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Abstract
The ATLAS Pixel Detector, as part of the Large Hadron Collider, will produce large
amounts of data. Thus a new data encoding methods called 8b10b will be used in
the future to fascilitate error monitoring to conserve the transmission hardware.
For that reason, a similar read-out chain in laboratory will be prepared to be able
to decode 8b10b signals. A pixel module emulator with an 8b10b encoded data
output is developed and utilized to test the system. In the end, the modifications
are validated with various error and delay measurements.



Contents

1 Introduction 1

2 The LHC and the ATLAS Experiment 3
2.1 The ATLAS Pixel Detector . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Read-out Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 ATLAS Upgrade - The Insertable B-Layer . . . . . . . . . . . . . . . 6
2.4 The Read-Out Chain in Laboratory . . . . . . . . . . . . . . . . . . . 7

2.4.1 The Electrical Back of Crate Card . . . . . . . . . . . . . . . 8

3 Hardware and Software 11
3.1 Field Programmable Gate Arrays (FPGA) . . . . . . . . . . . . . . . 11

3.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Advantages/Disadvantages and Applications . . . . . . . . . . 17

3.2 The VHDL Design Language . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Basic VHDL Elements . . . . . . . . . . . . . . . . . . . . . . 18

4 8b10b Encoding 21
4.1 Control Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Modifications of the Laboratory Read-Out System 27
5.1 The MCC-Module Emulator (FE-I3) . . . . . . . . . . . . . . . . . . 27

5.1.1 MCC to ROD Data Protocol . . . . . . . . . . . . . . . . . . . 27
5.1.2 MCC to ROD Physical Layer Protocol . . . . . . . . . . . . . 30
5.1.3 Software Implementation of the MCC . . . . . . . . . . . . . . 30
5.1.4 The Final Design . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Modifications of the eBOC . . . . . . . . . . . . . . . . . . . . . . . . 37

i



5.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Realistic Event Triggering . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Data Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Summary and Outlook 49
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

Acknowledgments 53

ii



1 Introduction

The idea that all matter is composed of elementary particles dates back to the 6th
century BC when people started investigating the philosophical doctrine of atom-
ism and the nature of elementary particles. These early ideas were founded in
abstract, philosophical reasoning rather than experimentation and empirical obser-
vation. With his work on stoichiometry, John Dalton posed the hypothesis in 1808
that each element of nature was composed of a single, unique type of particle that
he called atom, after the Greek word atomos ("indivisible"). Near the end of the
19th century, physicists discovered that atoms were not, in fact, the fundamental
particles of nature, but conglomerates of even smaller particles. The finding of the
proton in 1919 by Ernest Rutherford and the neutron in 1931 by James Chadwick
made people believe that they had found the smallest existing particles.
However, ongoing studies of particles with accelerators and experiments concern-

ing cosmic rays finally revealed a large variety of smaller particles that was also
referred to as the ”particle zoo”. With the formulation of the Standard Model dur-
ing the 1970s, physicists explained this large number of particles as combinations
of a small number of fundamental particles using symmetry groups. This Standard
Model states that our universe is comprised of 3 fundamental groups of particles:.
quarks, leptons and bosons. The latter are responsible for the mediation of forces
between particles. Up until today, almost all parameter predictions by the Standard
Model (SM), such as masses and decay modes, could be successfully measured and
verified. One last piece is missing however. The SM introduces the Higgs field which,
in theory, is responsible for the mass-generation of all particles. By self-interaction
it can produce the Higgs particle which is still to be found in modern particle physics
and has motivated the most recent experiments.
Despite the success of the Standard Model, a lot of scientists are convinced that

it needs some extensions at higher energies. Modifications propose the existence of
a super-symmetric partner for every particle or additional space dimensions. For
further verification of the Standard Model as well as the search for new particles
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or physical behavior, particles are accelerated to high energies and brought to colli-
sion. The Large Hadron Collider (LHC) in Genf is currently the world’s largest and
highest-energy particle accelerator of that kind. But as crucial as the accelerator
itself are the instruments to detect the generated particles. Thus collisions at the
LHC are precisely measured by four separate experiments resulting in an enormous
amount of data. The storage space needed by these experiments will be approxi-
mately 15 petabytes (15 million gigabytes) annually – enough to fill more than 1.7
million dual-layer DVDs a year.
Given these large quantities of data being produced by the detectors, errors in the

data transmission process are unavoidable. Due to the radiation being produced in
the collisions and the distance between the detectors and the read-out hardware, bit
flips may occur and lead to wrong experimental data. In order to make measured
data more reliable, an established transmission methods called 8b10b encoding was
proposed for the communication within the detector. The encoding would allow for
easy error detection in the transmitted bit streams between the detector hardware
and the off-detector read-out system and conserve the transmission hardware.
The ATLAS Pixel Detector as part of the ATLAS experiment will introduce the

8b10b encoding technique in the Insertable-B-Layer Upgrade. For testing purpose
almost identical read-out systems were built in a laboratory environment to facilitate
the implementation and testing of these new technologies. For this bachelor thesis,
the test system will be prepared for the 8b10b encoding technique. Additionally an
emulator of a pixel module has to be written and equipped with a 8b10b encoding
unit in order to test the new transmission method in the existing read-out chain. In
the end the system will be validated with a large number of events in order to check
the functioning under realistic conditions.
Chapter 2 will start with a more detailed report on the LHC experiment, focusing

on the ATLAS Pixel Detector as a hybrid silicon detector. Further information will
be given of how the experimental read-out chain is rebuilt in laboratory to facilitate
the testing of the new read-out chain. In chapter 3 the FPGA technology will be in-
troduced along with the VHDL design language. They are the most important tools
in the data read out process. Chapter 4 will give an overview of 8b10b encoding
standard that is widely used in the communication industry. Finally a documen-
tation about the modifications that were done on the laboratory test system can
be found in Chapter 5, followed by a thorough validation of the newly developed
system.
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2 The LHC and the ATLAS
Experiment

Figure 2.1: Schematic overview of the ATLAS experiment with the Muon Chamber,
the Calorimeters and the Inner Detector.

The LHC began operation in September 2008. It lies in a tunnel 27 kilometers in
circumference, as much as 175 meters beneath the Franco-Swiss border near Geneva,
Switzerland. In the final design, proton packages will collide with a center of mass
energy of up to 14 TeV at a luminosity of 1034cm−2s−1. These packages will circulate
the ring with up to 1.1 · 1011 particles being only 25 ns apart. There are 4 collision
points with experiments built around them to study the collisions.
The ATLAS experiment (see figure 2.1) is one of two main-purpose particle de-

tectors at the LHC. Collisions take place in the center of the construction and are
measured in all directions which is why it is called a 4π-detector. It has a total
length of 45m which makes it one of the largest scientific experiments in the world.
The outermost parts of the detector are the muon chambers which are placed in
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2.1 The ATLAS Pixel Detector

a 0.5 T toroidal magnetic field. The next layer consists of the hadronic and electro-
magnetic calorimeter that can measure the energy of single particles and jets. The
“Inner Detector” has been designed for precise tracking and vertex reconstructing
of charged particles and is the focus of this thesis. It comprises of a transition ra-
diation tracker, a silicon strip detector and a silicon pixel detector. The bending of
the trajectories of the charged particles is done by a 2 T solenoid magnetic field to
facilitate momentum measurement.

2.1 The ATLAS Pixel Detector

As the innermost part the Pixel Detector is subdivided into three barrel layers at
radii of 50.5 mm, 88.5 mm and 122.5 mm along with three disks on each side for the
forward direction at a distance of 49.5 cm, 58 cm, and 65 cm from the interaction
point[1]. It has a size of approximately 1.4 m which results in detecting at least
three hits per traversing particle with a pseudo-rapidity1 of |η| < 2.5. Since the
Pixel Detector is very close to the collision point it faces special requirements. Due
to the high particle flux the components were designed to have a very good radiation
hardness. Furthermore the read-out system of this layer has been designed for high
transmission rates to be able to transmit the recorded data off the detector as fast
as possible to avoid an overflow of the module hit buffers.
The actual pixel components of the detector consist of 1744 identical sensor-chip-

hybrid modules which have a total of 80 million pixels. The pixel sensors consist of
oxygenated silicon n-type bulk material with n+ pixel implants. Each module has
47,232 of those pixels which can be individually readout by 16 front-end (FE) chips.
The FE chip is designed to digitize the charge signal received from the sensor pads
directly on the module. It contains 2880 individual charge sensitive analog circuits
with a digital read-out that operates at the global clock speed of 40 MHz. The
circuit contains a fast preamplifier, a DC-coupled second amplifier and a differential
discriminator. The preamplifier integrates the induced charge of the sensor pads
using a feedback capacitor which is constantly discharged by a feedback current.
The discriminator compares the input signal with an adjustable threshold value. If
the signal is higher than this threshold, the output is a logical one, otherwise it is
logical zero. The actual measurement value is the time, for which the signal has been
above the threshold value (time over threshold, ToT). This time is proportional to

1spatial coordinate describing the angle of a particle relative to the beam axis
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2 The LHC and the ATLAS Experiment

the amount of electrons that have been created by the ionization of the traversing
charged particle in the silicon material.
A module control chip (MCC) is responsible for the interaction between the mod-

ule’s FE chips and the further readout chain. It combines the individual events from
the FE chips and distributes trigger and command signals. The connection to the
off-site read-out machinery is being established via opto-links. The data is serialized
on the modules and then being transmitted via one or two data lines, depending on
the data transmission speed selected.

