Figure S1: Initial belowground plant model

The four Soil factors are combined measures of 12 soil parameters obtained by a PCA (see Table S4 above). "Soil Het." is the soil heterogeneity factor 5 (from PCA on within-plot CV in soil parameters), which was found to be significant in the general linear model for belowground biomass (see main text). The "Div*Het Interaction" is the interaction of interest between diversity and soil heterogeneity. Plant composition 1 and 2 are the NMDS axes from the species composition ordinations in Supplementary Results 3 above.

Parameters	Cmin	AIC	BCC	
45	37.136	127.136	268.565	

Final belowground plant model (Fig. 3 A)

Parameters	Cmin	AIC	BCC
34	43.869	111.869	218.726

Figure S2: Initial aboveground plant model

Parameters	Cmin	AIC	BCC	
45	37.140	127.140	268.568	

Final aboveground plant model (Fig. 3 B)

Parameters	Cmin	AIC	BCC
29	52.647	110.647	201.790

Note: model was unstable

Initial Model:

Figure S3: Initial parasitoid model

"Host Het." is the heterogeneity in host abundance (within-plot CV in abundance). The "Div*Het Interaction" is the interaction of interest between parasitoid diversity and heterogeneity in host abundance. Plant composition 1 and 2 are the NMDS axes from the species composition ordinations in Supplementary Results 3 above. The proportion parasitized is arcsin square root transformed, as in the GLM in the main text.

Minimisation was unsuccessful, reliable parameter estimates could not be obtained.

Final parasitoid model (Fig. 3 C)

Parameters	Cmin	AIC	BCC
24	48.707	96.707	108.076

Initial Model:

Figure S4: Initial pollinator model

"Flower Het." is the heterogeneity in abundance of coffee flowers (between-shrub CV in abundance). The "Div*Het Interaction" is the interaction of interest between pollinator diversity and heterogeneity in flower abundance. Pollinator composition 1-3 are the NMDS axes from the species composition ordinations in Supplementary Results 3 above. "Pollination benefit" was quantified as the proportion of flowers that set fruit from the open pollination treatment, minus the proportion that set fruit in the bagged control treatment (as in the GLM in the main text).

Parameters	Cmin	AIC	BCC
36	753.599	825.599	871.885

Final pollinator model (Fig. 3 D)

Parameters	Cmin	AIC	BCC
22	768.347	812.347	840.633

Initial Model:

Table S1: PCA statistics. 12 factors that explained all of the variance in heterogeneity of the original 12 soil parameters. Only factors 1-5 (in bold) were included in further analyses, as they had eigenvalues greater than 1 (i.e., the factor explained more variance than any one of the soil parameters). Heterogeneity of the soil variables was defined as the within-site coefficient of variation in the value/concentration of the variable.

Factor number	Eigenvalue	% Total variance	Cumulative eigenvalue	Cumulative % variance
1	3.294631	27.45526	3.29463	27.4553
2	2.210440	18.42034	5.50507	45.8756
3	1.724824	14.37353	7.22990	60.2491
4	1.432895	11.94079	8.66279	72.1899
5	1.048067	8.73389	9.71086	80.9238
6	0.687185	5.72654	10.39804	86.6504
7	0.669933	5.58278	11.06798	92.2331
8	0.444657	3.70547	11.51263	95.9386
9	0.370145	3.08454	11.88278	99.0231
10	0.087127	0.72606	11.96990	99.7492
11	0.022787	0.18989	11.99269	99.9391
12	0.007310	0.06091	12.00000	100.0000

	Host Abundance	Parasitoid composition 2	Parasitoid diversity	Parasitoid composition 1	Div*Het. interaction
Host Abundance	.000	.000	.000	.000	.000
Parasitoid composition 2	.000	.000	.000	.000	.000
Parasitoid diversity	.002	.000	.000	.000	.000
Parasitoid composition 1	.001	.000	.543	.000	.000
Div*Het. interaction	.000	.000	097	179	.000
Proportion Parasitised	.000	.073	.091	.123	.082

