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• Regularising Geoadditive Regression Models
(with Ludwig Fahrmeir)

• Regularisation Priors for High-Dimensional Predictors
(with Ludwig Fahrmeir, Susanne Konrath & Fabian Scheipl)
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Thomas Kneib Leukemia Survival Data

Leukemia Survival Data

• Survival time of adults after diagnosis of acute myeloid leukemia.

• 1,043 cases diagnosed between 1982 and 1998 in Northwest England.

• 16 % (right) censored.

• Continuous and categorical covariates:

age age at diagnosis,
wbc white blood cell count at diagnosis,
sex sex of the patient,
tpi Townsend deprivation index.

• Spatial information in different resolution.
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Thomas Kneib Leukemia Survival Data

• Classical Cox proportional hazards model:

λ(t; x) = λ0(t) exp(x′γ).

• Baseline-hazard λ0(t) is a nuisance parameter and remains unspecified.

• Estimate γ based on the partial likelihood.

• Questions / Limitations:

– Estimate the baseline simultaneously with covariate effects.

– Flexible modelling of covariate effects (e.g. nonlinear effects, interactions).

– Spatially correlated survival times.

– Non-proportional hazards models / time-varying effects.

⇒ Geoadditive hazard regression models.
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Thomas Kneib Geoadditive hazard regression

Geoadditive hazard regression

• Replace usual parametric predictor with a flexible semiparametric predictor

λ(t; ·) = λ0(t) exp[f1(age) + f2(wbc) + f3(tpi) + fspat(si) + γ1sex]

and absorb the baseline

λ(t; ·) = exp[f0(t) + f1(age) + f2(wbc) + f3(tpi) + fspat(si) + γ1sex]

where

– f0(t) = log(λ0(t)) is the log-baseline-hazard,

– f1, f2, f3 are nonparametric functions of age, white blood cell count and
deprivation, and

– fspat is a spatial function.

• Time-varying effects such as g1(t)sex can be included if needed.
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Thomas Kneib Penalised Splines

Penalised Splines

• Approximate a function f(x) or g(t) by a linear combination of B-spline basis
functions

f(x) =
∑

j

βjBj(x)
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Thomas Kneib Penalised Splines

• B-spline fit for different numbers of basis functions:

5 basis functions 10 basis functions

20 basis functions 40 basis functions
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Thomas Kneib Penalised Splines

• Unconstrained estimation crucially depends on the number of basis functions.

⇒ Add a regularisation term to the likelihood that enforces smoothness.

• Popular approach: Squared derivative penalty, e.g.

pen(f) = λ

∫
(f ′′(x))2dx

• Easy approximation for B-splines: Difference penalties, e.g.

pen(β) = λ
∑

j

(βj − βj−1)2 = λβ′Kβ

• Smoothing parameter λ governs the impact of the penalty (should be estimated).

• Corresponds to random walk prior in a Bayesian setting

βj = βj−1 + uj, uj ∼ N(0, τ2).
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Thomas Kneib Penalised Splines

• Joint prior distribution is multivariate Gaussian

p(β) ∝ exp
(
− 1

2τ2
β′Kβ

)
.

• The penalty corresponds to the log-prior.
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Thomas Kneib Spatial Effects

Spatial Effects

• Regional data: Estimate a separate parameter βs for each region.

• Estimation becomes unstable if the number of regions is large relative to the sample
size.

⇒ Regularised estimation to enforce spatial smoothness.

• Effects of neighboring regions (common boundary) should be similar.

• Define a penalty term based on differences between neighboring parameters:

pen(β) = λ
∑

s

∑

r∈N(s)

(βs − βr)2

where N(s) denotes the set of neighbors of region s.
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Thomas Kneib Spatial Effects

• In a stochastic formulation equivalent to a Markov random field prior

βs =
1

|N(s)|
∑

r∈N(s)

βr + us, us ∼ N

(
0,

τ2

|N(s)|
)

• Again the joint prior distribution is multivariate Gaussian

p(β) ∝ exp
(
− 1

2τ2
β′Kβ

)

where K is an adjacency matrix and

pen(β) = − log(p(β)).
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Thomas Kneib Spatial Effects

• Individual data: Estimate a separate parameter βs for each distinct location
s = (sx, sy).

• Smoothness assumption: The correlation of the spatial effect between two points s1

s2 can be described in terms of a parametric correlation function, e.g.

ρ(s1, s2) = ρ(||s1 − s2||) = exp(−α||s1 − s2||).

• More precisely: {βs, s ∈ R2} is assumed to follow a zero-mean stationary Gaussian
random field.

