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Abstract. In this paper we address the problem of fuzzy search over
encrypted data that supports misspelled search terms. We advance prior
work by using a bit vector for bigrams directly instead of hashing bi-
grams into a Bloom filter. We show that we improve both index building
performance as well as retrieval ratio of matching documents while pro-
viding the same security guarantees. We also compare fuzzy searchable
encryption with exact searchable encryption both in terms of security
and performance.
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1 Introduction

For several applications, users prefer virtual machines on cloud platforms instead
of maintaining expensive hardware at their premises. Furthermore, many appli-
cations – such as databases – are available as a service, where cloud providers
facilitate and maintain also the software at their sites. Prominent providers for
database-as-a-service products are Amazon Web Services and Microsoft Azure.

In conjunction with outsourcing of private or sensitive data to remote servers
comes the need of protecting the data, not only from outside attackers, but also
from the service provider, because it might try to learn information from its
customers’ data and data flow. The simplest solution is to encrypt all data
before outsourcing it to a remote location. However, this prevents even simple
processing in the cloud. In order to search through the encrypted data, one would
have to download the whole database, decrypt it and then run the search on the
decrypted data, which obviously ridicules the idea of outsourcing the database in
the first place. The solution here is searchable encryption (SE). An SE scheme
enables a server to search in encrypted data while preventing it from gaining
information about the plaintext data.

Most SE schemes involve a preprocessing step on the data to build an index.
The index can be built in two shapes: A document-based, also called forward
index [3], relates documents or their unique identifiers to the keywords they
contain. This allows a search time of O(n), where n is the number of documents,
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because each document’s index is processed during a query. Sublinear query
time can be achieved with a keyword-based index, also called inverse index [3] or
collection-based index [5]. It relates a keyword to the documents it is contained
in. Then, the optimal query time to be achieved is O(D(w)), where D(w) is the
number of documents which contain the query term [3]. Updates in a document-
based index are easier because the new index entry can simply be added, while
in the keyword-based index, updates will require more effort. The choice of the
index type depends on the use case: In a write-heavy scenario the former performs
better, while in a read-heavy scenario the latter should be chosen [20].

A client can query an encrypted index using a trapdoor (an encrypted form
of a query). The server can run a search algorithm given a trapdoor, and de-
cide which documents contain the query term belonging to the trapdoor. It can
then return the encrypted documents without having to see any plaintext. A
searchable encryption scheme will however always leak some information from
the index and the queries. [3] divide the leaked information in three groups:

– Index information is the information leaked directly from the stored cipher-
texts of the index, as well as the documents. It may include the number of
keywords in a document or the database, the total number of documents,
their length, identifiers and possibly the similarity between them.

– The search pattern captures the information held by two queries returning
the same result. With a deterministic trapdoor-generating function, this in-
formation is directly leaked, because a query will always compute to the
same trapdoor. With non-deterministic trapdoors, the search pattern will at
least give the possibility to determine whether two trapdoors were generated
from the same query. The search pattern allows the server to possibly gain
information about the keywords through statistical analysis. It might also
leak similarity between two queries [12].

– The query results yield the access pattern, showing which query returned
which documents. If a query q returns document x and a second query w
returns x and several other documents, the server can learn that q is more
restrictive than w.

Most SE schemes choose to leak the search and access pattern on purpose in
order to be computationally efficient. A scheme not leaking either of them can
be built using oblivious RAM [10]; but it requires log n rounds of communication
for one query, where n is the number of documents stored, which is not scalable
for large databases [5]. With some inverted indexes like [12], a client can hide
the access pattern by outsourcing the index and the encrypted data to two
different servers. A query to the index server will return the encrypted set of
document identifiers which can then be decrypted and queried from the second
server. However, this will always require two rounds of server communication
and superior security is only provided if the two servers do not collaborate.

