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ABSTRACT

Smartphones have become ubiquitous in recent years and
offer many useful services to their users, such as notifica-
tions about incoming calls and messages, or news updates in
real-time. These notifications however do not consider the
current user’s and phone’s context. As a result, they can
disturb users in important meetings or remain unnoticed in
noisy environment. In this paper, we therefore propose an
approach to infer the phone’s context based on its vibration
motor. To this end, we trigger the phone’s vibration mo-
tor for short time periods and measure the response of its
environments using the built-in microphone and/or accele-
rometers. Our evaluation shows that leveraging accelerome-
ters allows to recognize the current phone’s context with an
accuracy of more than 99%. As a result, our proposed so-
lution outperforms our previous work based on played and
recorded ringtones in terms of classification performance,
user annoyance, as well as potential privacy threats.

Keywords

context detection; phone position classification; active prob-
ing; vibration motor actuation

1. INTRODUCTION

Despite multiple embedded sensors and powerful resources,
current smartphones continue to ring in inappropriate situa-
tions or calls are still missed because users do not hear them.
While the screen brightness is adapted to the environmental
light conditions or targeted advertising is sent using Blue-
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tooth neighborhood information, adapting the volume and
mode of the notification to the phone’s context has not been
implemented in state-of-the-art phones yet. Research on
inferring the current phone’s context has however been con-
ducted in the last decade. Preliminary work have focused
on collecting mobile contextual data [27], before shifting to-
wards their on-board processing with the introduction of
sensing frameworks like FUNF [1].

Within the scope of this paper, we hence follow this trend
and investigate a novel approach to determine the phone’s
current position based on its vibration motor and accele-
rometers. In more details, we trigger the phone’s vibra-
tion motor for short periods of time in order to stimulate
a deterministic signal whose distortion and attenuation are
captured by the accelerometers. The collected acceleration
readings are processed and analyzed on the phone to iden-
tify the current position between (1) in a pocket, (2) in the
user’s hand, (3) in a bag, e.g., a purse or a backpack, (4) on
a desk facing the ceiling, and (5) on a desk facing the surface
of the desk. By means of a comprehensive study, we analyze
how acceleration signatures allow for the inference of the
phone’s location in real-time. Additionally, we compare the
performance of our proposed approach against an existing
audio-based approach [6], and demonstrate its higher posi-
tion determination accuracy. Moreover, by using the vibra-
tion motor and the accelerometers to determine the phone’s
context, no sound samples need to be either recorded (po-
tentially endangering users’ privacy) nor played (potentially
disturbing the users).

We discuss related work in Section 2. We then introduce
our system concept and design considerations in Section 3.
We provide details on our prototype implementation in Sec-
tion 4, before assessing its performance in Section 5. We
finally make concluding remarks in Section 6.