• Well-known as Kriging in geostatistics.

• Results in a multivariate Gaussian prior for the spatial effects.
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Thomas Kneib Bayesian Inference

Bayesian Inference

• Unifying framework:

– All vectors of function evaluations can be written as the product of a design matrix
Xj and a vector of regression coefficients βj, i.e. fj = Xjβj.

– Regularisation penalties are quadratic forms λjβ
′
jKjβj corresponding to Gaussian

priors

p(β|τ2) ∝ exp

(
− 1

2τ2
j

β′jKjβj

)
.

– The variance τ2
j is a transformation of the smoothing parameter λj.

• The unifying framework allows to devise equally general inferential procedures.

• Implemented in the stand-alone software BayesX.
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Thomas Kneib Bayesian Inference

• Mixed model based empirical Bayes inference:

– Consider the variances / smoothing parameters as unknown constants to be
estimated by mixed model methodology.

– Decompose the vector of regression coefficients into (unpenalised) fixed effects
and (penalised) random effects.

– Penalised likelihood estimation of the regression coefficients in the mixed model
(posterior modes).

– Marginal likelihood estimation of the variance and smoothing parameters (Laplace
approximation).

• Fully Bayesian inference based on Markov Chain Monte Carlo simulation techniques:

– Assign inverse gamma priors to the variance / smoothing parameters.

– Metropolis-Hastings update for the regression coefficients (based on IWLS-
proposals).

– Gibbs sampler for the variances (inverse gamma with updated parameters).
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Thomas Kneib Results

Results
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Thomas Kneib Results
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Thomas Kneib Results
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Thomas Kneib Summary I

Summary I

• Geoadditive hazard regression provides a flexible model class for analysing survival
times.

• The software also supports more general censoring schemes, including left and interval
censoring.

• Boosting-based methods for model choice and variable selection are currently under
development.

• Similar models are available in the context of generalised linear models and categorical
regression.
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Thomas Kneib Penalisation Approaches for High-Dimensional Predictors

Penalisation Approaches for High-Dimensional Predictors

• Regularisation in regression models with a large number of covariates: Enforce sparse
models where most of the regression coefficients are (close to) zero.

• Examples include gene expression data but also social science and economic
applications.

• Most well-known approach: Ridge regression in the Gaussian model

y = Xβ + ε

• Estimation of β becomes numerically unstable for a large number of covariates

⇒ Add a quadratic penalty to the least squares criterion:

LSpen(β) = (y −Xβ)′(y −Xβ) + λ

p∑

j=1

β2
j → min

β
.
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Thomas Kneib Penalisation Approaches for High-Dimensional Predictors

• Closed form solution: Penalised least squares (PLS) estimate

β̂ = (X ′X + λI)−1X ′y

• The PLS estimate is biased, but has a reduced variance compared to the least squares
estimate.

• Suitable choices of the smoothing parameter (for example by cross validation) should
yield a reduced mean squared error.

• Essential for deriving the PLS estimate: The penalty term is differentiable with
respect to β.

• Drawback: Ridge regression typically does not induce enough sparsity.

⇒ Consider penalties that have a spike in zero.
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Thomas Kneib Penalisation Approaches for High-Dimensional Predictors

• LASSO: Replace quadratic penalty with absolute value penalty:

LSpen(β) = (y −Xβ)′(y −Xβ) + λ

p∑

j=1

|βj| → min
β

.
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• No closed form solution available, but efficient algorithms exist for purely linear
models.
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Thomas Kneib Penalisation Approaches for High-Dimensional Predictors

• LASSO imposes more sparseness and is able to set coefficients equal to zero.

• Other types of regularisation penalties:

– Lp-penalties:

pen(β) = λ

p∑

j=1

|βj|p, 0 ≤ p ≤ 2.

– Bridge-penalty:

pen(β) = λ1

p∑

j=1

|βj|+ λ2

p∑

j=1

β2
j .

• Algorithms exist for linear models but become increasingly complex when considering
non-Gaussian responses or combinations with geoadditive regression terms.

⇒ Can we benefit from a Bayesian formulation?
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Thomas Kneib Regularisation Priors

Regularisation Priors

• Bayesian linear model:

y = Xβ + ε, β ∼ N(0, τ2I).

• Yields the posterior

p(β|y) ∝ exp
(
− 1

2σ2
(y −Xβ)′(y −Xβ)

)
exp

(
− 1

2τ2
β′β

)

• Maximising the posterior is equivalent to minimising the penalised least squares
criterion

(y −Xβ)′(y −Xβ) + λβ′β

where the smoothing parameter is given by the noise to signal ratio

λ =
σ2

τ2
.
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Thomas Kneib Regularisation Priors

• Posterior mode for Gaussian prior is equivalent to the PLS (ridge) estimate.