2.2 The Read-out Chain
Not every collision in the detector will lead to physically interesting events. To avoid
the acquisition of useless data, the concept of event triggering is being used to read
out only promising events. Trigger decisions can be made by various components in
the detector, like the muon chamber for example. In the case of a trigger, a special
signal - the Level1 (LV1) trigger - is sent to the individual pixel modules. Following
this trigger, the MCC chip is responsible to format the hits of all the FE chips to
one single event. These packets are then sent to the off-detector electronics with a
speed of 40 Mb/s, 80Mb/s or 160 Mb/s depending on the module layer. In order to
assign these event packages to the correct collision, the modules and the off-detector
hardware both have two important counters. The first counter keeps tracks of the
number of Level1 triggers, that have been sent. This Level1 ID (LV1ID) will be
sent once for every event and contains the Level1 triggering ID of the event. The
second counter is the bunch crossing ID (BCID) that is being increased every 25 ns
or 40MHz. It is used to link an event to an actually moment in time. Both LV1ID
and BCID can be reset and hence resynchronized by command signals sent by the
off-detector hardware.
The receiving end of the MCC signal is the BOC (Back-of-Crate Card). The

optical signal is detected by PiN2 diodes which convert it into an electrical one.
The BOC provides the complete timing functionality for the pixel detector. Each
BOC forwards the received data to a ROD 3. This device is mainly responsible for
generating command bit-streams for the modules and reading out the data. After
data collection the ROD is responsible for building a common event and sending it to

2Diode with an extra wide, lightly doped ’near’ intrinsic semiconductor region between a p-type
semiconductor and an n-type semiconductor region.

3Read-Out Driver

5



2.3 ATLAS Upgrade - The Insertable B-Layer

the ATLAS DAQ4-System via another optical S-Link on the BOC. Besides that the
ROD also offers histogramming functionality and analysis capabilities using DSPs5.
These information can be used during data taking for monitoring or for calibration
purposes such as measurement and adjustment of the FE threshold settings.

2.3 ATLAS Upgrade - The Insertable B-Layer

The continuous radiation dose received by the individual pixel modules in the detec-
tor, especially those situated extremely close to the collision point, causes damage
to the sensor material. This leads to a decreased signal strength of time which is
why the innermost layer will be replaced within the IBL6 project[2]. With a radius
of about 37mm pixel modules will be even closer to the interaction point and render
higher resolution. The upgrade poses new requirements for the sensors and the elec-
tronics due to higher radiation and luminosity. It is planned to increase the read-out
speed to a maximum of 160Mbit/s for each channel while the global read-out clock
remains at 40MHz. Simultaneously some new features are going to be implemented
such as the 8b10b encoding that will be explained in chapter 4. For this purpose a
new version of the FE chip, the FE-I4, is under development and will replace the
current FE-I3 chip. At the beginning of July 2010 the final design for the FE-I4
has been submitted. One module will only contain 2 large FE-chips with 26 880
pixels that are smaller than before[3]. The active area of the sensor modules will
increase from approximately 75% to 90%. The MCC chip does not contain digi-
tal functionality anymore and its functionality is replaced by the FE circuitry. To
achieve higher data rates, the incoming 40MHz clock will be multiplied and phase
shifted in the chip to get the desired 160MHz clock. The same has to be done on
the receiving end at the BOC although it is being considered to provide a 80MHz
clock via VME.
The test system, that is explained in the following section, needs to be adapted to

these changes of the FE architecture. The Master DSP7 code needs will be modified
to understand the new FE-I4 data protocol. As part of this thesis, the eBOC (see
section 2.4.1) needs to be prepared for the 8b10b decoding of the data signals.

4Data Acquisition
5Digital Signal Processors
6Insertable B-Layer
7Digital Signal Processor
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2 The LHC and the ATLAS Experiment

2.4 The Read-Out Chain in Laboratory

Figure 2.2: Scheme of read-out chain in laboratory with a module emulator that is
connected to the system via an add-on board. Instead of the emulator,
a normal pixel module can also be tested.

The optical data transmission needs a lot of tuning to work reliably. One has to
monitor and recalibrate several voltage values to successfully run all the optical
components. For pixel module testing purposes the optical BOC is too sensitive
to changes of its environment and an optical data transmission is not required due
to the small distance between modules and crate. Since optical data transmission
is not needed for testing purposes, a test system has been developed that replaces
all optical components and transmits the data electrically. Thus the optical BOC
is replaced by an electrical version, the eBOC. Every eBOC is connected, like the
optical equivalent, one-to-one to a Read-Out Driver. This version of the BOC is also
responsible for generating the clock signal with the help of an oscillating crystal. The
main purpose is to send the command signals from the ROD to the modules and
forward the received data to the ROD. To replace the optical interface between eBOC
and modules, a Patch Panel (PP0) with an FPGA has been developed. Instead of
converting the module signals from and into optical ones, the PP0 forwards the
individual signals and acts as an electrical signal bridge.

The electrical read out chain is more reliable and robust e.g. to changes of the
room temperature. It proves also to be easier to set up than optical systems.
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2.4 The Read-Out Chain in Laboratory

2.4.1 The Electrical Back of Crate Card

The eBOC is equipped with an Altera Flex6000 FPGA unit (see chapter 3.1). Chan-
nels are available for up to 28 modules at 40 Mbit/s, 14 modules at 80 Mbit/s and 7
modules at 160Mbit/s. In the upper right part of the board, the outgoing channels
are for direct transmission of clock and command signals to the pixel modules (see
figure 2.3). The lower half of the module holds the receiver data streams. The
incoming data streams are routed into the FPGA chip, where they can be split, re-
routed and sent to the ROD with 40MBit/s for further processing. This first design
of the eBOC has been supplied by Berkeley National Laboratories, California. A
second revision along with the full support of different data transmission speeds has
been set up for the laboratory by Mathias George in his diploma thesis[2].

The eBOC sends the 40MHz clock on several channels through the same wiring,
the data signal is being transmitted. On the PP0 board, that is placed in between
the eBOC and the modules, the clock signal is being retransmitted to the eBOC.
This makes it easy for the receiving parts of the eBOC to compensate for time delay
in the data signal due to cable length by simply using the also shifted clock to receive
the data.

All routing activies are being done by the Altera FPGA[4]. It manages all data
streams from the ROD to the modules, from the modules to the ROD, and all clock
signals. More details about the mode of operation of the FPGA can be found in the
revised code implementation of the eBOC in section 5.2.

The FPGA does not have its own memory to store chip configurations. A PROM8

is placed next to the chip. Every system-start-up, the FPGA automatically loads
its configuration from the PROM and keeps this configuration until the reset signal
is sent to the FPGA or it is powered down. Alternatively the chip can programmed
via a serial cable and the Altera Quartus Programming Software[4].

8Programmable Read-Only Memory
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2 The LHC and the ATLAS Experiment

Figure 2.3: Picture of the eBOC with its functional sections.

All electrical data communications are done with differential signals via LVDS[5]9

drivers. Normally a binary signal is transmitted via a single line. The logic zero
is equivalent to a 0 Volt signal, also called ”low” while the logic one is a 3.3 Volt
signal, which is also referred to as ”high”. Definitions of logic one and logic zero
might vary from system to system due to certain design issues or the nature of
the transmitted signals. However for long distance electrical communication, these
basic communication protocols are not suitable due to the large capacity of the
wires. The LVDS system uses two wires named n (negative) and p (positive). The
information is encoded in the voltage difference between these two wires which is

9Low-voltage differential signaling
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2.4 The Read-Out Chain in Laboratory

created by a comparably small charge of 3.5 mA[3] that is injected into one of
the two wires (depending on the information being transmitted). The differential
voltage is only about 350 mV high and leads to a decreased power consumption of
the system. Besides that LVDS is designed10 for a possible speed of over 1.9 GBit/s
which makes it suitable for fast data transmission systems. The maximum expected
speeds at IBL will be 160 MBit/s and thus lies within current specifications of the
LVDS transmission.

10ANSI/TIA/EIA-644-A (published in 2001) standard defines LVDS specifications
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3 Hardware and Software

3.1 Field Programmable Gate Arrays (FPGA)

Figure 3.1: Picture of a modern Altera Stratix IV FPGA embedded in a development
board.

