
TrustMeter: A Trust Assessment Scheme for
Collaborative Privacy Mechanisms in

Participatory Sensing Applications
Delphine Christin∗†, Daniel Rodriguez Pons-Sorolla‡, Matthias Hollick‡, Salil S. Kanhere§

∗ Institute of Computer Science IV, University of Bonn, Bonn, Germany, † Fraunhofer FKIE, Wachtberg, Germany
‡Secure Mobile Networking Lab, Technische Universität Darmstadt, Darmstadt, Germany

§School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
Emails: christin@cs.uni-bonn.de, mhollick@seemoo.tu-darmstadt.de, salilk@cse.unsw.edu.au

Abstract—In typical participatory sensing applications, mobile
devices record a variety of sensor readings (e.g., sound samples
and accelerometer data), which are tagged with spatiotemporal
information and uploaded to an application server. The collection
of detailed location data reveal insights about the users’ where-
abouts and daily routines, therefore seriously compromising
their privacy. Users can mutually preserve their privacy by
opportunistically exchanging sensor readings during physical
meetings, thus breaking the link between the collected data
and their permanent identities. The success of this procedure
depends on the collaboration of all participating users. Our paper
proposes a scheme called TrustMeter to assess the individual
user contribution to this privacy protection mechanism. Based on
peer-based ratings, our system attributes trust levels to each user
allowing to readily identify and quarantine malicious users. We
investigate the TrustMeters performance under different attacks
by means of extensive simulations, and show that it succeeds in
quarantining malicious users in most analyzed scenarios.

I. INTRODUCTION

In recent years, mobile phones have been leveraged as
sensing platforms due to the plethora of on-board sensors,
wireless technologies, and complex processing capabilities.
These features have contributed to the emergence of a myriad
of participatory sensing applications, in which volunteers
collect sensor readings from the surrounding environment in
unprecedented quantity using their mobile phones. In virtually
all participatory sensing applications, the sensor readings are
stamped with time and location coordinates that define the
context of their collection [1]. Without any protection mech-
anisms, these contextual data can leak privacy-sensitive user
information out, revealing routinely visited locations, place of
residence and work, etc. Mechanisms preserving user location
privacy are hence mandatory to mitigate these privacy threats.

Most of the existing privacy-preserving schemes in partici-
patory sensing rely either on the application used or a trusted
third party [1]. In contrast, our collaborative path-hiding
mechanism presented in [2] proposes that users mutually
preserve their privacy in a decentralized fashion. Inspired from
mix networks [3], users exchange previously collected sensor
readings when they physically encounter each other. The
jumbled sensor readings are then uploaded to the application
server. Swapping a subset of the data samples removes the

association between the sensor readings and the identity of the
users who collected them. The sensor readings no longer reveal
the actual paths followed by each user, but jumbled paths
instead. However, malicious users may attempt to tamper with
the normal operation of the swap mechanism, e.g., dropping
exchanged data. This might lead to a total failure of the
reporting mechanism and thus of the application. To overcome
these threats, we make the following contributions:

1) We propose TrustMeter that assesses the behavior of
users in collaborative privacy mechanisms. Malicious
users are identified based on their low trust levels and
subsequently excluded from the data jumbling process.

2) We implement the TrustMeter scheme in the ONE
simulator [4] and investigate its performance by means
of thorough simulations. The analysis of various attack
scenarios shows that TrustMeter identifies most mali-
cious users after only few exchanges.

Our paper is structured as follows. In Sec. II, we present
our assumptions and models, before describing TrustMeter in
Sec. III. We assess its performance in identifying attackers in
Sec. IV and discuss its robustness against threats to reputation
in Sec. V. Finally, we survey related work in Sec. VI, before
concluding this paper in Sec. VII.

II. SYSTEM AND THREAT MODELS

We first describe our system and threat models. In particular,
we provide an overview of the concept of collaborative path
hiding, which we introduced in [2] and serves as the sample
application to demonstrate the efficacy of our scheme.