Table S10: Total effects for final parasitoid model

	Host Abundance	Parasitoid composition 2	Parasitoid diversity	Parasitoid composition 1	Div*Het. interaction
Host Abundance	.000	.000	.000	.000	.000
Parasitoid composition 2	.000	.000	.000	.000	.000
Parasitoid diversity	.368	.000	.000	.000	.000
Parasitoid composition 1	.218	.000	.593	.000	.000
Div*Het. interaction	088	.000	240	405	.000
Proportion Parasitised	410	.443	.523	.649	.192

Table S11: Standardized total effects for final parasitoid model

	circes for mar	Jonnator mou		
	Flower	Pollinator	Pollinator	Div*Het
	Abundance	Diversity	Composition 3	Interaction
Flower Het.	.366	.000	.000	.000
Pollinator Diversity	.000	.000	-2.951	.000
Pollinator Composition 3	.000	.000	.000	.000
Div*Het Interaction	.000	.000	.000	.000
Pollination Benefit	.000	.883	-2.606	.068

Table S12: Total effects for final pollinator model

Tuble Diet Duna	ul ulleu totul elle	cets for multipl	minutor mouer	
	Flower	Pollinator	Pollinator	Div*Het
	Abundance	Diversity	Composition 3	Interaction
Flower Het.	.386	.000	.000	.000
Pollinator Diversity	.000	.000	582	.000
Pollinator Composition 3	.000	.000	.000	.000
Div*Het Interaction	.000	.000	.000	.000
Pollination Benefit	.000	.327	190	.553

 Table S13: Standardized total effects for final pollinator model

Table S2: PCA factor loadings. Correlation between the 5 PCA factors used in analyses and the original soil heterogeneity variables. Heterogeneity of the soil variables was defined as the within-site coefficient of variation (CV) in the value/concentration of the variable.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
CV(pH (H ₂ O))	-0.673946	-0.010276	-0.395666	-0.114985	0.070111
CV(NO ₃)	0.083850	0.052005	-0.608923	0.324529	0.680187
CV(NH ₄)	-0.031314	-0.857229	0.282664	0.313409	-0.199787
CV(Nmin)	-0.037389	-0.892460	0.179104	0.266419	0.137947
CV(N)	-0.786310	-0.015380	0.505209	-0.215345	0.222465
CV(C)	-0.432143	0.243452	0.690046	-0.234347	0.440702
CV(C:N ratio)	-0.773682	-0.397617	-0.208118	-0.121152	-0.084274
CV(Ca)	-0.693500	-0.154505	-0.418682	0.145306	-0.027421
CV(K)	-0.523453	0.075792	0.095347	0.484505	0.180250
CV(Mg)	-0.596703	0.026154	-0.295180	-0.415063	-0.205115
CV(Na)	0.203792	-0.459922	-0.177725	-0.667821	0.062921
CV(P)	0.524283	-0.465695	-0.087705	-0.393777	0.437571

	pH (H₂O)	NO ₃	NH ₄	Nmin	N	С	C:N ratio	Са	ĸ	Mg	Na	Р
r	.3904	.1505	0895	.0184	5151	5812	6534	.0810	0100	.4629	2069	.6079
p	p=.210	p=.641	p=.782	p=.955	p=.087	p=.047	p=.021	p=.802	p=.975	p=.130	p=.519	p=.036

Table S3: Correlation coefficient (r) and significance level (p) for Pearson correlations between soil parameters and significant soil heterogeneity factor 5.

Table S4: PCA statistics. 12 factors that explained all of the variance in the absolute values of the 12 soil parameters (i.e., not variability as in Tables S1 and S2). Only factors 1-4 (in bold) were included in further analyses, as they had eigenvalues greater than 1 (i.e., the factor explained more variance than any one of the soil parameters).

