fit. The Asimov fit is performed because
an application of this formalism to data would require a more thorough treatment of the
involved background and optimisation of the DNNs and systematic uncertainties. This
includes taking into account the various effects of the detector such as miss identification
and uncertainties of the measurement.
For matters of convenience, the different background contributions are grouped. There-
fore, the distribution used to fit is

σ(ZZ) = µLL · σ(ZLZL) + µQE · (σ(ZTZT ) + σ(ZLZT )) + µBG · σ(Background) . (6.11)
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The fit is performed using the distribution of the variables named in Table 5.3. For the
signal region, the distribution of OT T

NN was used, because it is sensitive to the polarisation
state of the ZZ system. Therefore, it allows to test the contribution of the different
polarisations states. The invariant mass in the control region was chosen because it is
expected to have small fluctuations allowing for a precise normalisation of the background.
Due to the complex event selection employed, a fit directly to a theoretically obtained
distribution is not possible. Instead, the different histograms are multiplied with norm
factors which are adjusted during the fitting procedure. Since the different distributions
are not fitted to data but to the sum of the distributions themselves, the optimal value
for each norm factor is 1 by construction. The uncertainty of the values can be used
to estimate the significance of the test for entanglement. The pre-fit plots depicting the
signal and control regions are given in the appendix.

6.3. Fit Results

Table 6.3.: Fitted values for the norm factors for L = 3 ab−1 for different values of
background scaling.
Background scaling µQE µLL µBG

1 1.00 ± 6.16 1.00 ± 2.11 1.00 ± 0.07
0.75 1.00 ± 5.62 1.00 ± 0.91 1.00 ± 0.03
0.5 1.00 ± 6.41 1.00 ± 1.24 1.00 ± 0.14
0.25 1.00 ± 7.83 1.00 ± 0.80 1.00 ± 0.14
0.10 1.00 ± 7.99 1.00 ± 0.25 1.00 ± 0.10
0.05 1.00 ± 7.37 1.00 ± 0.14 1.00 ± 0.10
0.01 1.00 ± 1.29 1.00 ± 0.05 1.00 ± 0.13

0 1.00 ± 0.19 1.00 ± 0.04 -

First, the full distribution as described above was fitted, to get an estimate of the ex-
pected significance. The fit was performed in the two regions described in Chapter 5.3.
In the appendix, Figures showing the plots corresponding to theses regions are shown.
The results of the norm factors are given in Table 6.3. The norm factors lie indeed as
constructed at 1. From the uncertainty of µBG one can extract the significance. For the
background rejection efficiency of this work, which corresponds to a background scaling
of 1, the significance amounts to

0.16σQE . (6.12)
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To get an estimate of what background rejection efficiency is necessary to test entangle-
ment at a certain sensitivity the same fit is performed for different values of scaling of
the background. Notable is, that the significance does not increase monotonously with a
decreased background scaling. The behaviour is most likely to result from the way the
background was modelled and the correlation between the norm factors µBG and µQE.
The correlation matrices for the norm factor are depicted in the appendix in Figure A.11.
With smaller background scaling the norm factor µBG and µQE become more correlated.
From the shape of the distributions of OT T

NN in Figure 6.3, it can be seen that the distribu-
tion of the background resembles that of the gg → H∗ → ZTZT . Thus if the scaling of the
background becomes smaller and its yield approach that of the gg → H∗ → ZTZT and
gg → H∗ → ZLZT , the norm factors become more correlated 1. However, it is limiting
the ability to estimate the required background rejection efficiency.
For a background scaling of 0, which corresponds to an absolutely pure signal region, the
significance is

5.26σQE . (6.13)

Note that this already takes the decreased acceptance for the ZLZT and ZTZT states into
account.
A fit not taking any further event selection along the preselection into account is performed
as well. This corresponds to a fit of the gg → H∗ → ZZ events with the distribution of
OT T

NN . For this case the significance amounts to

7σQE . (6.14)

Due to the nature of this fit and the resulting norm factor with concurring values of 1,
the pre- and post-fit plots are identical. They can be found in the appendix.

1A full investigation of the effects leading to this unusual behaviour is postponed because it would
exceed the time frame of this work.

45





7. Conclusion and Outlook

This thesis investigated the sensitivity of entanglement in H∗ → ZZ → 4ℓ events.
The condition for entanglement is turned into a binary test between a solely longitudi-
nally polarised ZZ system and an entangled ZZ system containing contributions from
longitudinally, transverse polarised and entangled ZZ boson polarisation states. For this
analysis, solely longitudinally and transverse polarised H∗ → ZZ events were simulated.
The distributions of these events were then compared with those originating from the
inclusive gg → H∗ → ZZ process. This approach allowed to model the contributions
from the different polarisation states independently.
A dense neural network was employed for the background rejection, to define signal re-
gions with an enhanced number of gg → H∗ → ZZ events. To obtain a variable sensitive
to the polarisation of the ZZ boson state, another dense neural network was trained to
separate among events from longitudinally and transverse polarised Z0 bosons. Using
this variable, a profile likelihood fit was performed on an Asimov dataset, to examine the
sensitivity for entanglement in this analysis.
The expected significance which can be probed with the current setup is 0.16σ. There-
fore, it is not expected to be measurable in experimental data. Because for experimental
data the significance is further impaired by reconstruction inefficiencies and limitations
in the detector resolution.
This low sensitivity appears mostly due to the large background contamination in the
signal region. The background classifier employed in this analysis has a high sensitivity
for gg → H∗ → ZZ events. In principle, this would allow to define signal regions with
a high signal-to-background ratio. However, the distributions of the classifier OHZZ