2. RELATED WORK

Different applications make use of the phone’s embedded
sensors to detect user context. Examples include user mo-
bility prediction, [32, 25], indoor localization [7], healthcare
[13], and gaming [9]. In the following, we especially focus on
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solutions based on sound samples and accelerometer data,
as we use both sensor modalities in our solution. Audio-
based approaches aim at recognizing speech [28] and speaker
[17], emotions or stress levels from human voices [18]. Mu-
sic is also a topic of interest, ranging from genre recognition
[31] to modeling [16]. In contrast, medical applications [12],
user activity recognition [24], and general purpose frame-
works [22] usually analyze environmental sounds to detect
the user’s current context. In comparison, accelerometers
can be used to determine a person’s physical activity [3, 30]
and monitor their exercising habits [11]. Additionally, Li et
al. [14] determine when a person is falling and derive posture
information, while Mazilu et al. [20] help Parkinson patients
train their gait. Further applications include gesture recog-
nition [15] and transportation means identification [10].
When especially considering phone’s position, Schmidt et
al. [26] aim at distinguishing between five phone modes, two
referring to the phone position (hand and table), two to the
phone state (silent and general) and one to the environment
(outside). To this end, they use a combination of external
sensors including two accelerometers, a photodiode, tempe-
rature and pressure sensors, a CO gas sensor and a passive
IR sensor. Later, Miluzzo et al. [21] used microphone, ca-
mera, accelerometer, and gyroscope readings to distinguish
between two states of the phone: inside (a bag, a pocket,
etc.) and outside (in the hand, on a desk, etc.). Several ap-
proaches [8, 33] use accelerometers but rely only on passive
probing of the environment. In addition to accelerometers,
Wiese et al [33] use the light and proximity sensors extended
by an external two-dimensional capacitive array and a multi-
spectral sensor. Cho et al [5] rely on the vibration motor and
accelerometer readings in order to determine the type of sur-
face the phone is on. They use 1.3 seconds windows, which
can cause a slight delay in the phone mode adaption and use
SVM as classifier, achieving an average accuracy of 85%.
Our work differs from related work for the following rea-
sons. We compare the following different methods to iden-
tify five phone positions: 1) using audio recordings of the
notification sounds introduced in our previous work [6], 2)
using audio recordings of the sounds produced by the vi-
bration motor, and 3) using accelerometer readings while
the vibration motor is triggered. To the best of our knowl-
edge, we are the first to make use of the sound produced by
the vibration motor as an indicator of the phone environ-
ment. To further adapt the phone mode, we also consider
the surrounding noise level and user mobility. We share more
similarities with [5] but we consider a significantly smaller
window size and combine the sounds of the vibration mo-
tor with the resulting acceleration. As a result, we achieve
an average accuracy of 99%, outperforming the 85% in [5].
Furthermore, we opportunistically determine the phone po-
sition when a new notification is received. By doing so, we
avoid duty-cycling and thus reduce the energy consumption.

3. CONCEPT

The phone position influences the user’s interaction with
her device. A user holding the phone in her hand can re-
ceive visual notifications and can readily interact with it. A
phone on, e.g., a desk may suggest that the user is involved
in another activity or might have even left the phone be-
hind. When a phone is in a pocket or bag, a sound-based
notification is necessary to get her attention, but can be in-
appropriate depending on the user’s current activity, such

as attending a meeting or driving. To adapt the notification
mode to the phone position and the user’s context, a first
method could be to rely on the users. However, our daily
experiences show that users usually tend to forget it. Since
most of users’ phone usage is based on interpersonal com-
munication [4], this can result in many daily disturbances or
missed, e.g., emails and calls.

We have therefore designed three approaches to determine
the phone position, all of them actively probing the phone’s
environment. Moreover, we consider five usual phone posi-
tions: pocket, hand, bag, desk facing the ceiling, and desk
facing the surface of the desk. We hence present the particu-
larities of these approaches below, before detailing data pro-
cessing and classification common to all three approaches.

3.1 y/ill{)ration Motor & Accelerometers — PCD-

The first approach simultaneously relies on the vibration
motor and the accelerometer readings. We assume that
phone movements are modified depending on the surround-
ing environment. For example, it can be muffled in an en-
closed space, like a bag or a pocket, or amplified on a hard
surface. Instead of periodically applying this method, we
start it when alerts on, e.g., incoming calls are sent. This
makes our approach more energy-efficient, since we do not
need to duty cycle and only collect accelerometer readings
and classify them when a notification is received. As com-
pared to audio-based methods, classifying the phone po-
sition based on the accelerometer data consumes less en-
ergy and is not affected by surrounding noise. Moreover, no
sound samples are collected, potentially endangering users’
privacy.

3.2 Vibration Motor & Audio - PCD-VA

Instead of the acceleration caused by the vibration motor,
we consider here the resulting noise and especially, its varia-
tion due to the phone environment. A potential challenge is
to distinguish the sounds produced by the vibration motor
itself, and the sounds produced by the phone’s movements
against its environment. As above, our approach relies on
piggybacking incoming calls and notification alerts, when
the phone is in vibration mode. Even if signals, like Gaus-
sian noise, can yield better classification results and be more
robust in noisy environments, this approach is more energy
friendly and reduces the user disturbance to the minimum.