Factor number	Eigenvalue	% Total variance	Cumulative eigenvalue	Cumulative % variance
1	4.513576	37.61313	4.51358	37.6131
2	2.021481	16.84567	6.53506	54.4588
3	1.653362	13.77801	8.18842	68.2368
4	1.558421	12.98685	9.74684	81.2237
5	0.837959	6.98299	10.58480	88.2067
6	0.554984	4.62487	11.13978	92.8315
7	0.469333	3.91111	11.60912	96.7426
8	0.261408	2.17840	11.87052	98.9210
9	0.088922	0.74102	11.95945	99.6621
10	0.037927	0.31606	11.99737	99.9781
11	0.001882	0.01569	11.99926	99.9938
12	0.000744	0.00620	12.00000	100.0000

Variable	Factor 1	Factor 2	Factor 3	Factor 4
pH (H2O)	0.914468	-0.013510	-0.061760	0.041953
NO3	0.452826	-0.323251	0.384014	0.535364
NH4	0.601412	-0.449081	-0.178362	-0.552145
Nmin	0.729474	-0.506839	0.068598	-0.315550
Ν	-0.551019	-0.736764	0.057245	0.279442
С	-0.611417	-0.748733	0.180451	0.065063
CN	-0.389071	-0.357785	0.431301	-0.525761
Ca	0.772261	-0.245772	-0.010219	0.128659
Κ	0.141837	0.273902	0.819518	-0.278131
Mg	0.867384	-0.201753	-0.316961	0.127179
Na	-0.468694	-0.220543	-0.427736	0.272155
Р	0.401348	0.045245	0.537183	0.568078

Table S5: PCA factor loadings. Correlation between the 4 PCA factors used in SEM analyses and the original soil variables.

Table S6: Total effects for final belowground plant model

	Soil Factor 4	Soil Factor 2	Soil Factor 1	Plant composition 2	Plant composition 1	Plant diversity	Soil Het.	Div.*Het. Interaction
Plant composition 1	.439	.301	.682	.000	888	014	215	.000
Plant diversity	-1.088	745	-1.691	.000	2.202	965	.533	.000
Soil Het.	.157	.108	.245	.000	319	005	077	.000
Div.*Het. Interaction	.000	.000	.000	-2.789	.000	.000	.000	.000
Belowground Biomass	-106.59	-12.93	-181.00	58.925	38.197	.605	257.24	59.005

	Soil Factor 4	Soil Factor 2	Soil Factor 1	Plant composition 2	Plant composition 1	Plant diversity	Soil Het.	Div.*Het. Interaction
Plant composition 1	.456	.313	.709	.000	888	061	226	.000
Plant diversity	260	178	404	.000	.506	965	.129	.000
Soil Het.	.156	.107	.243	.000	304	021	077	.000
Div.*Het. Interaction	.000	.000	.000	420	.000	.000	.000	.000
Belowground Biomass	273	033	464	.078	.094	.006	.666	.518

Table S7: Standardized total effects for final belowground plant model

	Soil Factor 4	Soil Factor 2	Soil Factor 1	Plant composition 2	Plant composition 1	Plant diversity	Soil Het.
Plant composition 1	.439	.301	.682	.000	888	014	215
Plant diversity	-1.088	745	-1.691	.000	2.202	965	.533
Soil Het.	.157	.108	.245	.000	319	005	077
Div.*Het. Interaction	.000	.000	.000	-2.789	.000	.000	.000
Aboveground biomass	64.055	43.888	99.545	.000	16.358	-2.053	-31.393

 Table S8: Total effects for final aboveground plant model

	Soil Factor 4	Soil Factor 2	Soil Factor 1	Plant composition 2	Plant composition 1	Plant diversity	Soil Het.
Plant composition 1	.456	.313	.709	.000	888	061	226
Plant diversity	260	178	404	.000	.506	965	.129
Soil Het.	.156	.107	.243	.000	304	021	077
Div.*Het. Interaction	.000	.000	.000	420	.000	.000	.000
Aboveground biomass	.398	.273	.618	.000	.098	053	197

 Table S9: Standardized total effects for final aboveground plant model

Text S1:

1A) Belowground biomass:

<u>Maximal model</u> (containing plant diversity, five soil heterogeneity factors from PCA, and interactions between plant diversity and heterogeneity factors as predictors).