NN are
different for the polarisation states of the ZZ. Thus, cuts on this classifier diminish the
number of ZLZT and ZTZT events. To not lose the sensitivity for these different polari-
sation states in the signal region, the cut on the background rejection classifier is chosen
very loose, leading to large background contamination.
Without the consideration of the background events, the sensitivity achieved was 5.3σ.
When not taking the decreased acceptance into account, the sensitivity increases to 7σ.
This, of course, poses an unrealistic scenario but indicates that probing entanglement
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becomes possible with a sufficient background rejection. The fluctuation of the signifi-
cance for different background rejection makes it impractical to assess the efficiency of
background rejection necessary to probe entanglement.
One way this analysis may be improved would be with a more concise modelling of the
background. The background modelling might be differentiated into the processes con-
tributing. This would allow to account the norm factors for the interference between
processes sharing initial and final states with the signal process.
The event selection can be improved in several manners. One possibility would be to
employ a pseudo matrix element formalism, as it was done by the Atlas Collaboration
in the search for off-shell Higgs production [61]. Whether such a formalism is suited, is
difficult to assess, because it has to address two problems at the same time. It has to
deliver a sufficient background rejection efficiency, without diminishing the sensitivity to
the different polarisation states.
Due to the inherent properties of the gg → H∗ → ZZ and its background, it might be
necessary to reconsider the event selection. One possible way to counter the problem of
the reduction of ZTZT events in the signal region might be, to employ a discriminant
separating gg → H∗ → ZTZT and gg → H∗ → ZLZT from the longitudinally polarised
events and all of the background.
To further address the issue of the correlating norm factors, it might be advantageous to
employ a multi-class DNN to different background processes. That way, the distribution
of the sensitive variable might coincide less for background and gg → ZTZT signal, like it
is the case in this analysis.
One problematic aspect remaining is that training a variable that is sensitive to ZLZT

and ZTZT contributions can only be trained to discriminate the ZLZL events. Since the
contribution of the ZLZT states has a higher number of events, such a variable misses out
on a significant part of the sensitivity.
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A. Additional Plots

(a) Control Region (b) Signal Region

Figure A.1.: Plots of signal and control region with background scaling 1.00.
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A. Additional Plots

(a) Control Region (b) Signal Region

Figure A.2.: Plots of signal and control region with background scaling 0.75.

(a) Control Region (b) Signal Region

Figure A.3.: Plots of signal and control region with background scaling 0.50.
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(a) Control Region (b) Signal Region

Figure A.4.: Plots of signal and control region with background scaling 0.25.

(a) Control Region (b) Signal Region

Figure A.5.: Plots of signal and control region with background scaling 0.1.
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A. Additional Plots

(a) Control Region (b) Signal Region

Figure A.6.: Plots of signal and control region with background scaling 0.05.

(a) Control Region (b) Signal Region

Figure A.7.: Plots of signal and control region with background scaling 0.01.
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(a) Signal Region

Figure A.8.: Plots of signal with background scaling 0.

(a) Signal Region

Figure A.9.: Plots of signal with only preselection applied.
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A. Additional Plots
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Figure A.10.: cos(θ) of the positive lepton emitted by Z1 in the Z1 centre-of-mass frame.
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(a) Background scaling 1 (b) Background scaling 0.75

(c) Background scaling 0.5 (d) Background scaling 0.25

(e) Background scaling 0.10 (f) Background scaling 0.05

Figure A.11.: Correlation matrices of the norm factors obtained in the fit for different
values of background scaling.
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B. Input Variables

(a) pT (ℓ1) (b) pT (ℓ2)

(c) pT (ℓ3) (d) pT (ℓ4)

Figure B.1.: Distribution of pT (ℓi).
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B. Input Variables

(a) η(ℓ1) (b) η(ℓ2)

(c) η(ℓ3) (d) η(ℓ4)

Figure B.2.: Distribution of η(ℓi).
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(a) E(ℓ1) (b) E(ℓ2)

(c) E(ℓ3) (d) E(ℓ4)

Figure B.3.: Distribution of E(ℓi).
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B. Input Variables

(a) m(Z1) (b) m(Z2)

(c) η(Z1) (d) η(Z2)

Figure B.4.: Distribution of m(Zi) and η(Zi).
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(a) Njets (b) E̸T

(c) ∆R(ZZ)

Figure B.5.: Distribution of Njets, E̸T, and ∆R(ZZ) .
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B. Input Variables

(a) pT (ℓ1) (b) pT (ℓ2)

(c) pT (ℓ3) (d) pT (ℓ4)

Figure B.6.: Distribution of pT (ℓi).
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(a) η(ℓ1) (b) η(ℓ2)

(c) η(ℓ3) (d) η(ℓ4)

Figure B.7.: Distribution of η(ℓi).
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B. Input Variables

(a) E(ℓ1) (b) E(ℓ2)

(c) E(ℓ3) (d) E(ℓ4)

Figure B.8.: Distribution of E(ℓi).
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(a) ϕ(ℓ1) (b) ϕ(ℓ2)

(c) ϕ(ℓ3) (d) ϕ(ℓ4)

Figure B.9.: Distribution of ϕ(ℓi).
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B. Input Variables

(a) E(Z1) (b) E(Z2)

(c) CoM Z1 η(ℓ+) (d) CoM Z2 η(ℓ+)

(e) Z1 ∆ϕ(ℓ+ℓ−) (f) Z2 ∆ϕ(ℓ+ℓ−)

Figure B.10.: Distribution of E(Zi), CoM Zi η(ℓ+), and Zi ∆ϕ(ℓ+ℓ−).66
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