3.3 Audio & Audio - PCD-AA

The last method relies on audio recordings of specific
sound clips being played and presented in detail in [6]. This
method serves us as a benchmark for the evaluation of the
other two methods, PCD-VR and PCD-AA, as well as for
designing hybrid methods.

3.4 Hybrid Approaches

In order to improve classification results, we considered
combinations of the above-presented approaches. First, if
the phone is on a loud mode, with both notification sounds
and vibrations being used, we can use both PCD-AA and
PCD-VA. In the second case, the phone is on vibration
mode, thus enabling us to combine PCD-VA and PCD-VR.

The classification results can be improved by using the
sensor readings to determine not only the phone position,
but also surrounding noise level and whether the user is sta-



Table 1: Deciding on the most reliable sensor read-
ings

Environment | User Most reliable readings

Silent Stationary | Undecided, both reliable

Silent Moving Audio recordings

Noisy Stationary | Accelerometer readings

Noisy Moving Undecided, both slightly
less reliable

tionary or moving. Based on this extra information, we
could decide whether one sensor is affected less by envi-
ronment conditions and hence more trustworthy than the
other, as shown in Table 1. For instance, if the user is mov-
ing through a silent environment and the classification re-
sults for audio and accelerometer readings diverge, we would
choose the results based on the audio recording. Similarly,
in a loud environment where the user itself is stationary,
the accelerometer sensor would be chosen since contrary to
the the microphone, its signal quality is not affected by the
noise.

3.5 Phone Position Classification

We present two architectures developed for our system.
In both cases, a smartphone app gathers the relevant data:
a chunk of a notification sound, a chunk of the sound made
by the vibration motor, or accelerometer readings.

The first system carries out the data preprocessing and
classification on the phone. The second one, depicted in
Figure 1, sends the data to a server, where it is preprocessed
and classified. The server then sends back to the phone the
determined phone position and noise level, based on which
the phone could adapt its volume accordingly.

For the worst case scenarios, namely the audio-based clas-
sification approaches, or experiments showed an average de-
lay for sending the data to the server and receiving back
the classification result of 97 ms for a 100 ms recording.
For transferring and classifying accelerometer readings, the
delay was, as expected, much lower. This proves also the
second solution to be feasible for adapting the volume for
the very notification sound we collected for the recording.
Given that the time to process or transfer accelerometer
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Figure 1: Architecture of the system classifying the
data on an external server

readings over the network is significantly lower, PCD-VR is
even more appropriate for our scenario. In Section 5, we
present a comparison of the processing times and battery
consumption for the two architectures.

We use the same classification pipeline for both systems.
We first preprocess the samples, eliminating the silent win-
dows and converting the time domain windows to frequency
domain. Then, we leverage machine learning technologies.
For dimension reduction, we extract well-established fea-
tures from the field of audio signal processing. Afterwards,
we classify the samples using tree and cluster-based ap-
proaches. Afterwards, tree and cluster-based approaches are
used for the classification of the samples.

4. IMPLEMENTATION DETAILS

For each of the three considered approaches, the samples
were collected on Android phones, while the classification
was carried out in two different ways: either on the phone
or on an external server. On-board classification uses Weka
for Android [19]. On the server, the application was imple-
mented in Python and used the scikit-learn library [23].

4.1 PCD-VR

For this approach, an Android app triggered the phone’s
vibration motor and gathered the accelerometer readings at
the same time. The pattern we used for the vibration mo-
tor is the same as the one used by phones when receiving
a call, namely blocks of 1500 ms of vibrations followed by
by 500 ms breaks. For the sample collection, we used the
TYPE_ACCELEROMETER from the Android sensor API, which
provides the acceleration force, measured in m/s2 applied
to the phone on the three physical axes, x, y, and z, in-
cluding gravity. We specified the sensor delay to be 0 ms
(SENSOR_DELAY_FASTEST) in order to get the maximum sam-
pling frequency supported by the phone. Most of the ac-
celerometer readings were recorded with a Google Nexus 5
smartphone, which features a MPU-6515 acceleration sensor
from InvenSense. This sensor offers different settings with a
sensitivity between 2048 and 16384 LSB/g and a range be-
tween 2 and 16g. It also provides very low sensitivity change
depending on the ambient temperature as well as high-speed
delivery of accelerometer data and low power usage at with a
normal operating current of 450 A. We were able to gather
an average of 49 accelerometer readings in a given 100 ms
window. Our processing pipeline is shown in Figure 2.