Depending on the use case, SE schemes can be built using symmetric or
public key encryption. Symmetric searchable encryption (SSE) [17] is used when
one data owner wants to outsource his data collection. Access to the data can be
granted to other trusted parties by sharing the secret key among all data users. In
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a public key encryption scheme (PEKS) [2], users can add encrypted keywords
to an index with a public key and only the private key holder can search on
the encrypted data. This is useful to make public-key encrypted documents like
emails searchable for the recipient. This paper focuses on a symmetric searchable
encryption scheme that additionally allows fuzzy search. Fuzzy search is the
ability to find documents containing terms the spelling of which is similar to a
query term – a key feature known from web search engines like Google. Taking
the scheme in [12] as our baseline we make the following contributions:

– When embedding bigrams into a metric space, we replace the hash-based
approach of [12] by a direct bigram vector.

– We show that our approach achieves better query performance and retrieval
success for misspelled queries.

– In addition, we make a comparison between our scheme, the original fuzzy
searchable encryption scheme in [12] and the exact searchable encryption
scheme in [18], and hence analyze the impact of the fuzzy search functionality
in a unified framework.

The paper is outlined as follows: Section 2 presents related work. Our ap-
proach is based on the work of Kuzu et al. [12]; this scheme is described in detail
in Section 3. Our own contribution is described in Section 4. The security of our
approach is analyzed in Section 5. Section 6 provides details of the implementa-
tion and presents the comparative results based on our implementations of the
schemes in a common framework. Section 7 concludes the paper.

2 Related Work

A recent survey of the field of searchable encryption can be found in [3]. Here,
we will concentrate on important approaches for exact symmetric searchable
encryption as well as encrypted fuzzy search.

The first approach addressing searchable encryption was proposed by Song
et al. [17]. They use a two-layered encryption construct that makes a sequen-
tial search of the ciphertext possible and hence does not require an index. Be-
cause both, encryption and search, need to iterate over the whole collection, this
scheme does not scale for large databases. It also relies on fixed-size words.

Goh [9] was the first to introduce a secure index built on individual docu-
ments. For each document, it uses a Bloom filter that holds all keywords ex-
tracted from the document. A query has to check set membership of a string in
each index Bloom filter, which leads to a constant lookup time for one document
and results in a linear query time on the document collection.

Curtmola et al. [5] developed a keyword-based index consisting of an array
of linked list nodes. It allows for optimal query time but the encryption is costly,
because it has to encrypt all nodes separately.

Stefanov et al. [18] use a keyword-based index stored in a set of exponentially
growing hashmaps. The main advantage of the scheme is that its leakage is
considerably lower than the leakage of other schemes – the authors call this
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“forward security”. The disadvantages of the scheme are the complexity of the
data structure as well as the search time which is, although sublinear, quite high.

The above approaches only find exact matches. We now move on to the topic
of fuzzy encrypted search. The term fuzzy or similarity search is used in the
literature with two different meanings. The first meaning covers search schemes
which return documents which contain a subset of a given keyword set. Schemes
for this direction of research are given by [19, 23, 8]. In contrast, we use the term
similarity search as the search for a single keyword, which may be misspelled,
but nevertheless can be resolved to the correct documents.

Several fuzzy search schemes are based on the idea of considering all keywords
in a certain edit distance of a keyword [13, 14, 22, 11]. In order to decrease the
required storage space, they do not generate all possible keywords but introduce
a special wildcard character which stands for any single letter of the alphabet.

Wang et al. [21] achieve fuzzy queries for multiple keywords at once. Their
index is a Bloom filter for each document. Keywords are inserted into the index
with locality-sensitive hashing (LSH) functions, which makes similar words likely
to hit the same indices in the Bloom filter. Since the Bloom filters are large,
encrypting them and computing their score without decrypting them involves a
large matrix and matrix-vector multiplication. In order to allow multiple fuzzy
keyword search, this scheme pays with a large asymptotic constant to the O(n)
query time.

Boldyreva and Chenette [1] provide two formal definitions of fuzzy search
which are very strict with regard to result quality and leakage. They show that
there can not exist a space-efficient scheme fulfilling the first definition and give
a fuzzy scheme for fingerprint data satisfying the second definition.

Chua et al. [4] also use Bloom filters for the encoding of the keywords and
store them in a special tree structure for efficient search.

3 Background

Formally, a searchable encryption scheme (SE) provides the key functions

– Keygen(s): Computes the master key Kpriv given the security parameter s.
– Trapdoor(Kpriv, q): Computes the trapdoor Tq for query q with the key
Kpriv.