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.986e+02	3.667e+02	0.542	0.6049
plant.divers	6.027e+01	3.240e+01	1.860	0.1052
soil.het1	-6.056e+02	4.522e+02	-1.339	0.2223
soil.het2	6.676e+02	3.299e+02	2.024	0.0827
soil.het3	-2.591e+01	3.562e+02	-0.073	0.9440
soil.het4	-3.169e+01	2.094e+02	-0.151	0.8840
soil.het5	-1.139e+03	6.583e+02	-1.731	0.1271
plant.divers:soil.het1	3.116e+01	2.278e+01	1.368	0.2137
plant.divers:soil.het2	-5.152e+01	2.407e+01	-2.141	0.0696
plant.divers:soil.het3	-3.795e-02	2.851e+01	-0.001	0.9990
plant.divers:soil.het4	1.267e+01	1.529e+01	0.829	0.4346
plant.divers:soil.het5	9.770e+01	5.547e+01	1.761	0.1216
Signif. codes: 0 '***'	0.001 '**'	0.01 '*' (0.05	

Residual standard error: 200.9 on 7 degrees of freedom Multiple R-Squared: 0.745, Adjusted R-squared: 0.3444 F-statistic: 1.86 on 11 and 7 DF, p-value: 0.2104

Minimal adequate model:

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 125.15
 226.69
 0.552
 0.58902

 plant.divers
 54.05
 18.04
 2.996
 0.00904
 **

 soil.het5
 -616.34
 235.27
 -2.620
 0.01933
 *

 plant.divers:soil.het5
 60.69
 20.81
 2.916
 0.01064
 *

 -- Signif. codes:
 0 '***'
 0.001 '**'
 0.01 '*'
 0.05 '.'
 0.1 '<'</td>

Residual standard error: 207.8 on 15 degrees of freedom Multiple R-Squared: 0.4156, Adjusted R-squared: 0.2987 F-statistic: 3.555 on 3 and 15 DF, p-value: 0.04009

1B) Aboveground biomass:

<u>Maximal model</u> (containing plant diversity, five soil heterogeneity factors from PCA, and interactions between plant diversity and heterogeneity factors as predictors).

Coefficients:

	Estimate	Std Error	t value	Pr(s t)
(Intergent)		226 6722	1 500	0 156
(Incercept)	525.2020	330.0722	1.590	0.150
plant.divers	-4.7591	29.7479	-0.160	0.877
soil.het1	170.0041	415.1191	0.410	0.694
soil.het2	196.9513	302.8702	0.650	0.536
soil.het3	482.6106	326.9768	1.476	0.183
soil.het4	31.9617	192.2193	0.166	0.873
soil.het5	395.7568	604.3784	0.655	0.534
plant.divers:soil.het1	-3.8456	20.9169	-0.184	0.859
plant.divers:soil.het2	-10.0107	22.0969	-0.453	0.664
plant.divers:soil.het3	-38.4684	26.1745	-1.470	0.185
<pre>plant.divers:soil.het4</pre>	-0.9989	14.0416	-0.071	0.945
plant.divers:soil.het5	-25.6033	50.9290	-0.503	0.631

Residual standard error: 184.5 on 7 degrees of freedom Multiple R-Squared: 0.4251, Adjusted R-squared: -0.4782 F-statistic: 0.4706 on 11 and 7 DF, p-value: 0.873

Minimal adequate model: (Lowest AIC score, but remained non-significant)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 631.572 123.840 5.100 8.9e-05 *** plant.effdiv -8.933 8.749 -1.021 0.322 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 151.5 on 17 degrees of freedom Multiple R-Squared: 0.05778, Adjusted R-squared: 0.00236 F-statistic: 1.043 on 1 and 17 DF, p-value: 0.3215

1C) Parasitoid model:

Analysis of Variance Table

Response: proportion parasitised

response proporcion parabrersea					
D:	f	Sum Sq	Mean Sq	F value	Pr(>F)
Habitat type	4	0.055273	0.013818	2.4107	0.0719 .
Parasitoid diversity	1	0.087968	0.087968	15.3470	0.0005***
Host heterogeneity	1	0.008009	0.008009	1.3973	0.2468
Diversity*heterogeneity	1	0.029809	0.029809	5.2004	0.0301*
Habitat*diversity*heterogeneity ·	4	0.022755	0.005689	0.9925	0.4273
Residuals 2	9	0.166227	0.005732		
Signif. codes: 0 '***' 0.001 '*	* '	0.01 '*'	0.05 '.'	0.1 ' '	1