In the early days of the micro-electronic development, new signal processing tasks
demanded for specially engineered chips that were designed for a single purpose
only. These application-specific integrated circuit (ASIC) chips fulfill their task
fast and efficiently but their development is lengthy and expensive. Meanwhile a
new technology has emerged that greatly facilitates the development of new electric
signal processing systems - the Field Programmable Gate Arrays (FPGA)[4, 6, 7].
Instead of a predefined logic structure, they contain large arrays of programmable

logic components called "logic blocks", and a hierarchy of reconfigurable intercon-
nections that allow these blocks to be "wired together" - somewhat like an on-chip
programmable breadboard. These connections can achieve tasks ranging from sim-
ple counters to highly complex structures like microprocessors.
The FPGA routing is done via programmable switch boxes. Each wiring segment

only connects two logic blocks. In order to establish longer paths, the switches can
be turned on to built up complex paths. For higher speed interconnects such as
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3.1 Field Programmable Gate Arrays (FPGA)

Figure 3.2: The switch box topology of modern FPGAs.

clock channels, modern FPGA chips offer special routing lines that span multiple
logic blocks and are optimized for timing related signals. The switch box itself (as
can be seen in figure 3.2) can route any one of the wires to another adjacent channel
segment, illustrated by the two red circles within the switchbox rhombus. To allow
for the complex interconnectivity that is needed by several FPGA designs, modern
FPGAs contain up to 12 different wiring layers of this kind on a single chip.

3.1.1 History

The FPGA industry sprouted from programmable read-only memory (PROM) and
programmable logic devices (PLDs)[8]. The first devices of that kind were invented
by Motorola, Texas Instruments and National Semiconductor in the early 1970s.
They contained a plane with AND-gates and another plane with OR-gates that
could be programmable interconnected. Simple summation and multiplication cir-
cuits could be built with them but they were slow and too expensive. The need
for higher logic capacity and more inputs led to the idea of linking several logic
units, that each contained programmable logic, to a large array. Following this idea,
Xilinx Co-Founders, Ross Freeman and Bernard Vonderschmitt, invented the first
commercially viable field programmable gate array in 1985 – the XC2064. It had 64
configurable logic blocks with programmable interconnects between them.
Over the years, new wiring techniques such as the antifuse-technology[6] were

developed to increase logic density and circuit speed. Modern FPGAs like the
Xilinx Virtex-6 family contain more than 800.000 logic blocks and are equipped
with a large battery of features such as on-chip SRAM1, interface blocks for PCI-

1Static random access memory
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3 Hardware and Software

Express2 or Ethernet and hard wired signal processing units.

3.1.2 Functionality

Figure 3.3: Simple logic block of an FPGA.

In order to define the behavior of an FPGA, one has to provide a schematic design or
a language description of the design which is implemented through a hardware de-
scription language (HDL) (see section 3.2). This design needs to be synthesized into
a structure that can be realized with the available logic blocks in the FPGA. Certain
design constraints can be applied at this stage of development such as linking cer-
tain ports to external connections. FPGAs have very strong testing and simulation
capabilities that allow the designer to check the functionality at every step in the
development process. After translation the FPGA design into a logic structure, a
binary file with a suited description is being generated that can be transmitted to
the FPGA. With the help of the binary data, the FPGA will create a wired logic
structure that fulfills the desired functionality.

The main element of every FPGA is the configurable logic block (CLB) that
consists of a n-input look-up table (LUT) and a D-type flip-flop (DFF) (see figure
3.3).

2Peripheral Component Interconnect Express
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3.1 Field Programmable Gate Arrays (FPGA)

Figure 3.4: Example of a 3-input Look-Up Table.

Look-Up Table (LUT) The look-up table is usually comprised of n binary input
channels and a single binary output line. The n inputs can form 2n different values
and act as a bit address for a small SRAM unit that can be programmed. Depending
on the input address, the output will take a defined value. Look-up tables can be
used to replace computational tasks with pre-saved results in the SRAM. By setting
the look-up table to specific values, one can easily synthesize logic structures like
AND, OR, NAND and XOR gates. Figure 3.4 shows a simple 3 input LUT that
works as a 3-AND gate, whereupon the output will only change to 1, if all 3 inputs
are 1 as well. Besides from logic operations, LUTs are also used to store results of
common mathematical calculations such as trigonometric functions. In a sine-table,
e.g. the sine-values are precalculated and saved in discrete steps, according to the
resolution needed for the application. Since the calculation of sine-values takes time
that is sometimes not available, this is useful when it comes to high speed signal
processing tasks. Instead of calculating the sine value, the function argument is
rounded to the nearest table value and simply read out.

D Flip-Flop The D Fip-Fop[9] is a kind of primitive memory cell or delay line and
allows for sequential structures in the design. The D in the name (delay) derives
from the fact, that the output Q is a delayed copy of the input D (see figure 3.5).
At the moment of a positive edge at the clock pin, the device is designed to take
the input D signal and set it to the output Q signal. Thus, the input is delayed by
a maximum of one clock cycle to the output. After the rising edge of the clock, a
change in the input signal does not influence the value of the output signal.

14



3 Hardware and Software

Figure 3.5: Essential part of a FPGA, the D-Flipflop with the input D, the output
Q and the clock signal CLK. The ↑ marks the rising edge of the clock
signal.

Other common elements of an FPGA:

Input/Output Blocks These physical pins/pads serve as the communication inter-
face between the logic structure and peripherals devices, such as digital signal
processors (DSPs), analog-to-digital converters, USB and Ethernet ports or
other FPGA units. Usually there are special input pads for clock channels.
The clock is provided by external oscillators with the frequency of the design-
ers choice. Within the FPGA, these clock channels are routed on special paths
that minimize the signal delay and improve the timing of the designs.

Memory Complex FPGA applications often ask for a fast and sufficiently large
memory access. While external memory blocks can be easily accessed via the
IO-ports, vendors have moved to integrated versions of SRAM of up to 36
KB[7].

Arithmetic Logic Units (ALU) For digital signal processing tasks FPGAs some-
times offer units within the logic arrays that can multiply two binary numbers
very fast and efficiently. This is useful in instrumentation and control systems
where measured data needs to be analyzed on the fly.

Hard-Cores Many system on a chip (SoC) applications, such as cell phones or signal
processing hardware, demand for recurring features such as micro-controllers
or Ethernet interfaces. Hard-cores are hardwired components within the FPGA
that are optimized for certain functionality and thus require less logic gates.
They usually offer higher speed with the cost of less flexibility. Each vendor
offers its unique set of hard-cores with the most common ones being communi-
cation interfaces (Wireless, Bluetooth, Ethernet, USB), memory interfaces for
industry standard blocks, decoding/encoding units or signal processing cores
(Fast Fourier Transformations, digital filters of n-th order).

15



3.1 Field Programmable Gate Arrays (FPGA)

Figure 3.6: Screenshot of the Xilinx ISim Simulation tool with an overview on the
existing signals (left) in the design and the time response of the observed
signals (right).

3.1.3 Development Tools

Every FPGA vendor is responsible to supply the design tools for their logic cir-
cuits. Different FPGA architectures demand for different synthesizing algorithms
that convert the HDL code into a real softwired circuit. This results in a variety
of hardware dependent software development tools that cannot be unified like in
higher-abstraction language development. In this thesis, the Xilinx ISE 9-11 IDE3

and the Altera Quartus 8 IDE were used respectively for Xilinx and Altera FPGAs.
Both tools support the 3 major design languages VHDL (see section 3.2), verilog
and AHDL.
The programs can combine different VHDL entities into one project and allow

for various configurations, such as optimization level and power usage constraints.
Another major task of those tools is to incorporate the normally abstract and hard-
ware independent logic designs into the existing circuitry. A pin planning tool allows
for the correct connections between the ports of the design’s logic circuit and the
physical output pads of the FPGA chip. Futhermore the user is notified if a design
does not fit into the FPGA chip, or if certain implementations do not function on
the desired hardware.

3Integrated development environment
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3 Hardware and Software

Instead of directly programming the design to the hardware and testing it, the
development software offer a variety of simulation tools. Each logic can be embed-
ded in a test bench that can simulate a time varying input for the circuitry. The
simulator (see figure 3.6) offers a visualization of the signal change over time due to
a user specified input. Problems like corrupt signals or wrong interconnections can
be spotted much easier then in hardware testing. The simulator is the most impor-
tant debugging tool in the early development stage. Modern simulators even take
time delays of the signal into account and offer a realistic remodeling of the actual
hardware. They are one of the reasons why FPGAs are very popular in prototyping
nowadays.