– BuildIndex(D, Kpriv): Computes the index ID for the document collection
D.

– Search(ID, Tq): Outputs a set of document identifiers, for which the docu-
ments contain the query term q.

Our approach is based on prior work by Kuzu et al. [12]. The search is relaxed
such that it allows retrieval of documents within a certain distance to the query.

– FuzzySearch: Let D be a collection of documents consisting of features f . A
query for a feature fq returns a document Di ∈ D with high probability if
∃f ∈ Di : dist(f, fq) < α. Furthermore, the query will not return documents
if ∀f ∈ Di : dist(f, fq) > β.

We now formally describe the fuzzy search approach in [12].
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Locality Sensitive Hashing. Locality sensitive hashing (LSH) is used to efficiently
approximate distances between two terms. Let M be a metric space with distance
function d : M → R. A family H of hash functions h : M → S is called
(r1, r2, p1, p2)-sensitive, if for all h ∈ H and arbitrary x, y ∈M :

d(x, y) ≤ r1 ⇒ Pr[h(x) = h(y)] ≥ p1
d(x, y) ≥ r2 ⇒ Pr[h(x) = h(y)] ≤ p2

with r1 < r2, p1 > p2. Given a similarity function φ : U × U → [0, 1] between
elements x, y of a universe U , a LSH family has the property Pr[h(x) = h(y)] =
φ(x, y). The probabilities can be amplified to match the FuzzySearch thresholds
α, β by combining several uniformly chosen functions h ∈ H. Let Pr[h(x) =
h(y)] = p. Kuzu et al. form a (r1, r2, (1− pk1)λ, (1− pk2)λ)-sensitive family F (as
in [15]) by combining the basic hash functions with logical AND and OR:

gi(x) = hi1(x) ∧ · · · ∧ hik(x) (1)

f(x) = g1(x) ∨ · · · ∨ gλ(x), (2)

in the sense that gi(x) = gi(y) iff ∀j : hij (x) = hij (y) and f(x) = f(y) iff
∃i : gi(x) = gi(y).

Metric space embedding ρ. The set F of features of a document consists of all
the words it contains. The use of LSH to efficiently approximate the distance
between two words requires a distance function for which such approximation
functions are known. This is not the case for the well known Levensthein or
Edit distance [12]. Therefore the documents’ features have to be embedded in a
metric space first. Kuzu et al. [12] embed them in the metric space of sets with
an embedding function ρ, that is presented in [16]: The strings are identified by
their bigrams, that are the continuous substrings of length two extracted from
the string. For the word “john”, the bigram set is {jo, oh, hn}. The bigrams are
then inserted into a Bloom filter of length m = 500 with k = 15 cryptographic
hash functions. The Bloom filters are interpreted as sets and the distance is

measured using Jaccard distance Jd(A,B) = 1− |A∩B||A∪B| (see Fig. 1).

1 1 1 1 1 10 0 0 0

jo oh hn

A = ρ(john) = {0, 1, 3, 4, 6, 9}

11 1 1 1 1 10 0 0

jo oh hn

B = ρ(johhn) = {0, 1, 3, 4, 6, 7, 9}

hh

Jd(A,B) = 1− 6/7 = 0.14

Fig. 1. Hashed bigram embedding of length 10 with 2 hash functions
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Minhash. The minhash functions form a (r1, r2, 1 − r1, 1 − r2)-sensitive LSH
family for the Jaccard distance. Let ∆ be the ordered domain of the set, i.e.
∆ = {1, . . . ,m}. A minhash function is defined with a random permutation
P (∆) on the domain ∆. Let X ⊂ ∆. The minhash of X is then

hP (X) = min
i=0,...,m

{i | P [i] ∈ X}. (3)

For example, let ∆ = [0, . . . , 9], P (∆) = {3, 4, 1, 5, 2, 6, 7, 9, 8, 0} and X =
ρ(john) = {0, 1, 2, 4, 5, 8, 9}. Then, the first index i in P that is a member of X
is P [1] = 4, hence hP (X) = 1. For two sets X,Y , the probability that hP (X) =

hP (Y ) equals the Jaccard similarity J = |A∩B|
|A∪B| . In practice, a permutation on