After collecting the samples, we extracted the feature vec-
tor for each window, using a combination of features that
have been successfully used in various combinations to clas-
sify movement [2, 3]. The structure of our feature vector is
presented in Equation 1.

features(data) = (ming y,.(data), mazs,y, - (data),

mediang y, - (data), rmsq 4 - (data), (1)

peorrelationg .. (data), sdg .y, - (data))

Where ming y,.(data), maxg,y,.(data), and ming - (data)
are the minimal, maximum, and median of the x, y, and z
components of the acceleration data read for one window.
rMSge,y,-(data), pcorrelationg y. - (data), and sdq .- (data) are,
respectively, the root mean square, Pearson correlation, and
standard deviation of the data along the three axes. This
gives us a total of 18 coefficients for our feature vector. Fig-
ure 3 shows 6 of these coefficients, extracted for the x-axis
component of one acceleration window.
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Figure 2: Processing pipeline of the accelerometer
readings

The last step is the classification. We have mainly used
tree-based algorithms, like Decision Trees (DT) and Random
Forest (RF), and cluster-based algorithms, like K-Nearest
Neighbors (KNN). This is motivated by the way the feature
vectors form clusters in the 18-dimensional feature space,
these values being unique and almost constant for each phone
position. For the comparison, we also used Gaussian Mix-
ture Model (GMM).

4.2 PCD-VA

The data collection was carried out by an Android app
that triggers the phone’s vibration motor and records the
sounds generated by it, together with the environment sounds
at a sampling rate of 44.1 kHz with a 16 bit depth. The pat-
tern we used for triggering the vibration motor was the same
as the for PCD-VR (1500ms of vibration, 500ms of silence).
Given the volume of the sounds produced by the vibration
motor, we did not have any concerns about clipping.

We use a processing pipeline comprised of windowing,
silence removal, Fourier transformation, feature extraction
and classification. In the first step, we apply a rectangu-
lar windowing function which uses a fixed-length window
size. Based on the results of experimentation with different
window sizes, we chose a window size of 4096 samples, corre-
sponding to about 100 ms. Since silent windows provide no
value for the classification and lower the accuracy, they are
removed in the next step. We calculate the signal energy for
the corresponding window and discard it if its signal energy
falls below a certain threshold. In order to convert the sig-
nal from the time to the frequency domain, we then apply
a Fourier transform in the next step.

The following step is extracting the feature vector of a
window in order to reduce the dimensions of the data. We
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Figure 3: Features for the x-axis component of one
acceleration window

evaluated four different types of features: Mel Frequency
Cepstral Coefficients (MFCC), Delta Mel Frequency Cep-
stral Coeflicients (Delta MFCC), the Band Energy (BE)
and the Powerpectrum (PS). MFCC emulate the behavior
of the human ear [29] and are “perceptually motivated” [31].
MFCC are popular tools for speech and speaker recogni-
tion [29], as well as music modelling [16]. Furthermore, they
have been successfully used to classify environment sounds
[22, 24]. We calculate the first N=13 MFCC coefficients,
since existing work has shown this number to be sufficient
for high quality results [22, 29]. However, MFCC features do
not take the temporal aspect into account, being calculated
only for the individual windows. For this reason, we also
experimented with the Delta MFCC coefficients, which add
to the N MFCC coefficients their first order derivatives with
respect to time. The final classification is then the same as
above.