A. System Model

We assume participatory sensing applications without real-
time constraints for data delivery. Mobile devices automati-
cally collect sensor readings. Each sensor reading s is stamped
with the collection time t and location information l forming
a triplet (t, l, s). Instead of directly reporting the triplets to the
application server, the mobile devices leverage the collabora-
tive path-hiding concept. This concept introduced in [2] aims
at breaking the association between the spatiotemporal context
(i.e., time and location) at which the sensor readings were

Delphine Christin, Daniel Rodriguez Pons-Sorolla, Matthias Hollick, Salil S. Kanhere: TrustMeter: A Trust 
Assessment Scheme for Collaborative Privacy Mechanisms in Participatory Sensing Applications. In: 9th IEEE 
International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), p. 1-6, 
April 2014.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely 
dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the 
authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood 
that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These 
works may not be reposted without the explicit permission of the copyright holder. 



taken, and the user identity. This is achieved by physically
exchanging triplets between users in an opportunistic fashion.
The mobile devices can exchange triplets according to one
of the following exchange strategies: (1) realistic strategy:
users exchange the entire set of collected/exchanged triplets
with a certain probability, (2) random-unfair strategy: each
user independently and randomly determines the number of
triplets to exchange, (3) random-fair strategy: users agree on
a common number of triplets to exchange at each meeting.
Each user periodically uploads a combination of the exchanged
triplets and their own collected triplets to the server. The server
runs a function, such as applied in [7], that identifies and
discards erroneous triplets. Based on this function, the server
attributes a reputation value to each user, which is later used
to weight her results in the computation of the application
summaries.

B. Threat Model

As an artifact of the collaborative nature of the path-hiding
mechanism, users can become adversaries. Malicious users can
attempt to breach other users’ privacy by directly accessing
the information included in the exchanged triplets. They can
also either drop exchanged triplets or create false triplets to
exchange in order to alter the results consolidated at the server
side, and perturb the function of the collaborative path-hiding
mechanism. In what follows, we especially focus on these
adversaries. We refer to malicious users who neither exchange
nor report triplets from other users as droppers, and to users
who create falsified triplets as spammers.

We further assume curious-but-honest application adminis-
trators who attempt to passively breach the participant privacy,
but run the system normally and faithfully. They, however,
do not launch active attacks (such as collusions with users
or reputation manipulation) to obtain further information.
Note that we have analyzed the administrators’ capabilities
in identifying exchanged from original triplets in [5].

Our adversaries follow the Dolev-Yao threat model [6],
i.e., they are able to listen to all communication, fabricate,
replay, and destroy messages. However, they are not able to
compromise cryptographic mechanisms.

III. TRUSTMETER ARCHITECTURE

TrustMeter relies on the building blocks depicted in Fig. 1
to identify and quarantine malicious clients (see Sec. II-B). In
what follows, we assume that all clients have a unique client
ID and each party has a public/private key pair.

A. Overview

Each client periodically transmits the triplets to the server.
At each transmission, the server disseminates a table contain-
ing the trust level of all users. The trust level is computed
by the server based on the users’ reports. When a client
encounters another client, the two entities first examine the
trust level of the opposite party provided by the server. Only
if both clients are not rated as untrusted, they initiate an
exchange using one of the three strategies (cf. Sec. II-A).

Packet 
creation 

Triplets Sensing 
function 

collected
triplets

triplets to  
exchange transmitted 

triplets

received
triplets

Application server 

reported triplets

Triplet 
reporting 

Triplet 
processing 

reported
triplet IDs

Reputation 
computation 

client IDs, trust levels

Experience 
reporting 

Trust level 
assessment 

client IDs, # handed/received 
triplets, # delivered triplets

# transmitted triplets

Received
triplets 

triplets to
report 

Client 

Client 

Fig. 1. Overview of the TrustMeter architecture

B. Underlying Mechanisms

1) Preparation and Exchange of Triplets: After having
verified the trustworthiness of the opposite party, each client
individually encrypts the triplets using the server’s public key
in order to prevent other clients from accessing its content.
For each triplet, the client generates a unique triplet ID by
concatenating (1) its client ID, (2) the triplet timestamp,
and (3) a random number. It then computes a one-way hash
function of the result. Other mechanisms to generate unique
triplet IDs can however be used without loss of generality.
Before exchanging these triplets, the client stores their IDs and
the ID of its exchange partner. It also sets a delivery timeout
specific to the exchanged triplets. If these triplets do not reach
the server before the timeout expiration, the clients consider
them as lost and exchange them again.