3.1.4 Advantages/Disadvantages and Applications

FPGAs are favored for a number of reasons. The development time of electronic
systems is much lower then with comparable ASICs. Basic prototyping can be done
by some simple wiring and programming instead of intensive chip design. After
the FPGA has been shipped, the functionality can still be altered or enhanced by
reprogramming the chip.
Synthesized components work in parallel which is often faster than sequential

designs with equal functionality. The hard-cores provided by the FPGA vendors
further increase the productivity of the development process.
On the other hand, if a product requires large quantities of chips, the use of

ASICs is still less expensive and preferable. Unfortunately current FPGAs can only
work with lower clock frequencies of up to 1.5 GHz (20-500 MHz are common) in
comparison to digital ASICS with more than 3GHz clock speed. The logic density in
these chips is also usually 10 times smaller then the one of ASICS and they require
more power for the same functionality.
Nowadays, the applications of FPGAs include digital signal processing like in the

ATLAS project (see chapter 2.4), automotive embedded systems, medical imaging,
data encryption and mobile technology. They also find applications in any area or
algorithm that can make use of the massive parallelism offered by their architecture.
These areas include code breaking of passwords or wireless keys with brute-force
methods and cryptographic algorithms that can be up to 50 times faster than x86
CPUs.4

4Pico E-14 (Virtex-4 FX60) vs. 2.16 GHz Intel Duo WPA-PSK decryption:
http://openciphers.sourceforge.net/oc/wpa.php

17



3.2 The VHDL Design Language

3.2 The VHDL Design Language

VHDL5[10][11] is one of two major languages that are used to define the behav-
ior of embedded hardware such as FPGAs. It was originally developed by the US
Department of Defense in order to document the functionality of the ASICs that
supplier companies were including in equipment. The other common hardware de-
scription language is called Verilog and is equally used. The development approach
is different than in structural or functional programming languages such as Java or
C. While CPU-based higher-abstraction programming languages produce byte code,
that represents a sequential list of commands that are executed by the underlying
hardware, VHDL produces a large interconnection of logic blocks that is driven by
a clock signal.
VHDL is based on “entities” which can be thought of as little black boxes with

input and output ports[12]. The designer´s responsibility is to declare the properties
of these ports like name or size. After doing so, one can continue to define its
behavior by using almost any kind of structural statements like if, else, for, while
and even functions. To achieve a certain amount of complexity, these entities can
be connected in a modular way to achieve the desired design. The soft-wiring of
the circuits allow for large logic and signal processing blocks that work in parallel.
Many of these entities can receive and send signals simultaneously which needs to
be considered in the design in order to prevent timing problems. In comparison to
sequential designs, it is harder for programers to trace where data is at which time
of the execution process. As a substitue for function calls in sequential languages,
enable signals are intensely used to activate entities and to control the flow of the
data in the circuit.

3.2.1 Basic VHDL Elements

The following list holds a description of the most common language elements that
are used throughout the design:

entity The entity describes the interface of a design with other VHDL-blocks. It is
comprised of a name and a number of ports with input or output attributes.

architecture The architecture holds the description of the functionality of the cor-
responding entity. It can be comprised of various processes.

5very high speed integrated circuit hardware description language
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process A process is a digital mapping of input signal to output signal influenced
by logical decisions. Processes can be of combinatorial or clocked nature. In
the first approach, changes in the input signals instantly result in the change
of the output signal. Processes that are clocked will be only executed on the
edge of a clock signal, allowing for time sensitive applications.

signal Signals can be one or more binary states that can be set by logical decisions
or processes.

The following example shows the implementation of a simple 4 input, 1 output mul-
tiplexer to demonstrate the most important characteristics of the VHDL language
([11], see p. 33):
entity MUX4x1 is

port ( CLK: in s td_log i c ;
SELECT : in bi t_vector (1 downto 0 ) ;
INPUT: in bi t_vector (3 downto 0 ) ;
RESET: in s td_log i c ;

OUTPUT: out s td_log i c
SELECTED_TWO: out s td_log i c ;
) ;

end MUX4x1;

architecture BEHAVIOR of MUX4x1 is
begin

MUXPROC: process (CLK, SELECT , INPUT)
begin

if RESET = ’1 ’ then
OUTPUT <= ’0 ’ ;

elsif r i s ing_edge (CLK) then
case S is

when "00" => Y <= E( 0 ) ;
when "01" => Y <= E( 1 ) ;
when "10" => Y <= E( 2 ) ;
when "11" => Y <= E( 3 ) ;

end case ;
end if ;

end process MUXPROC;

SELECTED_TWO <= ’1 ’ when SELECT = "10" else ’ 0 ’ ;
end BEHAVIOR;
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This 4 input multiplexer routes one of the inputs to the single output line ac-
cording to the state of the 2 select channels. The output can be also reset to zero
by raising the reset line. The multiplexer’s 4 input channels are combined under a
common name in a bit vector called E. The vector can be accessed like an array
in C via an indexing operation with parentheses (i). VHDL main data types are
bits and vectors of bits instead of more complex data types such as integer, double
or strings in high abstraction languages. A VHDL bit is called std_logic and a bit
vector is std_logic_vector. To take into account, that different systems either work
with MSB6 first and others with LSB 7 first, you can define an array to be ascend-
ing with std_logic_vector(0 to n) or descending with std_logic_vector(n downto
0). Data is being stored in so called signals instead of variables. Signals can be
assigned with values by the ”<=” operator. These assignment can be coupled with
certain conditions. In the example above, the SELECTED_TWO signal will only
be assigned ’1’ if the SELECT input is indeed 2 or in binary ”10”. In other cases,
the signal will be ’0’.
Another important aspect of the example is the fact, that SELECTED_TWO

will change immediately if a change in SELECT occurs. The OUTPUT signal on
the contrary will only be altered on the rising edge of the incoming clock because
its alteration is embedded in a clock driven process called MUXPROC. Signal as-
signments within a process will come effective only after the process has been fully
executed. This is due to the parallelism meaning that all assignments in the process
will be synthesized to a circuit that represents the logic and change immediately. It
is also the reason why signals are not called variables. VHDL offers the capability
of variables in processes but their use is buggy, mostly limited to simulations and
normally not recommended by the FPGA vendors.
The multiplexer example given above can now be instantiated in any other design

in order to route multiple input signals through a single output line. A basic version
of a multiplexer is used in the old eBOC implementation to route the incoming data
lines from the pixel modules to the ROD. According to data speed settings, either
all channels would be forwarded, or only chosen ones.

6most significant bit
7least significant bit
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Modern signal transmission systems, such as the ATLAS read-out chain, require a
certain monitoring mechanism to give a high level of confidence that the transmitted
data can be correctly reconstructed at the receiving end. The so called 8b10b code
is one type of encoding for serial data transmission which has become an industry
wide standard. Almost all common high speed data protocols such as PCI Express,
SerialATA, DVI and HDMI, USB3 and Gigabit Ethernet make use of 8b10b encoding
to monitor data transmissions.
The 8b10b (en)coding scheme is designed to fulfill certain requirements that are

made for the data stream. First and foremost, the 8b10b code satisfies the DC
balance requirement. This means that the absolute difference between the logic
ones and zeros in a long stream of data bits stays within 2. This improves the
precision of the system because it is easier for the communication partners to stay
synchronized. To implement this requirement, the 8b10b code provides a special
way to wrap 8 bit raw data blocks into 10 bit code words where the 10 bit code
words are chosen to maximize the number of binary data transitions (change from
1 to 0 and reversely).
The “running disparity” (RD) plays an important part in the 8b10b encoding. It is

the cumulative sum of the disparity of all previously transmitted data blocks, where
the disparity P is defined as the difference between the 1’s and 0’s P = N1 −N0 in
a fixed size transmission block. The RD starts with a value of −1. As soon as a 10
bit data word has been transmitted, its disparity is added to the running disparity.
The main idea of the scheme is that the 8b10b code is a mapping of a 28 (256)
space to a 210 (1024) space that introduces an additional degree of freedom. Thus
only those 10 bit bytes are chosen, that have a disparity of +2, 0 or -2. The coding
now poses the constraint that the running disparity must be either -1 or +1. This
implies that a code word with a disparity of +2 can only be sent if the RD is -1 and
a code word with a disparity of -2 will be only sent if the RD is +1. Code words
with zero disparity can be sent regardless of the current RD.
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The runnding disparity is an important monitoring tool for the receiver. If any
disparity values for the received 10 bit values occur that are not conform with the
8b10b specifications, it is a strong indication for a transmission error. The RD is
used in section 5.2 to detect errors in the data stream from the pixel modules to the
rest of the read-out chain.
Besides the DC balance in the long run, 8b10b codes are chosen to ensure for no

more than 4 consecutive 1s or 0s in the normal data stream. More binary transi-
tions equal a higher signal frequency which is why this is good for data transmission
through channels with a high-pass characteristic, such as Ethernet’s transformer-
coupled unshielded twisted pair cable or optical receivers using automatic gain con-
trol. In case of the ATLAS Pixel Detector, the photo diodes, that transmit the
data from the modules to the off-detector hardware, require such a constant binary
transision to work better.
For the encoding, the 8 bit byte is divided into a 3 bit and a 5 bit part which are

then encoded into 4 bit and 6 bit sequences. Some of the 256 possible 8 bit words
can be encoded in two different ways to make sure that the RD stays within +/- 1.
As an example for the code mapping, all possible 3 bit data values are listed in

column HGF of table 4.1 together with their corresponding valid 4 bit codes in fghj.

input RD = −1 RD = +1
HGF fghj

D.x.0 000 1011 0100
D.x.1 001 1001
D.x.2 010 0101
D.x.3 011 1100 0011
D.x.4 100 1101 0010
D.x.5 101 1010
D.x.6 110 0110
D.x.P7 111 1110 0001
D.x.A7 111 0111 1000

Table 4.1: The 3b/4b encoding table.