∆ can be defined with a simple hash function h∆ : [1,m]→ [1,m] that pseudo-
permutes the domain. The minhash can then be efficiently computed as

h(x) = min
x∈X

h∆(x). (4)

Index. The index is built with keyword subfeatures extracted with the LSH
functions g as described by Eq. (1) and (2). The LSH parameters k, λ are chosen
beforehand and the λ subfeatures sort the documents into buckets. If two doc-
uments appear in the same bucket (i.e. have a keyword subfeature in common),
they are likely to both contain the keyword. All documents Di to be inserted
into the index are labelled from 1 to n. For each document, the features are
the words contained in it. The features are embedded into the metric space of
sets with the embedding ρ. Its λ subfeatures are extracted using the LSH func-
tions (g1(ρ(f)), . . . , gλ(ρ(f)); each subfeature is a bucket identifier in the index:
Bk = gi(ρ(f)). For each bucket, a bit vector VBk

of length n is stored. If the
feature f that yielded the bucket Bk was extracted from document Di, then
VBk

[i] = 1. Both the bucket identifiers and the bit vectors are encrypted with
two different secret keys to form the encrypted index, where πBk

= EncKid
(Bk)

is a pseudorandom permutation and σVBk
= EncKpay

(VBk
) is PCPA-secure 1.

In the end, a number of random fake records (R1, R2) with |R1| = |πBk
| and

|R2| = |σVBk
| are inserted to keep the index at the constant size MAX ·λ, where

MAX is the maximum number of features.

Query. A query requires two rounds of server communication. The query fea-
ture f is embedded in the metric space with the same embedding function ρ
and then subfeatures are extracted and encrypted with the same functions as
in the index construction. The query trapdoor is then Tq = (Enc(g1(ρ(f))), . . . ,
Enc(gλ(ρ(f)))). The trapdoors are queried from the server who returns the en-
crypted bit vectors Enc(VBk

) for the issued trapdoor. The bitvectors are added
up to obtain a score between 0 and λ for each document. In a second round, we
can request the top t scored documents from the server via their ids.

1 PCPA-security: An encryption scheme is PCPA secure (pseudo–randomness against
chosen plaintext attacks) if the ciphertexts are indistinguishable from a random. [5]
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4 Direct bigram embedding

Using the original embedding of [12], there is always the possibility of collisions
in the Bloom filter, meaning that because of the involved hashing two different
bigrams can yield the same position to be 1 in the representing set and hence
making strings similar even if they are not. The security of this scheme does
not rely on the cryptographic properties of the embedding, since the output is
encrypted again, so we can replace this embedding with a new one.

We found that we can improve the retrieval of misspelled documents signif-
icantly by using another metric space embedding. We adopt the approach of
Wang et al. [21] who also use LSH for string distance but use a bigram vector
instead of a Bloom filter. The bigram vector has the maximum size 262; every
position in the vector accounting for one bigram. If a bigram is present in the
string, the vector is set to one at the according position.

(0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0) (0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0)

jo ohhn jo ohhh hn

A = ρ(john) = {195, 248, 371} B = ρ(johhn) = {189, 195, 248, 371}
Jd(A,B) = 1− 3/4 = 0.25

Fig. 2. Hashed bigram embedding of length 10 with 2 hash functions

More formally we proceed as follows: The keywords are converted to lower
case. Letters are identified by their alphabetical order with ord(’a’) = 0 to
ord(’z’) = 25. The position of a bigram α1α0 in the vector is then pos(α1α0) =
ord(α1) ·26+ord(α0). Finally, we set the bigram vector at the according position
to one: v[pos] = 1. Most importantly, we represent the vector as the set of indices
set to 1, making the representation as compact as possible. That makes our
embedding also smaller in memory than Kuzu’s, who has to store (at most) k ·n
positions while we store n positions. (k is the number of hash functions Kuzu
uses, n the number of bigrams of the word).