2) Reporting of Triplets: When reporting triplets to the
server, clients track if their triplets have been delivered to the
server and report their experience with other clients as follows.

a) Tracking of Triplets: The clients request the list of
the triplet IDs delivered to the server since their last connec-
tion. Based on this list, the clients determine which triplets
have been successfully delivered and remove them from their
internal storage. For the remaining triplets, the clients wait
until the expiration of the timeout to retransmit them. Note
that clients cannot directly request the IDs of interest, since
the server would establish a link between the reported triplets
and the identity of the client having collected them.

b) Experience Reporting: The clients report their expe-
rience with all exchange partners by compiling statistics for
each pair-wise exchange. These statistics include the IDs of the
two entities involved, the number of triplet exchanges in both
directions, and the number of triplets delivered to the server.
Note that neither the IDs of the exchanged triplets nor the
fraction of own collected triplets are disclosed to the server.

3) Reputation Computation and Trust Assessment: Based
on the reported triplets and experiences, the server computes
the reputation score and derives the associated trust level
for each client. To this end, we introduce two reputation
scores, R and R′. R measures the clients’ participation based
on the numbers of exchanged and delivered triplets, and
hence provides insights about potential dropping behavior. In



contrast, R′ identifies potential spamming behavior based on
the reported triplets. For each new client, the server initializes
R with R0 and R′ with R′0 in order to allow new clients to
participate in exchanges with already active clients.
R is recursively computed according to Eq. 1, which cor-

responds to an exponential moving average. R ∈ [0,100] and
δ is the ratio of the number of delivered triplets to the total
number of exchanged triplets. The lower the value of δ, the
higher the probability that the client has dropped packets.

Rn+1 = Rn +
100 · δ −Rn

4
(1)

For R′, the server can detect falsified triplets referred to as
spam (see Sec. II-B). When it happens, the server flags the
client having reported these triplets as well as its exchange
partners. The server computes two metrics as indicator of
spamming behavior: γ1 is the ratio of the number of flagged
exchanges over the total number of exchanges and γ2 is the
ratio of the number of reported triplets identified as spam over
the total number of reported triplets. The higher γ1 and γ2,
the higher the probability that the clients have injected spam.
Based on these metrics, the server computes R(1), R(2), R(3)

∈ [0,100] as follows, γ being the mean of γ1 and γ2.

R
(1)
n+1 = R

(1)
n +

100 · (1− γ1)−R(1)
n

4
(2)

R
(2)
n+1 = R

(2)
n +

100 · (1− γ2)−R(2)
n

4
(3)

R
(3)
n+1 = R

(3)
n +

100 · (1− γ)−R(3)
n

4
(4)

Next, the server computes R′ according to Alg. 1. λU
and λT are the reputation thresholds used by the server to
classify the clients into the categories introduced in Tab. I. The
rationale behind this algorithm is to first identify clients that
are clearly malicious (i.e., R(3) < λU ) or honest (i.e., R(3) >
λT ). Then, the classification is refined for clients that are still
considered as indefinite. Steps 2 to 3 in Alg. 1 target the last
honest clients based on the value of R(2), while steps 4 to 5
focus on the last malicious clients based on the value of R(1).
Finally, the server selects the minimum of Rn+1 and R′n+1 as
reputation value and associates the corresponding trust level to
the client according to Tab. I. Choosing the minimum prevents
attackers from masking spamming behavior by well behaving
in terms of dropping and vice versa.

4) Dissemination of Trust Levels: When a client reports
triplets to the server, it obtains an update of the trust levels
of all other clients. Clients leverage these levels to decide to
exchange triplets with new encountered clients as introduced
in Section III-B1.

IV. PERFORMANCE ANALYSIS

We next analyze the performance of TrustMeter in identi-
fying malicious behaviors (i.e., spamming and dropping) by
means of extensive simulations.