The data symbols are labeled as D.x.y with x (from 0–31) representing the 5 bit
part and y (from 0-7) representing the 3 bit part. In the convention, "A" and "a"
refer to the least significant bit (LSB) and “H” and “j” refer the most significant bit
(MSB). In data transmission, the 10 bit codes are sent with their least significant
bit first: a → b → c → d → e → i → f → g → h → j in comparison to raw data
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transmission in which the most significant bit is shifted out first. The naming of the
10 bit digits (abcdei fghj) is rather arbitrary and arose from the naming convention
in the original US patent[13].
It can be seen in table 4.1 that there are 2 possible codes for data symbols with

y = 7. The primary (D.x.P7) code is as the default code word. However it is
possible to produce more then 4 consecutive 0’s or 1’s when combining D.x.P7 with
its 6 bit counterpart. Therefore the alternate (D.x.A7) encoding must be chosen
when x = 17, x = 18, and x = 20 at RD = −1 or when x = 11, x = 13 and x = 14
at RD = +1.
In all other cases, the D.x.A7 code is to be avoided because it can produce a 10

bit word that is either a control symbol (see section 4.1) or a data symbol that, in
combination with other 10 bit symbols, might lead to a misaligned comma sequence
in the data stream.
The paper on “A DC-Balanced, Partitioned-Block, 8B/10B Transmission Code”

by X.Widmer et al describes a methods to implement 8b10b encoding via combina-
torial circuits. In this thesis, an encoding unit from Laura Gonella, Bonn University
and a decoding unit from opencores.org were used. Their implementations are close
to circuits described in Widmer´s paper.
Generally 8b10b encoding decreases the effective data transmission speed. Since

an 8 bit information is transmitted via a 10 bit word, the true data transmission
speed Strue is

Strue = 8
10Soriginal

IBL plans a maximum data transmission speed of 160 Mbit/s which would be a true
speed of only 128 Mbit/s.

4.1 Control Symbols
Standards using the 8b10b (en)coding also define up to 12 special 10 bit symbols
(or control characters) that do not have an equivalent 8 bit word and can be sent in
place of a data symbol. They are used to indicate start-of-frame, end-of-frame, idle,
skip or other link-related conditions. Since they do not contain data, they are mainly
used to control the data flow. To distinguish them from normal data symbols, these
control characters are referred to as K.x.y. Control symbols are usually sent less
often than data symbols which is why they are allowed to have up to six consecutive
1’s or 0’s. The encoding unit, which is used in this thesis, has a special control signal
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that can be used to choose whether the data input is encoded into the corresponding
data word (k = ’0’) or control character (k = ’1’).

Listing 4.1: Entity declaration of the 8b10b encoding unit from Laura Gonella.
component encode_8b10b is

port (
data_in : in s td_log ic_vector (7 downto 0) ;
control_word : in s td_log i c ;

data_out : out s td_log ic_vector (9 downto 0) ;
d i s p a r i t y : out s td_log i c

) ;
end component ;

Within these control symbols, K.28.1, K.28.5, and K.28.7 usually take a spe-
cial meaning as "comma symbols". These are used for synchronization in the data
stream1. If K.28.7 is not used in the protocol, the unique comma sequences 0011111
or 1100000 cannot be found at any bit position within any combination of normal
codes and can be used to detect bit errors. A combination of multiple succeeding
K.28.7 codes is not allowable because it would result in undetectable misaligned
comma symbols. The K.28.7 is also often used because it is the only 10 bit word
that cannot be the result of a single bit error in the data stream.

input RD = -1 RD = +1
HGF EDCBA abcdei fghj abcdei fghj

K.28.0 000 11100 001111 0100 110000 1011
K.28.1 001 11100 001111 1001 110000 0110
K.28.2 010 11100 001111 0101 110000 1010
K.28.3 011 11100 001111 0011 110000 1100
K.28.4 100 11100 001111 0010 110000 1101

K.28.5 101 11100 001111 1010 110000 0101
K.28.6 110 11100 001111 0110 110000 1001

K.28.7 111 11100 001111 1000 110000 0111
K.23.7 111 10111 111010 1000 000101 0111
K.27.7 111 11011 110110 1000 001001 0111
K.29.7 111 11101 101110 1000 010001 0111
K.30.7 111 11110 011110 1000 100001 0111

Table 4.2: List of control symbols.

1Detecting the alignment of the 8b/10b codes within the bit-stream.
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The FE-I4 Data Output Protocol for IBL proposes the use of the 3 comma symbols
as Start of Frame (K.28.7) and End of Frame(K.28.5) delimiters as well as Idle words
(K.28.1)[14]. Each event, sent out by the FE-I4 chip, will be wrapped in with these
Start of Frame (SOF) and End of Frame (EOF) words[15]. The encoding unit will
also use the SOF word for a correct data alignment. The framing of the data with
the SOF and EOF word introduces 20 bit of overhead for each frame. In comparison
to the an event with 100 hits, which would be 2750 bits for the hit data, the 20 bit
overhead of the framing is negligible.
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5 Modifications of the Laboratory
Read-Out System

5.1 The MCC-Module Emulator (FE-I3)

In section 2.2 the read-out chain in laboratory has been discussed. The goal of this
thesis is to implement the 8b10b decoding mechanism on the eBOC. To be able to
test the modifications of the eBOC (see section 5.2) a MCC module emulator is
needed, that follows the FE-I3 specification but also implements 8b10b encoding.
With this emulator the 8b10b decoding can be tested in the working FE-I3 environ-
ment of the laboratory (ROD Master DPS and read-out software). The following
section describes the newly developed FE-I3 MCC emulator with its 8b10b encoding
unit.

5.1.1 MCC to ROD Data Protocol

The MCC module emulator strictly follows the MCC-to-ROD data format that is
specified in the ATLAS MCC-I2.1 Specifications[16]. The format is designed for a
serial data communication and defines certain bit patterns that one needs to know
to understand the data correctly. For this thesis, only the basic aspects of the event
format will be explained. The emulator is designed to generate arbitrary pixel hit
events but does not react on configurational requests.
The data format of the event generated by the MCC has been defined by making

certain considerations. As one can see in the two examples of figure 5.1 each event
starts with a header (11101) which also acts as synchronization sequence for the
read-out chain. The header is followed by a unique Level 1 ID (LVID), that marks
which Level 1 Trigger the event belongs to. This ID has a maximum value of 15
before it is reset which is why it is only unique in a certain span of time. In spite
of that the interval is enough for the read-out chain to distinguish the individual
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events.
Events on the MCC are ordered and sent out by their LV1 arrival time. Every

event is completely transmitted before the following event will be considered for
transmission. Within an event, all the hits are grouped together, that belong to a
Level 1 trigger. The Bunch Crossing ID follows the LV1ID and defines which clock
cycle the event belongs to.

Figure 5.1: Event data format at the MCC output. Example 1 shows a one hit
event. Example 2 demonstrates the format under multiple hits.[16]

Within the event, hits are sorted and grouped by FE chips. This permits data
compression because for several hits on a single FE chip, the FE ID has to be sent
only once. For the read-out chain, the full event length is not known until the whole
event is transmitted. There is no event description header that informs the chain
about its length. Thus, event hit data must be parsed one after another and the
end of an event must be recognized by the content of the data.
During the implementation of the MCC specification, data compression was con-

sidered to be important. Due to the physical limitations, the number of transmission
cables need to be kept as small as possible and still transmit the data to the off-
detector hardware as fast as possible. The protocol is chosen to transmit only as
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much bits as needed to communicate the important experimental data. Pixel hits
are comprised of 4 or 3 components. They usually start with a 8 bit long FE-ID
although the FE-ID can only range from 0 to 15. The first four bits of the FE-ID
sequence (1110) again act as a synchronization pattern and do not contain data. Af-
ter the FE-ID, the pixel position is transmitted as a pair of row and column values
followed by the measured ToT value. The maximum number of hits allowed per FE
chip is 112 due to the fact that the MCC has 128 word FIFO’s inside each Receiver
and 16 words are reserved for End-of-Event (EoE) words.
Another aspect in the MCC specification is the recovery from transmission errors.

Any error in the event data should not influence the transmission of the subsequent
events. That is why a unique Trailer has been chosen to terminate an event and
allow for the distinction of succeeding events. It consists of 22 zeros along with a
starting Sync bit (bit set to ’1’ ) which is a combination cannot be found in the
event data. The Trailer is used in section 5.3 to extract single events from the ROD
FIFO.
All data parts of an event with multiple hits can be found in table 5.1.

Keyword Bit Size Low Value High Value Description
LVID 8 0000 0000 1111 1111 First 4 bits:skipped Level 1

Triggers (0-15). Second 4
bits: Level 1 Trigger ID

(0-15)
BCID 8 0000 0000 1111 1111 Bunch Crossing ID: Ranges

from 0-255. MCC
increments BCID every

40MHz clock cycle. BCID
will be reset upon BCID

data signal.
MCC-FE# 8 1110 0000 1110 1111 FE module number ranging

from 0-15.
ROW# 8 0000 0000 1101 1111 Row number from 0 - 2391.
COL# 5 0 0000 1 0111 Column number from 0 -

23.
TOT 8 0000 0000 1111 1111 Time over Threshold with

256 distinctive values.
Trailer 22 1 00 0000 0000 0000 0000 0000 Marks the end of an event.