While Wang et al. [21] use euclidean distance between the bigram vectors, we
can clearly interpret the bigram vector as the set of indices which are set to one.
This allows us to keep using the Jaccard distance. Fig. 2 pictures the bigram
vector. Note that in comparison to the Bloom filter embedding (see Fig. 1), the
distances between the words become larger. This allows us to choose smaller
LSH parameters k and λ (see Eq. (1) and (2)), resulting in fewer LSH functions
to be computed per keyword.

As mentioned before, the original embedding can produce collisions in the
Bloom filter and thus can make non-similar strings look similar. This has indeed
a great impact on the minhash LSH subfeatures that form the buckets in the
index construction. We found that with our bigram embedding without such
collisions, we produce twice as many distinct subfeatures from the keywords as
with the original embedding. With this we achieve an increase in the search
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success, because in our larger index the subfeatures of different terms have less
collisions. More details are provided in Section 6.

5 Security analysis

The server is assumed to be honest-but-curious, meaning that it will carry out its
tasks as it is expected, but tries to learn about the data it hosts. Note that when
assuming more malicious attackers, the security of our or any other searchable
encryption scheme might not be maintainable. For example, Zhang et al. [24]
consider a server that sometimes injects files in the index. This leads to attacks
in which the server can quite easily figure out the content of the user’s files.

Our scheme has still the same security properties as the original scheme: it has
the adaptive semantic security property (see Def. 7). Informally this definition
means, that exactly the following information is leaked to an adversary:

– Search pattern: Hashes of searched keywords
– Access pattern: Document identifiers matching queries and document iden-

tifiers of added or deleted documents
– Similarity pattern: Similarity between the encrypted queries

5.1 Leaked Information

In an optimal world, the query process will not leak any information, not even
which item corresponds to which query. While this can be achieved by Oblivious
RAM [10], it is computationally expensive and not suitable for large databases.
Secure indexes leak some information on purpose, in order to achieve linear or
constant query times [5] in the number of documents contained in the database.

The trapdoor generating function is a deterministic function, that means a
query q will always compute to the same trapdoor Tq. That allows the adversary
to see the search pattern, e.g. which trapdoors are requested how often.

Definition 1. Search Pattern π ([12], III-B.1): Let {f1, . . . , fn} be the feature
set for n consecutive queries. The search pattern π is a binary symmetric matrix
with π[i, j] = 1 if fi = fj and 0 otherwise.

The deterministic trapdoors also yield the connection between a query trap-
door T and the returned documents. This is captured by the access pattern.

Definition 2. Access Pattern AP ([12], III-B.2): Let D(fi) be a collection
that contains the identifiers of data items with feature fi and {T1, . . . , Tn} be the
trapdoors for the query set {f1, . . . , fn}. Then, the Access Pattern is defined as
the matrix Ap(Ti) = D(fi).

Kuzu’s [12] FuzzySearch algorithm extracts subfeatures from a query feature
via LSH, making a query for feature f consist of λ subfeatures. The number
of shared subfeatures for two queries is an indicator for the similarity between
them. This information is also leaked and captured in the similarity pattern.
Note that this definition naturally includes the search pattern π.
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Definition 3. Similarity Pattern SP ([12], III-B.3): Let {f1i , . . . , fλi } be the
subfeatures of feature fi. For n queries, {(f11 , . . . , fλ1 ), . . . , (f1n, . . . , f

λ
n )} is the

feature set. Let i[j] define the jth subfeature of feature fi. Then, the similarity
pattern is SP [i[j], p[r]] = 1 if f ji = frp and 0 otherwise for 1 ≤ i, p ≤ n and
1 ≤ j, r ≤ n. In other words, it contains all matrices Si,p capturing the similarity
between features fi and fp by setting Si,p[j, r] = 1 if fi and fp share subfeatures

f ji and frp .

The similarity pattern is derived from the queries posed to the encrypted
index. The server is not able to deduce similarity between documents from the
index alone, nor can he see if the returned documents were a fuzzy or exact hit
for a query. Therefore, this fuzzy scheme makes it harder to deduce document
similarity from queries than an exact scheme with comparable index structure
does, because in an exact scenario, the link between (encrypted) query and
returned document (the access pattern) is present, while in our fuzzy scheme it
is covered with the uncertainty whether the returned document really includes
the query. The access pattern can be hidden completely by using two different
(non-collaborating) servers to store the index and the document collection.

