

Research project of counterparts funded at Tadulako University

Name	Counterpart	Title
Henry Novero Barus, Nur Edy	Z01	DNA barcoding of arbuscular mycorrhizal fungi from Central Sulawesi

Research summary

Arbuscular mycorrhizal fungi (AMF) is a term to describe a mutualistic symbiotic relationship between plant roots and fungi. AMF supports the decomposition of soil organic materials, the translocation of soil nutrients, especially phosphorus, and the ability of plant roots to absorb plants and protecting roots from pathogens in the rhizosphere.

This study aims to identify arbuscular mycorrhizae at the species level by DNA barcoding and publish them on a data bank website. The results of this study will contribute to national biodiversity data on arbuscular mycorrhizae from Central Sulawesi.

Sampling was carried out in three different land uses in Central Sulawesi: monoculture cocoa plantations, cocoa agroforestry, and forest areas. Isolation of mycorrhizal spores using the pour filter method (Brundrett *et al.*, 1996), which has been modified according to INVAM (https://invam.ku.edu). DNA extraction and amplification by polymerase chain reaction (Edy *et al.*, 2022) were carried out at the Faculty of Agriculture, Tadulako University. DNA sequencing analysis is in process and will be carried out at IPB University.

In total, 25,502 spores from 21 different genera of AMF have been collected and identified (Table 1).

The species richness of a certain number of samples is based on the rarefaction curve. The rarefaction curve is a plot of the number of species against the number of samples. This curve is constructed by randomly resampling a set of N samples several times and then plotting the average number of species found in each sample. Generally, it grows rapidly initially (as the most common

species found) and then flattens slightly (as the rarest species remains in the sample). The rarefaction curve shows that forest areas have higher AMF richness than those found in cocoa agroforestry and cocoa plantations (Fig. 1).

References

- Brundrett MC, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and fgriculture. Canberra: Australian Centre for International Agricultural Research
- Edy N, Barus HN, Finkeldey R, Polle A (2022) Host plant richness and environment in tropical forest transformation systems shape arbuscular mycorrhizal fungal richness. Front. Plant Sci. 13: 1004097 doi: doi.org/10.3389/fpls.2022.1004097
- INVAM (2022) The International Collection of (Vesicular) Arbuscular Mycorrhizal Fungi

Table 1. The identified AMF from three different land uses; cocoa plantation, cocoa agroforestry, and forest.

No.	AMF genera	Cocoa plan- tation	Cocoa Agro- forestry	Forest
1	Acaulosporalaevis	364	366	543
2	Acausporalaevislike	626	335	784
3	Chetaspora	57	441	558
4	Claoroidelgomus	393	1,741	388
5	Racocetragregaria	723	9,453	3,116
6	Rhizopagus	77	752	1,138
7	Gigaspora MT-1	5	72	106
8	Gigaspora MT-2	84	36	52
9	Gigaspora MT-3	-	9	15
10	Funneliformis MT-1	30	383	324
11	Funneliformis MT-2	-	74	24
12	Funneliformis MT-3	-	46	38
13	Claoroidelgomuse	-	51	118
14	Diversisporagaea	-	18	18
15	Acaulospora MT-1	-	2	3
16	Acaulospora MT-2	-	21	69
17	Acaulospora MT-3	-	-	4
18	Dentiscutata	230	44	140
19	Sclerocystis	1	2	39
20	Rhizopagus	-	2	176
21	Racocetra	-	3	1,408
	Total	2,590	13,851	9,061
	%	10.16	54.31	35.53

Figure 1. Rarefaction curves of arbuscular mycorrhizal richness in cocoa plantations (cocoa), cocoa agroforestry (agroforestry), and forest areas (forest)

CRC 990 Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)

Funded by

Deutsche Forschungsgemeinschaft German Research Foundation