Algorithm 1 Computation of R′

1: if λU ≤ R(3) ≤ λT and R(2) > λT ) then
2: R′ ← R(2)

3: else if (λU ≤ R(3) ≤ λT and R(1) < λU ) then
4: R′ ← R(1)

5: else
6: R′ ← R(3)

7: end if
8: return R′

TABLE I
MAPPING OF TRUST LEVELS WITH REPUTATION VALUES

Trust level Reputation range
Untrusted 0 ≤ min(R,R′) < λU
Indefinite λU ≤ min(R,R′) ≤ λT
Trusted λT < min(R,R′) ≤ 100

A. Simulation Setup and Method

We have implemented the TrustMeter scheme in the ONE
simulator [4]. We consider a constant population of 100
clients over 24 hours for each simulation. The clients follow a
pedestrian movement model and generate a new triplet every
150 s. They report the triplets to the server on a hourly basis.
We assume an ideal communication environment and a com-
munication radius of 10 m consistent with typical Bluetooth
communication range. We further assume that clients exchange
triplets only with clients rated as indefinite or trusted using
one of the following strategies: (1) realistic, (2) random-unfair,
and (3) random-fair. We set the system parameters as follows:
(1) α= 1

4 , (2) R0=R′0=50, (3) λU=30 and λT =70, and (4)
timeout to two hours. Note that the selection of these values
is extensively discussed in [8].

As performance metric, we use the Matthews Correlation
Coefficient (MCC) defined as:

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(5)

where TP is the number of true positives (attackers identified
as attackers), TN is the number of true negatives (honest clients
identified as such), FP is the number of false positives (honest
clients identified as attackers) and FN the number of false
negatives (attackers identified as honest clients). We consider
attackers and honest clients that are classified as indefinite as
false negatives and false positives, respectively.

The MCC ranges between -1 and +1. A value of +1 indicates
a perfect identification of both attackers and honest clients,
while a value of -1 indicates a total failure in identifying
both categories. We repeat each simulation 50 times using
different random seeds to model different movement patterns.
We present the averaged results in the next sections.

B. Droppers

We first investigate the TrustMeter performance in identify-
ing different percentages of droppers and dropping rates.

1) Percentage of Droppers: Fig. 2 represents the temporal
evolution of the MCC for different percentages of droppers
dropping all triplets. We can observe an initial bootstrapping
phase followed by a steady state. The initial phase provide



-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% droppers 15% droppers 
30% droppers 50% droppers 
70% droppers 85% droppers 
95% droppers 

(a) Realistic strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% droppers 15% droppers 
30% droppers 50% droppers 
70% droppers 85% droppers 
95% droppers 

(b) Random-unfair strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% droppers 15% droppers 
30% droppers 50% droppers 
70% droppers 85% droppers 
95% droppers 

(c) Random-fair strategy

Fig. 2. MCC for different percentages of droppers and exchange strategies over time

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% dropping 15% dropping 
30% dropping 50% dropping 
70% dropping 85% dropping 
95% dropping 

(a) Realistic strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% dropping 15% dropping 
30% dropping 50% dropping 
70% dropping 85% dropping 
95% dropping 

(b) Random-unfair strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% dropping 15% dropping 
30% dropping 50% dropping 
70% dropping 85% dropping 
95% dropping 

(c) Random-fair strategy

Fig. 3. MCC for different dropping rates and exchange strategies over time

insights about the sensitivity of the scheme, as each triplet
significantly impacts the reputation of the clients at the be-
ginning. After this phase, the system stabilizes and assigns a
definitive trust level to the client. This process takes some time
since the trust levels are derived from observations of the past
client behavior.

Overall, the lower the percentage of droppers, the faster
their identification, as all clients’ reputation is affected by the
dropping action. The fewer droppers, the greater increase in
reputation, allowing honest clients to reach faster the trusted
level. The identification of droppers is faster for the random-
fair strategy than for the random-unfair and realistic strategies.
Because clients exchange fewer triplets with the random-fair
strategy, the impact of triplet drop on the reputation of honest
clients is lower than with the other strategies.

2) Dropping Rate: Next, we assume a population of 90
honest clients and ten droppers and vary the dropping rate on
the performance. Fig. 3 shows that TrustMeter performs poorly
in distinguishing honest clients from droppers for dropping
rates below or equal to 30%. For these dropping rates, there is
a lower packet drop. This slows down the reputation reduction
process, and it takes longer labeling a dropper as untrusted.

However, the performance improves for 50% and above
dropping rates, with MCC values around 0.6 for the realistic
strategy (see Fig. 3(a)), 0.4 for the random-unfair strategy (see
Fig. 3(b)) and 0.2 for the random-fair strategy (see Fig. 3(c)).
For dropping rates over 70%, TrustMeter reaches perfect
identification. As previously, the dropper identification is faster
when the clients apply the random-fair strategy compared to
the other exchange strategies.