Table 5.1: Length and possible values of the keywords in the event syntax used by
the MCC.[16]

29



5.1 The MCC-Module Emulator (FE-I3)

5.1.2 MCC to ROD Physical Layer Protocol

The MCC to ROD (via BOC) interface consists of 4 different channels. One channel
distributes the clock (CLK ) from the BOC to the module. Another channel is called
the Data In (DTI) channel and transmits trigger and configuration data from the
ROD to the module. The MCC can respond on two different lines called Data Out
0 and Data Out 1 (DTO0 and DTO1 ). Different data speeds are available and
influence which channel will be used in which way.
In 40Mbit/s mode new data is being sent on both channels simultaneously on

the rising edge of the 40MHz clock signal. Furthermore there are two possible 80
Mbit/s modes. One that transmits the data in 40 MHz cycles in which 2 bits, bit 1
on DTO0 and bit 2 on DTO1, are being transmitted on both lines simultaneously.
The other methods sends data on one line at both the rising and the falling edge
of the clock. This will also give a 80Mbit/s data speed. The same can be done
on both lines with different data resulting in 160Mbit/s. For testing purpose, only
the 40Mbit/s mode was used in this thesis. All implementations should work with
higher speed modes without problems. All transmission channels are realized as
LVDS channels (see section 2.4.1).

5.1.3 Software Implementation of the MCC

Figure 5.2: The Trenz Electronic TE-0300-01 Board with a Spartan-3E FPGA (left)
and the Add-On Board on the Back (right). The Add-On Board contains
a LVDS driver that is clearly visible.
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In order to emulate the behavior of the MCC chip, a FPGA development board
from Trenz Electronic with a Xilinx Spartan-3E was equipped with an Add-On
board2 that could be connected via a Type 0 cable to the rest of the read out chain.
The Type 0 cable is a special ATLAS design. A picture of the FPGA board and
the Add-On board can be seen in figure 5.2. Xilinx provides the ISE development
environment for their FPGA families (see section 3.1.3) that was used to write the
VHDL code, route and synthesize the design and program it to the FPGA.
The following designs make extensive use of two very common structures in digital

computing: the FIFO and the (De)-Serializer.

FIFO A FIFO3 describes a data storage method in which the element is read out
first, that has been first written to the unit (see figure 5.3). It can be compared to
a queue in real life where a person is served-first, that comes-first and the next has
to wait until the first is finished. The opposite of this queue is the LIFO that is also
known as a stack. FIFOs are heavily used in devices such as computer mouses or
keyboards where those events are prioritized that are triggered first.

Figure 5.3: Scheme of the basic functionality of a FIFO before and after 2 write and
read operations. Each colored block represents a data word.

FIFOs are characterized by the data width and the amount of data words they
2Provided by Bonn University (A.Eyring)[17]
3First In, First Out
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can store. In comparison to random acess memory (RAM) blocks, the user does not
have to think about the address where to store the data. On the other hand, it is
impossible to access data members that are not at the beginning of the data queue
in the memory. FIFOs are a good choice when it comes to storing sequential data
gathered from a serial data stream.
The following listing contains the entity definition of an 8 bit FIFO used in the

module emulator:
component Fi fo8

port (
c l k : IN s td_log i c ;
r e s e t : IN s td_log i c ;
data_in : IN std_logic_VECTOR(7 downto 0 ) ;
wr ite_enable : IN s td_log i c ;
read_enable : IN s td_log i c ;

data_out : OUT std_logic_VECTOR(7 downto 0 ) ;
i s _ f u l l : OUT s td_log i c ;
is_empty : OUT s td_log i c ) ;

end component ;

The read and write speed of the FIFO is limited by clock speed used for the
entity. Each clock cycle, data can be either written to the FIFO, read from the
FIFO, or both. The data at data_in will be written to the internal memory when
the write_enable signal is ’1’ at the rising edge of the clock (clk). In the same way,
data_out will contain the next element of the FIFO every time the read_enable
signal is high at the rising edge of the clock. The ability to read and write at the
same time is helpful because reader and writer do not have to communicate about
this issue. Two additional status lines signal if the FIFO is empty or full.
In this project FIFOs are mainly used to store incoming serial data for buffering

and further processing. Since FIFOs are a very common way to store data, FPGA
vendors deliver hard cores of these structures. Most FPGAs nowadays have addi-
tional SRAM space for this exact purpose. The saving of the data thus does not have
be implemented with logic structures but can be facilitated with the SRAM blocks.
If larger FIFOs are required, the use of external memory blocks is recommended.
An interface has then to be provided in order to make it possible for the FIFO logic
to store the data in the RAM. In the following designs, most of the FIFOs are used
to buffer complete events. Depending on the event length, the size of this data can
exceed over 3 kB (considering events with more than 1000 hits). The MCC emulator
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FPGA can easily create FIFOs of such length but the Altera Flex FPGA on the
eBOC can handle only up to 50 bytes. In the future the eBOC FPGA will have to
be replaced by a more modern unit with integrated SRAM to allow for large event
buffering.

(De)Serializer Deserializers and serializes are the interfaces between streams of
bits and fully accessible data blocks. A serializer takes a given input data word -
usually more than one bit - and shifts it out on a single data line. The frequency of
this shifting process is determined by a clock. The serializer is always used, when
a large amount of data has to be transmitted via a limited count of data lines. On
the other end of the line, the deserializer reconverts the data stream into a full data
word and stores it. For this process, the deserializer needs to know the transmission
clock to receive the data bits correctly.

Figure 5.4: Basic concept of the internal behavior of a serializer.

Several problems occur when data is transmitted on a single line. The most
important part is the data alignment. The receiver needs to know the start of a
certain bit sequence, when deserializing it into data words with fixed length. The
correct data alignment needs to be set by a communication protocol between sender
and receiver and normally consists of a unique bit sequence that can only be found
in this marker and not in the data. Encoding techniques such as the 8b10b encoding
make this alignment easier.
Figure 5.4 shows the basic architecture of a serializer. Usually the data input

(Data In) for the serializer is buffered inside the entity in a register (Data_In Reg-
ister) whenever the Data Load Clock rises. This prevents the serialization to be
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corrupted when the data input signal changes. Independently from the load signal,
the Write Enable signal starts the serialization process by copying the Data_In Reg-
ister to the internal Data_Out Register. This register will be shifted 1 bit to the
right, each time the Stream Clock has a rising edge and the serializer’s output signal
will be set to the MSB of Data_Out. A more complex implementation of the serial-
izer used in this thesis does not contain a single data register but a complete FIFO.
This allows the user to feed several data words into the serializer before starting the
streaming.

5.1.4 The Final Design

The physical communication layer between the module and the ROD offers two
output data lines that are both used in this design. For testing purposes, the DTO0
channel will contain the encoded data signal and the DTO1 channel will have the
raw data signal. This will allow to easily detect errors in the encoding system later
on in section 5.3.
The MCC module emulator is a basic state machine that starts in an idle mode

(see figure 5.5). Upon idle mode, the emulator will send a ’0’ signal on the raw data
line and the NOP 4 K.28.1 idle word on the encoded data channel. The incoming
command bit signal from the ROD is being shifted into a 5 bit register which acti-
vates a Level 1 Trigger signal, when it contains the LV1 sequence ”11101” (Level 1
Detector). In that case, an activation signal is sent to the FE-I3 Event Emulator5

which then produces a raw data stream with a FE-I3 compliant event containing a
configurable number of hits. The Event Emulator is capable of buffering multiple
Level 1 Trigger which means that any trigger that arrives during event sending will
still be processed after that event is finished. The entity declaration of the Event
Emulator contains a couple of configuration channels as well as the output links and
control signals:

Listing 5.1: Entity declaration of the pixel simulator.
COMPONENT event_emulator

PORT (
c lk_in : IN s td_log i c ;
rst_n_in : IN s td_log i c ;
config_in_1 : IN s td_log ic_vector (31 downto 0 ) ;

4No Operation
5originally written by Daniel Dobos (CERN) and Jens Dopke (Universität Wuppertal)
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config_in_2 : IN s td_log ic_vector (31 downto 0 ) ;
l e v e l 1_ t r i g g e r : IN s td_log i c ;
BCR: IN s td_log i c ;
ECR: IN s td_log i c ;
i n l i n k s : IN s td_log ic_vector (3 downto 0 ) ;
ou t l i n k s : OUT s td_log ic_vector (3 downto 0 ) ;
sending_event : OUT s td_log i c
) ;

END COMPONENT ;