In order to capture the information an adversary has, we first define a se-
quence of n consecutive queries as an n-query history. The trace γ(Hn) captures
the maximum amount of data that is purposely allowed to leak from the se-
cure index scheme, meaning the maximum amount of information that should
be computable from what an adversary sees from an n-query history. The data
visible to the attacker is called the view.

Definition 4. History Hn ([12], III-B.4): Let D be the data collection and
Q = {f1, . . . , fn} the features for n consecutive queries. Then Hn = (D,Q) is
an n-query history.

Definition 5. Trace γ(Hn) ([12], III-B.5): Let C be the collection of encrypted
documents, id(Ci) the identifiers and |Ci| the size of the encrypted documents.
The trace γ(Hn) = {(id(C1)...id(Cl)), (|C1|, . . . , |Cl|), Sp(Hn), Ap(Hn)} is the
maximum amount of information that is allowed to leak.

Definition 6. View v(Hn) ([12], III-B.6): Let C be the collection of encrypted
documents, id(Ci) the identifiers, I the secure index and T the trapdoors of the
history Hn. All the information seen by an adversary is captured by the view
v(Hn) = {(id(C1), . . . , id(Cl)), C, I, T}.

In contrast to the scheme of Kuzu, the scheme of Stefanov et al. [18] does
not allow for similarity search. As the authors show, only the search pattern and
the access pattern as defined above are leaked. The fact that their scheme allows
dynamic updates does not affect the leakage; they call this forward security.

5.2 Semantic Security

The general idea of the security definition is to play a game against the attacker,
who is modelled as a probabilistic polynomial time (p.p.t.) algorithm. If the
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attacker has a probability of winning not better than a coin toss win ( 1
2 ), then

the scheme is secure. This is formulated as a simulator based definition, where
a p.p.t. simulator can generate a random view vS(Hn) to the real query view
vR(Hn) only using information available in the trace γ(Hn) and the adversary
again has a probability not greater than 1

2 of deciding which view is the real one.
The definition was given by Curtmola et al. [5] and widely adopted afterwards

(e.g., [12, 21]). They distinguish between two types of adversaries: non-adaptive
(IND-CKA1) and adaptive (IND-CKA2). The non-adaptive adversary generates
queries (the history) without taking into account information he might have
learned from previous queries. This is of course rarely the case in a real world
scenario where the secure index scheme is running on a server, and the server is
the adversary. The adaptive adversary can generate his queries adaptively during
his examination.

Definition 7. Adaptive Semantic Security ([5], 4.1) An SSE scheme is se-
cure if for all p.p.t. adversaries A there is a p.p.t. simulator S which can adap-
tively construct a view vS(Hn) from the trace γ(Hn) such that the adversary
cannot distinguish between the simulated view vS(Hn) and the real view vR(Hn).

More formally, the scheme is secure according to the security definition if
one can define a simulator S such that for all polynomial time attackers A holds
Pr(A(v(Hn)) = 1)−Pr(A(S(γ(Hn))) = 1) < p(s), where s is a security parame-
ter and p(s) a negligible function.2The probability is taken over all possible Hn

and all possible encryption keys.

5.3 Security Proof

The proof that our adaptation of Kuzu et al.’s algorithm is still secure accord-
ing to the given definition is analogous to the original paper. Let vR(Hn) and
γ(Hn) be the real view and the trace. Then a p.p.t. simulator S can adaptively
generate the simulated view vS(Hn) = {(id(C1)∗, . . . , id(Cl)

∗), (C∗1 , . . . , C
∗
l ), I∗,

(T ∗f1 , . . . , T
∗
fn

)} as follows:

– Identifiers of documents can simply be copied since they are available in the
trace. Hence, both identifier lists in vS and vR are identical.

– S can choose n random values {C∗1 , . . . , C∗l } with |C∗i | = |Ci|. Since the Ci
result from an encryption scheme which is pseudo-random against chosen-
plaintext attacks (PCPA) [5], they are computationally indistinguishable
from random values.