C. Spammers

We analyze the performance of TrustMeter in identifying
spammers under the same attack scenarios as in Section IV-B.

1) Percentage of Spammers: Fig. 4 illustrates the temporal
evolution of the MCC for different spammer percentages. For
all strategies, the performance of TrustMeter improves with the
number of spammers until reaching the best performance for
50% of spammers. The lower the number of spammers, the
higher the probability that they exchange spam with honest
clients. As a result, the reputation of honest clients decreases,
leading to their incorrect classification as indefinite. Moreover,
the reduction in reputation increases with the number of
exchanged spam triplets. Hence, TrustMeter performs better
when the clients apply the random-fair strategy for up to 50%
of spammers. The probability that spammers exchange spam
with other spammers increases with the number of spammers.
Their reputation hence diminishes, leading to their correct
identification. However, the performance of TrustMeter de-
creases from 50% of spammers. Since the amount of injected
spam increases, the probability that honest clients relay this
spam increases. Simultaneously, the impact of the exchange
strategy decreases when the number of spammers increases,
as the probability to exchange spam increases.

2) Spamming Rate: Fig. 5(a) shows that TrustMeter per-
forms worse in identifying spammers when clients apply the
realistic strategy, as clients exchange more triplets than with
the other strategies. Therefore, the reputation of honest clients
getting spam decreases more rapidly, leading to their incorrect
categorization. However, when honest users are identified as
untrusted, they are temporarily quarantined and can only
upload either previously exchanged triplets or their own ones.
If the uploaded triplets are correct, clients rapidly regain
reputation, thus changing their trust level and being allowed to
exchange triplets again. Otherwise, the clients are maintained
in quarantine. The performance of TrustMeter improves for the
random-unfair strategy due to a lower amount of exchanged
triplets and hence, a lower impact on their reputation if the



-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% spammers 15% spammers 
30% spammers 50% spammers 
70% spammers 85% spammers 
95% spammers 

(a) Realistic strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% spammers 15% spammers 
30% spammers 50% spammers 
70% spammers 85% spammers 
95% spammers 

(b) Random-unfair strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% spammers 15% spammers 
30% spammers 50% spammers 
70% spammers 85% spammers 
95% spammers 

(c) Random-fair strategy

Fig. 4. MCC for different percentages of spammers and exchange strategies over time

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% spam 15% spam 
30% spam 50% spam 
70% spam 85% spam 
95% spam 

(a) Realistic strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% spam 15% spam 
30% spam 50% spam 
70% spam 85% spam 
95% spam 

(b) Random-unfair strategy

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 12000 24000 36000 48000 60000 72000 84000 

M
C

C
 

Time (s) 

5% spam 15% spam 
30% spam 50% spam 
70% spam 85% spam 
95% spam 

(c) Random-fair strategy

Fig. 5. MCC for different spamming rates and exchange strategies over time

triplets are spam. TrustMeter shows the best results for the
random-fair strategy with up to a MCC value of 0.85 at the
end of the simulation for 100% spamming (cf. Fig. 5(c)).

3) Traffic Overhead: We finally consider 100 clients apply-
ing the realistic exchange strategy and observe the distribution
of the traffic between the different classes. For sensor readings
with a size between 100 bytes to 1 kilobytes, the lists of
triplets IDs cause 80% of the total traffic. In comparison, the
exchanged triplets and the reputation values only represent
15% and 2% of the traffic, respectively. This is difference is
due to the length of the triplet IDs that are currently 32 bytes
long using a SHA-256 hash function. The overhead generated
by the triplet retransmissions increases with the number of
droppers, but remains under 4% of the total traffic even in the
worst scenario where all clients drop all triplets. For triplets
of larger sizes (around 16 kilobytes [1]), the overhead caused
by the lists of triplets IDs represents only 15% of the traffic,
whereas the exchange of triplets generates 80% of the traffic.

V. DISCUSSIONS

We discuss the resilience of TrustMeter against the follow-
ing attacks based on the threat model introduced in Sec. II-B.