43 PCD-AA

For collecting the samples, we used an Android app that
can play back ringtones, alarm and notification sounds, and
record them at the same time, at a sampling rate of 44.1 kHz
with a 16 bit depth. Unlike PCD-VA| clipping was a concern
for this approach. Since the optimal volume is decided based
on the classification result, we had the app set the volume
for the sample collection. Thus we avoided both clipping
and too silent recordings. This did not create any distur-
bances for the user, since the smallest recording length was
only 100 ms. We looked at all ringtones, alarms and notifi-
cation sounds of Samsung Galaxy Nexus, and all ringtones
of Nexus 5 and Samsung Galaxy S3. The preprocessing and
classification process are again the same.

S. EVALUATION

We first introduce the evaluation setup, before comparing
both classification architectures. We then present and com-
pare the evaluation results of our three proposed approaches.

5.1 Evaluation setup

We used three types of phones, Samsung Galaxy Nexus,
Samsung Galaxy S3, and Nexus 5. They all support the
44.1 kHz sampling rate and 16 bit audio depth required for
an optimal audio sample classification. We have collected
over 550000 audio samples and over 1388624 accelerome-
ter readings and use a 10-fold cross validation approach for
the classification. We gathered the audio samples we con-



sidered in both silent and noisy environments, while for the
accelerometer readings we also considered both stationary
and mobile users and environments. We aim at classifying
the current phone position, together with either environment
noise level for the audio-based scenario or user mobility for
the accelerometer-based scenario. The user mobility can be
classified either as stationary or mobile. We evaluate and
compare the precision and recall achieved for the various
types of features and classifiers, as well compare the overall
performances of our three approaches.

5.2 Classification Architectures

Both approaches to classifying the data, namely on the
phone and on the server, used the same methods, so we
based our decision on the processing time and battery con-
sumption. We considered for our test the most computation-
ally intensive scenario, audio recordings classification. Since
classifying only individual samples would have given us a
limited picture, we used all our recordings of “Over the Hori-
zon”, one of the most common Samsung recordings, which
totaled 880 minutes. For a 10-fold cross-validation approach,
this means the system was trained with roughly nine hours’
worth of recordings. The phone we used for these tests was a
Samsung Galaxy Nexus. Thus, for classifying all recordings
the smartphone app required 457.6 minutes, whereas the
server application needed only 5.28 minutes. This means,
for a 100 ms window, an average processing time of 52 ms
on the phone, versus 0.6 ms on the server.

We measured the drop in battery over one hour, since
even the most talkative users are unlikely to get close to
one hour’s worth of notifications in one day, which would
translate into 3,600 samples, or notifications. The server-
based approach caused 4% drop in battery percentage and
required 20 minutes to send the data to the server and re-
ceive the answers, plus 0.416 minutes to classify the data.
The smartphone app was responsible for a 36% drop in bat-
tery percentage and needed 238 minutes to finish the classi-
fication.

5.3 PCD-AA Evaluation

We evaluated this approach for all Galaxy Nexus, Galaxy
S3, and Nexus 5 ringtones. With some exceptions, most
of the ringtones differed between phones. We also looked in
more detail into the most notable exception, “Over the Hori-
zon”, which is one of the most popular Samsung ringtones.
Furthermore, we evaluated our approach for at all Samsung
Galaxy Nexus alarms and notification sounds. Due to space
constraints, we will restrict this subsection to a succinct dis-
cussion of the ringtones-based classification, the rest of the
results being available in [6].

Our recordings were taken both in silent and noisy envi-
ronments. In what follows, we will summarize the phone po-
sition classification results obtained for the 25 Galaxy Nexus
ringtones. We use MFCC and Random Forest, which have
proven to be the best feature array and classifier combina-
tion. PCD-AA yields an average precision of 94.4%. Preci-
sion values vary between 90% for “Zeta” to 99% for “Aquila”.
These variations stem from the different durations and repe-
tition patterns. The silent intervals between the repetitions
will be eliminated in the silence removal step, if the envi-
ronment is silent. If the environment is noisy, these samples
will be kept, but classifying them will be analogous to clas-
sifying recordings of environment sounds alone, which has a
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Figure 4: Classification precision for PCD-VA in
silent and noisy environments

precision of 77%. Therefore, the shorter the audio clips and
the more numerous the repetition cycles, the less accurate
the classification results will be.