1D) Pollinator model:

Analysis of Variance Table

Response: Fruit set change

 Df
 Sum Sq
 Mean Sq
 F value
 Pr(>F)

 Pollinator diversity
 1
 666.66
 666.66
 8.9482
 0.007215
 **

 Flower heterogeneity
 1
 75.94
 75.94
 1.0193
 0.324737

 Diversity*heterogeneity
 1
 701.58
 701.58
 9.4170
 0.006059
 **

 Residuals
 20
 1490.04
 74.50
 --

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Text S2: Soil heterogeneity and nutrient availability

Previous studies (see main text for citations) have shown that nutrient availability can affect the diversity-productivity relationship. This may lead to the reasonable contention that the relationships with soil heterogeneity we present are in fact due to positive or negative correlations between soil heterogeneity and the availability of certain nutrients. To test this possibility, we used a Pearson's correlation analysis to test for correlations between the significant soil heterogeneity PCA factor 5 and each of the 12 soil variables (raw values/concentrations, not heterogeneity). We found no significant correlations have been criticised (Moran 2003), the probability of two variables out of 12 having p values below 0.047 (see C and P in Table S3) can be calculated using a Bernoulli process (Moran 2003, see also main text), and in our case this probability was 0.09 - still higher than the alpha of 0.05 conventionally used in scientific studies.

Nevertheless, resource abundance in general may be a confounding factor in any field study of the BDEF relationship, therefore it was included as an exogenous variable in the SEM analyses below (Text S4). Resource abundance was easily measured for the parasitoid-host system in Ecuador (abundance of host larvae) and the pollinator-plant system in Indonesia (abundance of coffee flowers). However, in the German grasslands, a variety of nutrients are present, and the 'abundance' (concentration) of different nutrients may be intercorrelated. Therefore, to take into account this intercorrelation and reduce the number of variables for analysis, we conducted another PCA as above, but using the concentrations of each soil variable, rather than their within-site variability. This allowed us to reduce the 12 soil variables to 4 orthogonal factors that cumulatively explained over 81% of the variance in the soil variables (Tables S4 and S5). These factors were used in the SEM analyses below (Text S4).

Reference:

Moran, M.D. 2003. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100, 403-405.

Text S3: Community composition analyses

In real-world ecosystems, extinctions of species are non-random. This was not a problem for BDEF experiments, as diversity treatments were created using random assemblages of species. In real-world studies, however, habitats that differ in their diversity, may also differ in the species that comprise that diversity, and this change in composition must be controlled for in any assessment of diversity effects on ecosystem functioning.

To analyse compositional differences among plants/parasitoids/pollinators, we applied non-metric multidimensional scaling (NMDS) ordination techniques using the program PC-ORD version 4.25 (McCune & Mefford 1997). NMDS is an iterative search for ranking and placement of n entities (samples) in k dimensions (ordination axes) that minimizes the stress of the k-dimensional configuration. The "stress" value is a measure of departure from monotonicity in the relationship between the dissimilarity (distance) in the original p-dimensional space and in the reduced k-dimensional ordination space (Clarke 1993). NMDS is therefore used to find a configuration in a given number of dimensions, which preserves rank-order dissimilarities in species composition as closely as possible, such that distance along a NMDS axis corresponds to relative difference in community composition. As distance measure, the Bray-Curtis coefficient was used (also known as Sørensen or Czekanowski coefficient), which is one of the most robust measures for this purpose (Faith et al. 1987).

