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Childhood mortality in Nigeria

• Data from the 2003 Demographic and Health Survey (DHS) in Nigeria.

• Retrospective questionnaire on the health status of women in reproductive age and
their children.

• Survival time of n = 5323 children.

• Numerous covariates including spatial information.

• Analysis based on the Cox model:

λ(t; u) = λ0(t) exp(u′γ).
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• Limitations of the classical Cox model:

– Restricted to right censored observations.

– Post-estimation of the baseline hazard.

– Proportional hazards assumption.

– Parametric form of the predictor.

– No spatial correlations.

• Extensions usually deal with single issues but do not allow for a simultaneous
treatment of all problems.
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Interval censored survival times

• In theory, survival times should be available in days.

• Retrospective questionnaire⇒most uncensored survival times are rounded (Heaping).
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• In contrast: censoring times are given in days.

⇒ Treat survival times as interval censored.
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• Likelihood contributions:

P (T > C) = S(C)

= exp

[
−

∫ C

0

λ(t)dt

]
.

P (T ∈ [Tlower, Tupper]) = S(Tlower)− S(Tupper)

= exp

[
−

∫ Tlower

0

λ(t)dt

]
− exp

[
−

∫ Tupper

0

λ(t)dt

]
.

• Derivatives of the log-likelihood become much more complicated for interval censored
survival times.

• Numerical integration techniques have to be used in both cases.

• Piecewise constant time-varying covariates and left truncation can easily be included.
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Structured hazard regression

• Introduce a more flexible, semiparametric hazard rate model

λ(t; ·) = exp


g0(t) +

q∑

j=1

gj(t)zj(t) +
p∑

k=1

fk(xk(t)) + fspat(s) + u(t)′γ




where

– g0(t) = log(λ0(t)) is the log-baseline-hazard,

– gj are time varying effects of covariates zj(t),

– fk are nonparametric functions of continuous covariates xk(t),

– fspat is a spatial function,

– u(t)′γ are parametric effects.
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• Log-baseline, time-varying effects and nonparametric effects can be estimated based
on penalized splines.

– Approximate gj (or fk) by a weighted sum of B-spline basis functions.

– Employ a large number of basis functions to enable flexibility.

– Penalize differences between adjacent parameters of adjacent basis functions to
ensure smoothness.

• Spatial effect for regional data: Markov random fields.

– Define appropriate neighborhoods for the regions.

– Assume that the expected value of fspat(s) is the average of the function
evaluations of adjacent sites.

– Can be considered a bivariate extension of a first order random walk on the real
line.
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• Spatial effect for point-referenced data: Stationary Gaussian random fields.

– Spatial effect follows a zero mean stationary Gaussian stochastic process.

– Correlation of two arbitrary sites is defined by an intrinsic correlation function.

– Well-known as Kriging in the geostatistics literature.

• Extensions:

– Interaction surfaces (2d P-splines).

– Varying coefficient terms (continuous and spatial effect modifiers).

– Frailties (i.i.d. random effects).

• All effects can be cast into one general framework.
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Mixed model based inference

• Each term in the predictor is associated with a vector of regression coefficients with
multivariate Gaussian prior / random effects distribution:

p(ξj|τ2
j ) ∝ exp

(
− 1

2τ2
j

ξ′jKjξj

)

• Kj is a penalty matrix, τ2
j a smoothing parameter.

• In most cases Kj is rank-deficient.

⇒ Reparametrize the model to obtain a mixed model with proper distributions.
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• Decompose

ξj = Xjβj + Zjbj,

where

p(βj) ∝ const and bj ∼ N(0, τ2
j I).

⇒ βj is a fixed effect and bj is an i.i.d. random effect.

• This yields the variance components model

λ(t; ·) = exp [x′β + z′b] ,

where in turn

p(β) ∝ const and b ∼ N(0, Q).
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• Obtain empirical Bayes estimates / penalized likelihood estimates via iterating

– Penalized maximum likelihood for the regression coefficients β and b.

– Restricted Maximum / Marginal likelihood for the variance parameters in Q:

L(Q) =
∫

L(β, b,Q)p(b)dβdb → max
Q

.

• Involves Laplace approximation to the marginal likelihood.

• These approximations have proven to be quite accurate in simulation studies.
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Software

• Implemented in the software package BayesX.

• Available from

http://www.stat.uni-muenchen.de/~bayesx

A mixed model approach for structured hazard regression with interval censored survival times 15



Thomas Kneib Childhood mortality in Nigeria II

Childhood mortality in Nigeria II
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Discussion

• Empirical Bayesian treatment of complex hazard regression models:

– Combines geoadditive predictor with general censoring schemes.

– Does not rely on MCMC simulation techniques.

⇒ No questions on convergence and mixing of Markov chains, no hyperpriors.

– Closely related to penalized likelihood estimation in a frequentist setting.

• Future work:

– Multi state models.

– Competing risks models.

– Inclusion of interval censoring in these more general frameworks.
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