“Over the Horizon”, one of the most popular Samsung
ringtones, has a 93% precision for the phone position classi-
fication, as depicted. When classifying both phone position
and environment noise level, its precision drops to 89%. In
the remainder of this section we will be using it as bench-
mark for PCD-VA and PCD-VR, due to both its popularity
and the similarity between its results and the average results
of the other ringtones.

5.4 PCD-VA Evaluation

We examine the results achieved when classifying audio
recordings of environment sounds, together with the sounds
generated by the phone’s vibration motor. While we do
not differentiate between the specific situations, the settings
in which the recordings were gathered include offices and
homes as silent environments and outdoors, public trans-
portation means, shops, cafés and parties as noisy environ-
ments. MFCC yields the best results, as far as features
are concerned, followed closely by Delta MFCC. Despite the
advantage brought by taking into account the temporal as-
pect, Delta MFCC seems to suffer slightly from overfitting,
hence the somewhat less accurate results. As far as classi-
fiers are concerned, Random Forest and K-Nearest Neigh-
bors provide the best results, outperforming Decision Trees
and Gaussian Mixture Models. Still, Random Forest out-
performs K-Nearest Neighbors. Since that MFCC and Delta
MFCC are the best features, our data has N=13 or N=26
dimensions. Given the structure of our data, building mul-
tiple trees is more efficient and accurate than clustering the
data on N dimensions.

Figure 4 compares the F-scores for phone positions classes
in both silent and noisy environments. One can notice that
PCD-VA is able to outperform PCD-AA in a silent envi-
ronment (96% vs. 94%), while in a noisy environment due
to the low volume of the vibration motor sounds, the envi-
ronment noise dominates the recordings and thus produces
significantly worse results. The fact that in a silent environ-
ment, the result is better than for PCD-AA is a particularly
relevant finding, as the PCD-VA method can be applied on
all phones since the sounds produced by the vibration mo-
tor are very similar. On the other hand, asking users to
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Figure 5: Confusion matrix for position and noise
level classification using PCD-VA (in %)

switch to a ringtone with a better classification precision is
completely unfeasible.

Next, we aim to determine both the phone position and
the noise level of the environment. Figure 5 shows the corre-
sponding confusion matrix when using MFCC and Random
Forest. The method proves to be effective in determining the
noise level of the environment, few confusions occurring be-
tween noisy and silent situations, despite the impact of noise
on classification results. Overall, there are significantly less
misclassifications of the noise level, compared to those of the
phone position. This is a quite relevant finding, given the
importance of noise level when deciding the optimal phone
mode. Most mislabeling occurs between the situations when
the phone is lying on a desk, facing up or down, in a noisy
environment. Some confusions also occur between hand and
desk facing upwards.

5.5 PCD-VR Evaluation

We analyze the results of phone position classification us-
ing PCD-VR. Data was collected in the same variety of envi-
ronments as for the previous approaches. While noise level of
the environment had no impact on the classification results,
user movement was an important extra factor we needed to
take into account when evaluating this method.

Classification of phone position using the afore-mentioned
features extracted from the accelerometer data and Random
Forest shows very good results with an overall precision of
99.2%. At this point we did not distinguish whether the user
was moving or not, but samples were collected in both sta-
tionary and moving situations. Figure 6 shows the precision
and recall values for a classification over all of the collected
accelerometer samples, i.e., more than 1300000 samples. As
the plot shows, the results were almost perfect, except that
for less than 1% of the situations the user’s hand was clas-
sified as a bag. The combination of vibration motor and
accelerometer can also be used to classify the combination
of user movement and phone location with an outstanding
precision of 97.8%. It is worth noting that we added a whole
new dimension to our data by determining whether the user
is stationary or moving, which caused a drop in precision
of only 1.4%. Figure 7 shows the corresponding confusion
matrix, when using Random Forest as classifier.