– Let πBk
and σVBk

be the encrypted bucket id and encrypted bucket content
of the index. S chooses MAX · λ random pairs (Ri1 , Ri2) with |Ri1 | = |πBk

|
and |Ri2 | = |σVBk

| and inserts them into I∗, where MAX is the maximum
number of features and λ is the number of components of a trapdoor. Since
πBk

is a pseudorandom permutation and σVBk
is PCPA-secure, pairs in I∗

are computationally indistinguishable from pairs in I. Since both contain

2 p is negligible if for all positive polynomials f holds: p(x) < 1/f(x) [5].
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MAX · λ records by construction, I∗ is computationally indistinguishable
from I.

– The trapdoors (T ∗f1 , . . . , T
∗
fn

) can be constructed from the similarity pattern
Sp. They are filled such that Ti[j]

∗ = Tp[r]
∗ if S[i[j], p[r]] = 1 and oth-

erwise Ti[j]
∗ = Rij , where Rij is a random value with |Rij | = |πBk

| and
Rij 6= Rpr∀1 ≤ p < i and 1 ≤ r < λ. Again, the simulated trapdoors are
indistinguishable from the real encrypted trapdoors because they are com-
puted by pseudorandom permutation. Also they show the same similarity
pattern as the real trapdoors by construction.

Since the components of vS and vR are computationally indistinguishable, the
scheme satisfies the security definition.

6 Implementation and Results

Even if the cloud databases use encryption at the server side, the plaintexts
would be sent to the server, which undermines our goal of security. Therefore,
the index generation and encryption of documents has to take place at the client
side. While this burdens all computation to the client, it has the advantage that
we can easily connect to all existing databases in the cloud without the need
of altering one of the database’s implementation. We can also seperate index
and the data storage to two different servers. Provided that the servers do not
collaborate, this also hides the access pattern.

We implemented the scheme of Kuzu et al. [12] and our improvements in
Java 1.83. For keyword extraction, we used the Apache Lucene (6.2.1) classes
StandardTokenizer together with Standard-, Stop- and EnglishPossessiveFilter.
We continued filtering all remaining words containing numbers. The minhashes
were computed using the implementation available at [6]. In the implementation

of the LSH algorithm, we define gi by gi(x) =
∑k
j=1 hi,j(x) · mj−1 mod 264,

with hi,j being the jth minhash function of gi and m the length of the metric
space embedding. For encryption we used the AES-128 implementation available
in javax.crypto.

To achieve similar results as in the original paper [12], the same testing
setup was applied. 5000 mails were randomly selected from the publicly available
Enron email dataset [7]. The features describing a mail are chosen as the words
in the mail’s body. In Kuzu et al.’s paper, they are embedded into Bloom filters
of length 500 using 15 hash functions by hashing the bigrams of a feature (the
authors adopt these settings from [16]). To determine the fuzzy search thresholds
for LSH, Kuzu et al. measured the distances between keywords and possible
misspellings. Their resulting minhash LSH algorithm uses λ = 37 stages of length
k = 5, building a (0.45, 0.8, 0.85, 0.01)-sensitive LSH family.

For keyword misspells, we randomly introduced one of the following errors
with equal probability: (1) deleting a random letter, (2) doubling a random
letter and (3) switching two adjacent letters. Analyzing the keyword–misspell

3 The implementation can be found at https://github.com/dbsec/FamilyGuard
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distances with the new bigram embedding shows that dissimilar words are further
apart than in Kuzu et al.’s original embedding. To account for that, we choose
k = 4, λ = 25 to build a (0.5, 0.85, 0.85, 0.01)-sensitive family. This also has the
advantage of a smaller number of minhashes (k · λ) to be computed.

The performance results were obtained by running the schemes on a PC with
an Intel i5-6500 CPU with 16 GB RAM and a Samsung EVO 840 SSD.