We then tested for correlations between NMDS axes and diversity in each of our systems, to determine whether species composition correlates with diversity in our sites:

Plants (Germany)

Number of axes: 2 Number of iterations: 43 Stress for 2-dimensional solution: axis 1= 20.08, axis 2= 12.45 (final stress value: 12.45)

	NMDS axis 1	NMDS axis 2	Plant diversity
NMDS axis 1	1		
NMDS axis 2	0.528*	1	
Plant diversity	-0.349	-0.301	1

Correlations from Pearson, N = 19. * = significant at 0.05, ** = significant at 0.01

Parasitoids (Ecuador)

Number of axes: 2 Number of iterations: 400 Stress for 2-dimensional solution: axis 1= 27.91, axis 2= 12.58 (final stress value: 12.58)

	NMDS axis 1	NMDS axis 2	Parasitoid richness
NMDS axis 1	1		
NMDS axis 2	-0.035	1	
Parasitoid richness	0.644**	0.036	1

Correlations from Pearson, N = 41. * = significant at 0.05, ** = significant at 0.01

Pollinators (Indonesia)

Number of axes: 3 Number of iterations: 196 Stress for 2-dimensional solution: axis 1= 26.49, axis 2= 13.52, axis 3= 7.92 (final stress value: 8.14)

	NMDS axis 1	NMDS axis 2	NMDS axis 3	Pollinator
				richness
NMDS axis 1	1			
NMDS axis 2	0.099	1		
NMDS axis 3	0.002	0.215	1	
Pollinator	0.256	-0.183	-0.615**	1
richness				

Correlations from Pearson, N = 24. * = significant at 0.05, ** = significant at 0.01

Diversity did not correlate with composition in the plant communities, however, parasitoid diversity was significantly correlated with NMDS axis 1, and pollinator diversity was significantly correlated with NMDS axis 3.

References:

Clarke, K.P., 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143.

Faith, D. P., Minchin, P. R. and Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 7–68.

McCune, B., Mefford, M.J., 1997. PC-ORD. Multivariate Analysis of Ecological Data, Version 3.0. MjM Software Design, Gleneden Beach.

Text S4 Structural Equation Modelling (SEM)

In a field study such as ours, diversity may be a predictor of function, but it may also respond to another variable that also has an effect on function. Furthermore, resource abundance may have complex indirect effects, possibly mediated through diversity, which was also correlated with species composition in the parasitoid and pollinator communities (quantified using the NMDS axes in Text S3). Therefore, the apparent effect of diversity could in fact be due to shifts in species composition, and the effects of diversity and the diversity*heterogeneity interaction may not be significant after controlling for all of these different confounding variables.

To distinguish between these potential causal pathways and control for these possible confounding variables, we used SEM, performed in Amos v.16.0.1 (Amos Development Corporation http://amosdevelopment.com). For each system we constructed an initial model (presented below) with a variety of pathways allowing resource abundance and heterogeneity to affect diversity. We also included pathways from diversity to species composition to function, allowing for the effect of diversity to be mediated via shifts in composition, rather than diversity per se. The interaction term was derived by cross-multiplying "centred" (deviation) scores of the main effects (Kline & Dunn 2000). We allowed for species composition, resource abundance, and habitat type (parasitoid model only) to affect this interaction term of interest. All paths in the original model were treated as optional, and were thus able to be removed during model simplification. We used the specification search function, to test all subsets of our initial model using maximum likelihood estimation. As a final model we selected the model with a subset of the parameters in the initial model that included at least one predictor of function (plant biomass, parasitism or pollination respectively), and had the lowest AIC (Akaike Information Criterion) score. When multiple models did not differ significantly in AIC (less than 2 units difference), we selected the most parsimonious model (fewest parameters). Below we present the diagram for the initial model, and present the final most parsimonious model in main text Fig. 3. Values adjacent to paths indicate unstandardized direct effects, with significance indicated by * = P < 0.05, ** = P < 0.01, *** = P < 0.001. For each model we present the number of distinct parameters being estimated, Cmin (the minimum value of the discrepancy C), AIC score and BCC (the Browne-Cudeck Criterion, which was developed specifically for analysis of moment structures and gives a slightly greater penalty for model complexity than AIC). Unstandardized (absolute) and standardized (accounting for different unit sizes in different predictors) total effects (direct and indirect combined) are presented in tables below each final model. In the total effects tables, the column variable is explaining the row variable.

Reference:

Kline T.J.B. and Dunn, B. (2000) Analysis of interaction terms in structural equation models: a non-technical demonstration using the deviation score approach. Can. J. Behav. Sci. 32, 127-132.