Next, we compare the result of the main classifiers we ex-
perimented with, as shown in Figure 8. For this comparison,
we considered phone positions alone. As for the previous ap-
proaches, Random Forest obtains the best results, being very
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Figure 6: Classification precision and recall scores
for PCD-VR
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Figure 7: Confusion matrix for position and user
movement classification using PCD-VR (in %)

closely followed by K-Nearest Neighbors, which is, in turn
closely followed by Decision Trees. Gaussian Mixture Mo-
dels perform significantly worse, with a precision of 81.5%,
compared to the 99.2% achieved by Random Forest. This
proves our initial assumption regarding the fitness of tree-
based and cluster-based approaches for our scenario. This
stands true regardless of the data source we use, be it audio
or accelerometer readings, the structure of our data being
essentially determined by environment conditions that stay
the same. Basically, phone position will have analogous ef-
fects on the different sensor readings. In a pocket, both
sound and phone vibrations will be muffled.

These findings are particularly relevant. Not only does
PCD-VR largely outperform PCD-AA and PCD-VA, but
also given the smaller amounts of data to be processed or
sent over the network, this allows us to save on battery life
or network traffic. Also, the accelerometer is not affected
by environment noise and is thus able to perform well in
situations where audio-based approaches would provide sig-
nificantly worse results. Last but not least, while there is
a chance that a user might perceive a 100 ms window of
a ringtone in a very silent environment, this is extremely
unlikely to happen when triggering the vibration motor.

5.6 Overall Comparison

We compare the overall performance of PCD-AA, PCD-
VA, and PCD-VR for phone position classification. Figure 9
shows their respective F-scores in three types of situations:
silent, noisy, and a combination of these. As expected, PCD-
AA and PCD-VA perform best in silent situations, suffering
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Figure 8: Comparison of overall precision and recall
for all classifiers used with PCD-VR
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Figure 9: Comparison of overall F-scores for PCD-
AA, PCD-VA, and PCD-VR in silent, noisy, and
combined situations

a drop in F-score due to noise. This is more obvious in noisy
situations alone compared to the combination of situations.
PCD-VA is more affected by noise than PCD-VA due to the
low volume of the vibration motor sounds, that get more
easily covered by environment sounds. PCD-VR achieves
noticeably better results in all situations, particularly in
the noisy and combined situations. Thus, its F-score in
noisy environments is 9.8% better than that of PCD-AA and
43.4% better than that of PCD-VA. In combined situations,
it obtains 6.6% and 23.5% better F-scores than PCD-AA
and PCD-VA respectively. Obviously, accelerometer read-
ings are not affected by acoustic noise. This, together with
the lower energy consumption or network traffic, as well as
the practically zero potential for user disturbance make this
method the most fit one for real life deployments.

6. CONCLUSIONS

More and more sensing capabilities are integrated into
state-of-the-art smartphones, allowing them to monitor and
adapt to their environment. With user notifications repre-
senting one of the core smartphone functionalities, a phone’s
ability to capture its current context can be used to improve
the way of relaying these notifications to the user. For ex-
ample, when the phone is located in the user’s pocket, a
vibration alert can increase the user’s awareness of the no-
tification, whereas a increase in the ringtone volume can be
used when the phone is in the user’s bag. In this paper, we
have presented a novel way of determining a phone’s loca-

tion based on acceleration sampling. It involves triggering
the phone’s integrated vibration motor for a short amount of
time, and is thus of little to no disturbance to the user while
probing its environment. Our comprehensive evaluation has
shown that our approach is able to determine a phone’s loca-
tion from the five mostly used settings with more than 99%
accuracy. In summary, we believe that our vibration sam-
pling method is a promising means to help current smart-
phones identify their current situational context better, and
thus to make these smartphones eventually smart.
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