6.1 Retrieval

For retrieval evaluation we choose precision and recall as a metric, which is often
used in information retrieval. Let w denote a keyword. A query for w is denoted
with w′. If the query introduces a spelling error, then w′ 6= w. Let D(w) be the
number of documents containing word w. A document Di is correctly retrieved
for a query w′ if w ∈ Di. Let RD(w′) be the retrieved set of documents for query
w′ and RD(w) the subset that was correctly retrieved. Then precision and recall
are defined as

prec(w′) =
|RD(w)|
|RD(w′)|

, rec(w′) =
|RD(w)|
|D(w)|

. (5)

Kuzu et al. [12] misspell 25% of 1000 randomly chosen queries and return
the t top-scored documents, while changing t. We believe that this approach
has two problems: First, since not misspelled queries will always compute to a
maximum score of λ, it is easy to return all exact hits with a precision of 0.99.
(There might be two different words having the same bigrams, therefore it is not
exactly 1). Second, the recall will depend on the choice of t. If we fix t too low,
there might be much more relevant documents than we requested.

Because of these reasons, we choose in our evaluation to misspell all queries.
We uniformly selected a total of 10,000 queries from the set of all extracted
keywords and introduced one random spelling mistake mentioned above. We
then measured precision and recall not depending on a fixed t, but by returning
all documents with a score greater than x for x ∈ {λ, . . . , 1}. The result in Fig
3 shows the results. On average, a query had 13 relevant documents to it. With
our Bigram embedding, we achieve at best a precision of 0.36 with a recall of
about 0.5, which is achieved returning all documents with a score greater than
6. Compared to Kuzu et al.’s embedding this is a significant improvement.

6.2 Performance and Comparison

First, we wanted to compare the time needed to compute the query trapdoors
for our bigram embedding compared to Kuzu’s. Therefore, for words with n
bigrams for n = 1 to 20, we computed 100,000 trapdoors each. Fig. 4 shows the
averaged time needed to compute one trapdoor. As said before, our embedding
is smaller in size, because we only compute one position for a bigram instead of
k hashes. Also, our embedding lets us choose a LSH family with fewer functions.
The Kuzu measurement shows a slight curve, this can be explained by collisions
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in the bloom filter: The more bigrams we hash, the more collisions happen and
therefore the number of ones in the filter does not grow linearly.

We then measured the time needed to construct the index for 1,000 to 10,000
mails taken randomly from the Enron dataset [7]. The times are averaged over
three index constructions each. We then query the indexes with 1000 keywords
randomly selected from the documents. We compare the performance of our
contribution to Kuzu et al.’s original scheme. Additionally, we compare the per-
formance to an exact-keyword matching scheme of Stefanov et al. [18].

The results are shown in Fig. 5. All schemes build an inverted index. Com-
paring our scheme to Kuzu et al.’s original, we find that the index construction
performs slightly worse. Because of the properties of the embedding (see Sec. 4),
we find that our index is larger than Kuzu’s. Therefore we have to encrypt about
twice as many index entries. Since this index construct is built to be computed
only once and performs badly with updates anyway, this increase is insignificant.
The scheme of Stefanov et al. [18] builds the index such that online updates are
still possible, but follows the same assumption that updates are infrequent. This
flexibility leads to larger index creation times. The scheme partially rebuilds
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the index on updates (with an amortized cost of O(log2N)); the decryption of
the entries, oblivious sorting and reencryption introduce large constants in this
asymptotic runtime. The scheme hence needs more time than [12].

For query performance, the exact scheme only has to do a lookup operation
followed by collecting all entries and therefore is the fastest. The fuzzy search
algorithms pay for the similarity search with 2–3 times slower queries because the
query process also involves addition of at most λ bit vectors of length equal to the
size of the document collection. Our approach outperforms Kuzu et al.’s scheme
by about 20%. This is due to the fact that the bigram embedding is computed
faster and we can choose an LSH family with fewer minhash functions.
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Fig. 5. Performance: Index construction (left) and queries (right)

7 Conclusion

We provided an improvement to the encrypted fuzzy search scheme of Kuzu et
al. [12] by replacing the metric space embedding for strings based on a Bloom fil-
ter with a direct bigram embedding used in [21]. We showed that this improves
the retrieval success of misspelled queries significantly, and makes the queries
20% faster. The performance of both the original and the modified fuzzy search
scheme was also compared to the performance of an exact searchable encryption
scheme [18]; the results show that there is only a modest overhead for the addi-
tional feature of fuzzy search.
Acknowledgement. This work was partially funded by the DFG under grant
number Wi 4086/2-2.
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