A. Reputation Manipulation

Malicious clients can attempt to alter the computed rep-
utation stored at the server side. The server is, however,
protected against unauthorized access using standard crypto-
graphic primitives. As such, this attack cannot be launched.
Furthermore, malicious clients can try to report falsified in-
formation on behalf of others. Our scheme protects honest
clients against this attack by requesting clients to authenticate
with the server. Such an attack would only be successful if
malicious clients could access the private keys of the targeted
clients, which is beyond the scope of our attacker model.

Malicious clients can send falsified information to the server
about their exchanges in order to: (1) reduce other clients’
reputation, or (2) fraudulently increase their own reputation.
However, recall that all exchange partners provide the ex-
change statistics to the server. As a result, the server can verify
that the provided information is the same for both exchange
partners. If the figures do not match, the server assumes that
one of the exchange partners is providing false information
and identify it after several non-matching exchanges.

Another more sophisticated attack is the collusion of ma-
licious clients that may agree on corroborating falsified in-
formation to mutually increase their reputation. Since the
server maintains a list of exchange partners for each client,
an abnormal high-frequency exchange rate between the same
clients will not go unnoticed. As a result, the impact of such
attacks remains limited. In order to still diminish the effect
of this attack, the server can take into account the number
of exchange partners in the reputation computation. The more
exchange partners, the greater the increase in reputation.

B. Privacy Leaks and Reporting Behaviors

Based on the exchange statistics, the server may, e.g., infer
that reported triplets come from either one or the other users if
those had only one exchange between two reports. While this
insight is not sufficient to definitely link the triplets to their
sources, the probability of a correct identification increases if
the server is able to timely follow the different exchanges.
To reduce this threat, several measures can be applied: (1)
multiple exchanges should happen before reporting the triplets,
(2) the number of exchanged triplets should be the same for
both partners (i.e, using the random-fair strategy), and (3)
the users should exchange enough triplets before reporting
them. A thorough analysis of the impact of these measures
is considered as future work.



C. Replay and Sybil Attacks
Under normal operating conditions, triplet retransmissions

are permitted after expiration of the delivery timeout. However,
malicious clients can abuse this feature in order to increase
their reputation by replaying triplets. The server receiving the
same triplets at abnormal rates considers them as spam and
utilizes the mechanisms described in Sec. III-B3 to identify
the attackers. Moreover, TrustMeter does not prevent attackers
from adopting multiple identities. However, attackers need to
gain reputation first before effectively launching attacks.

VI. RELATED WORK

Reputation systems have been presented in [7], [9] and [10].
They however concentrate on evaluating the quality of the
reported sensor readings. While we integrate such mechanisms
to identify spammers, additional mechanisms are necessary to
assess the contribution of clients in the collaborative path-
hiding mechanism. Therefore, we focus on solutions tailored
to delay tolerant and opportunistic networks [11] sharing the
more similarities with our system model (see Sec. II-A).

Existing solutions for opportunistic networks can be classi-
fied into two categories, depending on the nature of the infor-
mation used to compute the levels of trust. For example, [12],
[13], and [14] leverage social relationships, while [15] and [16]
rely on the encounters between users. In particular, users
explicitly indicate their degree of trust for other users based
on their social relationships and build a web of trust in [13].
However, leveraging social relationships limits the number of
exchange partners to a subset of users sharing strong social
links and hence, restrains the efficacy of the collaborative
path-hiding scheme. Another model proposed in [14] combines
information about social relationships and quality of service
metrics. However, this model is designed to ensure the delivery
of packets between clients using the shortest path. In our
approach, the destination of the triplets is always the server
and clients are encouraged to exchange triplets with other users
before reporting them in order to increase the jumbling and
hence, improve the mutual privacy protection of the clients.

Models presented in [15] and [16] determine the trust
relationships between users based on their encounters. In [15],
users generate a shared secret at each encounter. The shared
secret is then used at the next encounter to prove that a
previous encounter between the same users already happened.
Thus, the trust relationship between users strengthens at each
exchange of shared secret. In comparison, the model proposed
in [16] analyzes the location of the users over a long period to
determine similar behaviors. Users exhibiting similar behavior
are assumed to share stronger trust relationships than those
showing different behavior. Relying only on encounters is
insufficient in our scenario, since malicious users can visit
densely populated locations in order to rapidly build strong
trust relationships, before launching dropping attacks.

VII. CONCLUSIONS

We have presented TrustMeter, a system to assess the be-
havior of users in collaborative privacy protection mechanisms.