• The analogy carries over to more general types of priors:

Penalty Prior density Distribution

Ridge p(βj) ∝ exp(−λβ2
j ) Gauss

LASSO p(βj) ∝ exp(−λ|βj|) Laplace

Lp p(βj) ∝ exp(−λ|βj|p) Powered exponential

Bridge p(βj) ∝ exp(−λ1|βj|) + exp(−λ2β
2
j ) Mixture

• Instead of maximising the posterior, consider simulation based estimation of the
posterior mean.

Bayesian Regularisation Priors 23



Thomas Kneib Regularisation Priors

• Advantages of MCMC simulation:

– Modular framework allows for immediate combination with nonparametric or spatial
effects.

– Hyperpriors for further model parameters yield a fully automated estimation
scheme.

– Credible intervals for all parameters are available.

• Difficulty: Constructing appropriate proposal densities.

– The Gaussian prior is conjugate for Gaussian responses and yields a Gibbs sampling
scheme.

– For non-Gaussian responses and Gaussian priors, adaptive proposal densities have
been constructed based on iteratively weighted least squares proposals.

– For non-Gaussian priors, new proposal densities have to be developed, e.g. random
walk proposals.

– Difficult due to the spike at zero.
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Thomas Kneib Scale Mixtures of Normals

Scale Mixtures of Normals

• Popular idea in robust Bayesian approaches if the Gaussian distribution seems to be
questionable: Specify a hierarchical model, where

y|σ2 ∼ N(µ, σ2), σ2 ∼ IG(a, b).

• Marginally, y follows a t-distribution but sampling can be based on Gaussian responses
with inverse gamma hyperprior on the variance.

• Similarly, several regularisation priors can be written as scale mixtures of normals, i.e.

p(βj|λ) =
∫ ∞

0

p(βj|τ2
j )p(τ2

j |λ)dτ2
j

where
βj|τ2

j ∼ N(0, τ2
j ) and τ2

j |λ ∼ p(τ2
j |λ).
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Thomas Kneib Scale Mixtures of Normals

• For the LASSO:

τ2
j |λ ∼ Exp

(
λ2

2

)
.

• Bayesian interpretation: Hierarchical prior formulation.

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

- - -λ β λ τ2 βvs.

Lap(λ) Exp(0.5λ2) N(0, τ2)

• Advantage: Estimation based on MCMC recurs to the computationally simpler case
of ridge regression with an additional update step for the variances.

⇒ IWLS updates become available.

• Easily combined with nonparametric or spatial effects.

• Also applicable for non-Gaussian regression models.
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Thomas Kneib Scale Mixtures of Normals

• The concept extends to other types of priors that can be written as scale mixture of
normals.

• Example: Powered exponential prior

exp(−|βj|p) ∝
∫ ∞

0

exp

(
− β2

j

2τ2
j

)
1
τ6
j

sp/2

(
1

2τ2
j

)
dτ2

j

where sp(·) is the density of the positive stable distribution with index p.
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Example

• Diabetes data also used in the LARS-paper by Efron et al. (2004).

• 442 observations on a measure of disease progression (response) shall be related to
the covariates

age age of the patient
sex gender
bmi body mass index
map average blood preasure
tc, ldl, hdl, tch, ltg, glu blood serum measurements

• Covariates are standardised and the response is centered.
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Thomas Kneib Example

• Compare six competing approaches:

– Ordinary least squares (LS),

– Bayes with noninformative prior (B),

– Ridge regression (R),

– Bayesian ridge regression (BR),

– Frequentist LASSO (L),

– Bayesian LASSO (BL).

• Boxplots are based on 13-fold cross-validation (408 training cases and 34 test cases).
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Thomas Kneib Example
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Thomas Kneib Example
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Thomas Kneib Example
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Thomas Kneib Summary II

Summary II

• Bayesian formulation allows to

– represent complex penalties in terms of Gaussian penalties via scale mixtures,

– re-use efficient algorithms derived for Gaussian priors,

– provides the full posterior, i.e. measures of uncertainty like credible intervals.

• Disadvantage: Small coefficients are no longer set to zero.

• Possible remedy: Mixed discrete-continuous distributions with a point mass in zero.

• Simpler approximation: Two-component continuous mixture, where one component
is concentrated around zero (despite being continuous).

• Find out more:

http://www.stat.uni-muenchen.de/~kneib
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