Configurations include the variation of the number of hits per event, the amounts of
hits sent, if a Level 1 Trigger is received, and a couple of MCC and FE flags that
have not been used in the design.
To signal the sending of a new event, the entity has been modified to offer a

special notifier, the sending_event signal. It tells the 8b10b Frame Builder to leave
IDLE mode and to send a SOF word (K.28.7). At the same time, the Deserializer
starts reading the Fake Event Data Stream provided by the FE-I3 Event Emulator
and stores it into a FIFO. The original data format of the FE-I3 is not formatted
into 8 bit packages. Thus the Deserializer simply cuts the arriving data stream
into 8 bit parts. The first part of the event data stream might contain only zeros,
because the simulator raises the Sending Event Signal some bits before it actually
starts transmitting data. This makes sure that the ongoing data processors catch
the complete event.
After sending the SOF word, the Frame Builder reads out the Deserializer’s FIFO,

encodes the data in the 8b10b Encoder and streams out the encoded data via the
Serializer. The 8 bit data packages saved by the Deserializer are smaller then the
10 bit data packages produced by the 8b10b Encoder. Since the 8 bit raw data and
the 10 bit encoded data words are both read in and out with a clock speed of 40
MHz, the 8b10b Frame Builder can instantly (after the raise of the Sending Event
Signal) begin to encode and serialize the incoming raw event data. This is because
the data cannot be read out faster then it is written to the Deserializer FIFO.
As soon as the Sending Event Signal has gone to zero, the Deserializer finishes

saving the last 8 bit sequence from the Event Data Stream. The 8b10b Frame Builder
reads out the Deserializer FIFO until it is empty and terminates the frame with an
EOF (K.28.5) word. After that the Emulator State Machine returns to IDLE mode
and sends NOP K.28.1 word with alternating disparity - waiting for the next Level
1 Trigger.
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5.2 Modifications of the eBOC

With the introduction of the 8b10b encoding scheme, the eBOC has to be designed
to be able to decode the 8b10b signal from the modules, convert it into the original 8
bit data stream and send this off to the ROD. The 8b10b implementation of the FE-
I3 module emulator is the same, that is used in the upcoming FE-I4 specification.
The main problem with the encoding scheme is, that the 10 bit to 8 bit decoding
introduces 2 redundant clock cycles. For every 10 bit word that is received and
forwarded as a 8 bit word, at the same clock cycle, the 2 last bits after the 8 bit
word has been shifted out do not contain data. The ROD on the other hand expects
the data to arrive without any gaps. Consequently the event data has to be stored
in a buffer (FIFO) before being sent out to the ROD.

The final design of the eBOC modifications can be found in figure 5.6. In its initial
configuration the eBOC forwards the 32 FE Command Channels coming from the
ROD to the Modules. In the laboratory test system, the eBOC also provides the
40 MHz clock signal for all the modules via an onboard oscillating crystal. Without
the decoding unit, the eBOC receives the 32 Data In Channels and simply forwards
them to the ROD. For the decoding to take place, the Encoded Data Stream of
the designated module is routed into the Decoding Unit. Each encoded module
would need its separate encoding unit in the future. The incoming data stream is
constantly shifted into a 10 bit register. For the correct data alignment, the stream
is searched for the Start of Frame (SOF) word, marking the beginning of a new
event. In this case, all following 10 bit words are being deserialized, decoded and
stored in an Event Data FIFO. This FIFO currently is 8 bit wide and 32 words
deep which is relativly small in comparison to the expected event length of far more
than 100 words (for a 50 hit event). The limitation results from the small amount
of logic gates in the Altera Flex FPGA which does not allow for a larger storage.
The maximum possible event length with this setup is discussed in the validation
section 5.3.

Parallel to storing the events to the FIFO, a counter in the Stream Analyser is
marking the number of event words, that have been received. If the End of Frame
(EOF) word has been received, the total Event Length will be written into a sepa-
rate FIFO (Event Length FIFO). Furthermore the deserialization will be stopped.
Whenever the Event Length FIFO contains data, the Serializer knows that a new
event has been completely deserialized and decoded and is ready for sending to the
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ROD. The Event Length is read out and used to read the exact amount of data
words from the Event Data FIFO one after another. These raw data words are fed
back into the data stream for the ROD via the Serializer.
Since the Open-Source implementation of the 8b10b Decoder in use does not

contain data monitoring capabilities, the Decoding Monitor was implemented to
watch the arriving 10 bit data words and checks for the correct Running Diparity
(RD). Whenever an error in the parity occurs, the Debug Channel will be raised for
one clock cycle. The Debug Channel replaces one of the input links on the ROD and
serves for data monitoring. This method was implemented for debugging reasons
and will probably replaced in the new eBOC design with a more sophisticated data
monitoring technique.

5.3 Validation

To validate the functioning of the encoding and decoding chain, an event error rate
measurement has been performed. The debugging tool called ”MccErrorChecker”
has been developed for this purpose. It is based on the ”Single Events Generator”,
which is part of PixLib6, but was rewritten for most parts to repeatedly send Level1
Triggers to the module and to read out the received data from the ROD FIFOs.
The event data arrives on two sepparate channels, one with raw data and the other
one with the encoded data.
After decoding, the content on these two data streams should be the same but

slightly shifted. The program analyzes the FIFO contents and extracts single events
by looking for sequences of 1’s ending with more than 22 0’s which is the length
of the data Trailer. These isolated events are cross checked with their equivalent
events on the other data channel. An event has been successfully transmitted when
these event bit streams are exactly the same.
The event error rate can be defined as:

εerror = Nerrors

Nevents

with the total number of errors Nerrors and the total number of transmitted events
Nevents. Several runs have been made to check the events. The results can be found
in table 5.2.

6C++ interface library for the communication between a Linux based computer and the ROD.
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Run # Nerrors Nevents εerror Upper Limit 90%CL
1 0 23900 9.63 · 10−5

2 0 27000 8.53 · 10−5

3 0 1260000 1.83 · 10−6

Table 5.2: Results of the event error rate measurement for 3 different runs with
variable event count.

The upper limit of εerror can be calculated with the Baysian method. With ε

being the probability that an error occurs, the number of checked events n and the
number of erors in these events k, one gets the following binomial distribution[2]:

p(ε|n, k) =
(
n

k

)
· εk · (1− ε)n−k

= n!
k!(n− k)!ε

k · (1− ε)n−k.

The number of event errors in this test turned out to be 0, which means that
k = 0. The probability is thus:

p(ε|n, k) = n!
0! · n!ε

0 · (1− ε)n

= (1− ε)n .

After full normalization the probability density function can be written as:

p̃(ε|n, k = 0) = p(k = n|ε, n) · p0(ε)´ 1
0 dε · p(k = n|ε, n) · p0(ε)

= (n+ 1) · (1− ε)n .

The factor p0(ε) is the ”a priori” probability, which contains the previous knowledge
about the distribution[18]. In this case it is not nescessary to include such an infor-
mation which is why the value is constant and does not influence the normalization
integral.

The 90% upper limit on ε can be calculated as

εerrorˆ

0

dε′ · p̃(ε′|n, k = 0) = −n+ 1
n+ 1 · (1− ε

′)n+1 |εerror
0 = 1− (1− εerror)n+1 = 0.9
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Solving for the event error rate upper limit, the result is

εerror = 1−n+1 √0.1

The resulting upper limit of the event error rate εerror in table 5.2 represents the
probability with which an error occurs at a confidence level of 90%. The measure-
ments show that the 8b10b decoding system seems to work quite well and does not
introduce transmission errors, even in over one million events. The calculated upper
limits correspond to this observation with values down to 10−6. If runs with more
events would been made, this number could be decreased even further. Thus as a re-
sult, errors in the encoding mechanism are most unlikely which is a good validation
of the design.
During the test runs, event errors occasionally occurred due to loose contacts

which is why several test runs have been made. Those corrupt measurements were
not counted in. After fixing these problem, the system ran stable over more than
3 days. However, for longer runs, one should remove the programming cable of the
eBOC because voltage variability in the cable could lead to an unintentional reset
of the eBOC FPGA.

5.3.1 Realistic Event Triggering

To test the system under realistic conditions, a more sophisticated testing scheme
has been developed to model the random nature of the experiment. Instead of
constantly firing triggers with the same time difference in between, the triggering
time differences follow a Poisson distribution:

P (∆t; τ) = 1
τ

exp (−∆t/τ)

where ∆t is the difference between two trigger events and τ is the average trigger
time difference. The distribution is already normalized. The minimum trigger time
difference ∆tmin is given by a test program7 that cannot be faster then 200 ms
between events. This time is mainly limited by the time needed to read out the
FIFOs on the ROD and the interface between the read-out computer and the ROD.
To determine the average trigger time difference τ we say that we want to be able

7MccRawViewer with built-in time measurements.
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to trigger at least 99% with this value, meaning that:

∞̂

∆tmin

P (∆t)d∆t = 0.99

= exp (−∆tmin/τ)

The correct value for τ would be:

τ = − ∆tmin
ln (0.99)

= 19899.8 ms
≈ 20 s

This average trigger time difference τ is a parameter of the minimal time ∆tmin,
the ROD FIFOs can be read out, and thus is only valid for the laboratory test
system. Still the poisson shaped distribution of these times can be compared to the
real ATLAS trigger time differences.
The common C++ random number generators usually cannot create values with a

certain distribution but offer evenly distributed numbers on the interval [0 : 1]. The
goal is to get Poisson distributed numbers from these evenly distributed ones. By
using the transformation method[19], these even distributions can be transformed
into any other probability density function as followed.
Consider a random variable X defined by the density pX(x). We can easily define

a new random variable Y :
Y = f(X)

We are now interested in the density function pY (y). Obviously the function f

maps the interval dx to
dy = df

dxdx

The probability to find X in [x, x + dx] is the same as to find Y in [y, y + dy],
suppose the function f is unique. It can be written as

pY (y = f(x))dy = pX(x)dx

or
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pY (y = f(x)) = pX(x)
∣∣∣∣∣dfdx

∣∣∣∣∣
−1

. (5.1)

The initial simple distribution can be distributed by

pX(x) =

1 for x ε [0 : 1]

0 else

and our desired distribution is (with y = ∆t )

p∆T (∆t) = 1
τ

exp (−∆t/τ)

To determine f , we use the fact that an inverse function f−1 exists:

x = f−1(∆t)

No we can rewrite equation 5.1 with
∣∣∣∣∣dfdx

∣∣∣∣∣
−1

=
∣∣∣∣∣df−1

d∆t

∣∣∣∣∣ as
p∆T (∆t) =

∣∣∣∣∣df−1

d∆t

∣∣∣∣∣ pX(x = f−1(∆t)).