We have examined its performance in identifying attackers by
means of extensive simulations. The results show that Trust-
Meter performs well in identifying droppers and spammers
despite the multi-hop nature of the scheme. By leveraging
TrustMeter, the latency incurred by malicious users is reduced
resulting from both their identification and quarantine.

ACKNOWLEDGMENT

This work was supported by CASED (www.cased.de). The
paper was written while D. Christin was working at TU
Darmstadt. Our thanks go to A. Garcı́a Bouso for her feedback.

REFERENCES

[1] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, “A Survey
on Privacy in Mobile Participatory Sensing Applications,” Journal of
Systems and Software, vol. 84, no. 11, 2011.

[2] D. Christin, J. Guillemet, A. Reinhardt, M. Hollick, and S. S. Kanhere,
“Privacy-preserving Collaborative Path Hiding for Participatory Sensing
Applications,” in Proc. of the 8th IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS), 2011.

[3] D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms,” Communications of the ACM, vol. 24, no. 2, 1981.

[4] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN
Protocol Evaluation,” in Proc. of the 2nd International Conference on
Simulation Tools and Techniques (Simutools), 2009.

[5] D. Christin, A. Reinhardt, and M. Hollick, “On the Efficiency of Privacy-
Preserving Path Hiding for Mobile Sensing Applications,” in Proc. of
the 38th IEEE Conference on Local Computer Networks (LCN), 2013,

[6] D. Dolev and A. C. Yao, “On the Security of Public Key Protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, 1983.

[7] K. L. Huang, S. S. Kanhere, and W. Hu, “Are you Contributing
Trustworthy Data?: The Case for a Reputation System in Participatory
Sensing,” in Proc. of the 13th ACM International Conference on Model-
ing, Analysis, and Simulation of Wireless and Mobile Systems (MSWIM),
2010.

[8] D. Christin, D. Rodriguez Pons-Sorolla, S. S. Kanhere, and M. Hollick,
“TrustMeter: A Trust Assessment Scheme for Collaborative Privacy
Mechanisms in Participatory Sensing Applications—Extended Version,”
Technische Universität Darmstadt, Online: www.seemoo.de/dl/seemoo/
seemoo-tr-2012-02.pdf, Tech. Rep. TR-SEEMOO-2012-02, 2012.

[9] H. Yang, J. Zhang, and P. Roe, “Using Reputation Management in Par-
ticipatory Sensing for Data Classification,” Procedia Computer Science,
vol. 5, no. 0, pp. 190–197, 2011.

[10] D. Christin, C. Rosskopf, M. Hollick, L. A. Martucci, and S. S. Kan-
here, “IncogniSense: An Anonymity-preserving Reputation Framework
for Participatory Sensing Applications,” in Proc. of the 10th IEEE
International Conference on Pervasive Computing and Communications
(PerCom), 2012.

[11] L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta, “Opportunistic Net-
works: The Concept and Research Challenges in Privacy and Security,”
in Proc. of the International Workshop on Research Challenges in
Security and Privacy for Mobile and Wireless Networks (WSPWN), 2006.

[12] C. Boldrini, M. Conti, and A. Passarella, “Exploiting Users’ Social
Relations to Forward Data in Opportunistic Networks: The HiBOp
Solution,” Pervasive and Mobile Computing, vol. 4, no. 5, 2008.

[13] S. Trifunovic, F. Legendre, and C. Anastasiades, “Social Trust in
Opportunistic Networks,” in Proc. of the 29th IEEE Conference on
Computer Communications (INFOCOM), 2010.

[14] I.-R. Chen, F. Bao, M. Chang, and J.-H. Cho, “Trust Management for
Encounter-Based Routing in Delay Tolerant Networks,” in Proc. of the
IEEE Global Telecommunications Conference (GLOBECOM), 2010.

[15] J. Manweiler, R. Scudellari, and L. P. Cox, “SMILE: Encounter-Based
Trust for Mobile Social Services,” in Proc. of the 16th ACM Conference
on Computer and Communications Security (CCS), 2009.

[16] U. Kumar, G. Thakur, and A. Helmy, “PROTECT: Proximity-Based
Trust-Advisor using Encounters for Mobile Societies,” in Proc. of
the 6th International Wireless Communications and Mobile Computing
Conference (IWCMC), 2010.