It follows that
df−1

d∆t = 1
τ

exp (−∆t/τ)

and after integrating we arrive at

f−1(∆t) = exp(−∆t/τ).

After taking the inverse of the function, the result is

∆t = f(x) = −τ ln (x) .

If we are interested in Poisson distributed random numbers, we simply take evenly
distributed numbers from the interval 0 < x ≤ 1 and put them into ∆t = −τ ln (x) to
get a new time difference between to events that represents a realistic time interval.
This algorithm does only work if the inverse function f−1 is a simple analytical
function. If this is not the case, one should use rejection sampling[19] which was
developed by John von Neumann.
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In the test run, 22953 events with trigger delay times were generated and tested.
The delay times ni were histogrammed and normalized with the number of events
Nevents:

pi = ni
Nevents

∆pi =

√√√√( ∂ni
Nevents

)2

∆ni = 1
N

∆ni =
√
ni

Nevents

To compare the normalized histogram with the initial distribution one has to con-
sider that

pi,theoretical =
∆ti+∆tbinˆ

∆ti

1
τ

exp (−∆t/τ) ≈ ∆tbin ·
1
τ

exp (−∆t/τ)
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Figure 5.7: Plot of randomly chosen trigger spans according to the Poisson distribu-
tion. This plot was created with a 250 bins and 22953 random numbers.
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The current run was histogrammed with 250 bins (approximately Nevents/100)
and a range of 0 to 60000 ms which resulted in ∆tbin = 240 ms. The result can
be found in figure 5.7. Almost all bin heights coincide with the expected poisson
distributed probability (within the error ∆pi).
The random trigger event checker was implemented in another modification of

the SingleEventGenerator called MccErrorChecker_Poisson. In the run, no error
ocurred, resulting in an event error rate εerror of 1.00 ·10−4. The poisson distributed
triggering test showed that the system is ready to work under real conditions without
problems.

5.3.2 Data Delay

In the last part, the data delay that is being introduced due to the encoding and
decoding process is evaluated and quantified. To determine the delay, one has to
consider that an event is fully buffered inside the eBOC before it is forwarded to
the ROD. The module emulator introduces a 2 bit delay per event word, due to
the encoding and streaming of the 10 bit words. On the decoder side the encoded
word is decoded and stored into an 8 bit FIFO. This introduces another 8 bit delay
resulting in a total of 10 bit delay per 8 bit event word.
In theory, the total bit difference between the raw data and the encoded data

would be
∆bit = 10 bit ·NEventWords + 10 bit + const.

with the additioanl 10 bit overhead by the SOF word and the constant offset factor
that is produced by the way, the MCC module emulator encodes the raw data via
FIFOs. To verify that the bit delay increases with a linear factor and to deter-
mine the maximum possible event length (~ hit count) with the current design, the
emulator has been equipped with the functionality to increase the number of hits
per event each time the button of the development board is pressed (after 15 hits,
the number is reset to 0). For each hit count, 2000 events were triggered, received
and the bit difference between the raw data and the decoded data in the ROD was
measured.
A first result of the measurement is, that a maximum of 9 hits per event for a

fixed FE-chip ID can be transmitted so far with the current setting. This limitation
arises from the limited storage space in the eBOC FIFO of only 32 byte (see section
5.2) that stores the incomming event data. The expected maximum event length
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thus would be

Nmax,expected = Floor
(
SFIFO − SHead

BPH

)
= 10 events

with the size of the FIFO SFIFO = 32 byte, the size of the header/LV1D/BID/FE-
ID + sync bits (32 bit) SHead = 4 byte and the bytes per hit (Row#, Col#, ToT#
= 22 bit) BPH = 2.75 byte. As discussed in section 5.1.4 the encoding might catch
some zeros before the actual event resulting in a slightly larger event header. This
would decrease the expected maximum event length below 10 and makes it equal to
the measured Nmax = 9.
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Figure 5.8: A plot of the measured bit delay for variable hit counts per event together
with a linear fit of the data.

In figure 5.8 the averaged bit delays for the first 9 hit counts are plotted and fitted
with a linear function. The standard deviation of these bit delays are not larger than
0.03% and therefore barely noticable in the plot. Given the BPH = 2.75 byte and
the expected 10 bit delay for each event word, the theoretical bit delay increase per
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event word is
mbit,expected = 10 bit

byte · 2.75byte
hit = 27.5 bit

hit
The slope of the linear regression in figure 5.8mbit is the measured average increase

in the bit delay for an additional hit in the event:

mbit = 27.3± 0.3 bit
hit

The expected bit delay for an additional hit and the measured bit delay are the
same within the error thus confirming the theoretical expectations.
Given the average occupancy of 1.44 hits per B-layer module in the normal LHC

experimentation phase, the bit delay would be approximately 40 bit which is negligi-
ble. For a calibration scan, events with up to 1440 hits per module can be generated.
This would result in a bit delay of more than 39 kbit. Thus events would arrive 982µs
later at the eBOC at a data transmission speed of 40MBit\s. This is still relatively
short in comparison to the minimum trigger time difference of 200 ms but should be
kept in mind in future designs of the scan and calibration software.
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6.1 Summary

In preparation for the Insertable B-Layer Project with the newly developed FE-
I4 chip, the laboratory test system needed to be prepared for the 8b10b encoding
method. For this purpose, a MCC module emulator with the specification of the
FE-I3 chip was developed to facilitate the testing in the current laboratory test
system which is working with the FE-I3 chip only. The emulator was realized with
an FPGA development board and an additional Add-On for the interface between
the device and the rest of the read-out chain. The design of the emulator was both
tested in the simulation environment of the FPGA vendor and the actual read-out
chain. In the end, the emulator is a fairly complex state machine that can generate
both raw and 8b10b encoded event data. The system responds to a Level1 Trigger
from the ROD , processes it and usess it as a start signal for event generation. The
final design is a robust implementation of the emulator with the most basic features
of a pixel module and a couple of configurable options like variable event length. In
the future, parts of the code might be reused in a FE-I4 module emulator.
The eBOC modifications followed the implementation of the module emulator.

After the emulator was fully tested with raw data, the eBOC was prepared for the
decoding of 8b10b data packages. Unfortunately the Altera Flex FPGA posed some
design limitation such as small event length. In the future these problems will be
fixed in a complete redesign of the eBOC and the use of a modern FPGA unit with
more logic blocks.
The 8b10 decoding unit was developed as a ”plug and play” module for the eBOC

in which the unit would be put in between the incoming channel of the eBOC and the
outgoing channel to the ROD. The most important features of the 8b10b encoding,
like the bit alignment detection, the running disparity error monitoring and the
event buffering have been successfully implemented.
Various tests were made to ensure the functionality of the system under realistic
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and fast trigger conditions. No errors were detected in over 1 million events which
validates the quality of the 8b10b decoding unit on the eBOC. In the end of the
validation process, the delay introduced by the decoding system was quantified by
various measurements with different event sizes. The resulted delay equates to
the theoretical delay that has been derived from the hardware design itself and is
considered to be negligible.

6.2 Outlook
In the future, the 8b10b implementation for the eBOC might be migrated to FPGAs
on the ROD because it would facilitate the storing of the events. If the eBOC keeps
decoding the arriving data stream, event buffering needs to be considered in the
redesign of the eBOC board. The buffering unit (e.g. a SRAM block) will have to
have enough space to store at least one complete event. As a rough estimatation
(maximum of 53.760 pixel per module, 3 bytes per pixel) a single module would
require at least 162 kB SRAM space if all pixel would be read out in a sole event.
As a preparation for IBL and the FE-I4 chip, the data rate of the module to eBOC

communication still needs to be raised to 160 Mbit/s and tested.
Concerning the module emulator, the design could be improved in the future to

react on configurational requests to make the emulator more realistic. If the buffering
capabilites of the eBOC are implemented, the event error rate measurements should
be repeated for events with a much higher hit count. For that the emulator would
need another modifaction. Also the content of these hits, such as tot value, could
be varied in order to create streams with almost every possible bit sequence.
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