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Abstract
Diese Arbeit handelt über die gleichzeitige Messung der assozierten Produktion von einze-
len Top-Quarks und Top-Quark-Paaren mit einem Z-Boson. Dafür werden nur Ereignisse
in Betracht gezogen, die trileptonische Endzustände haben. Des Weiteren wird in dieser
Arbeit ein künstliches Neuronales Netz benutzt, um die einzelnen Top-Quark und die Top-
Quark-Paare in Assoziation mit einem Z-Boson und die Untergrund Ereignisse voneinan-
der zu trennen, sodass die Unsicherheiten der Messung verringert werden. Die gemessene
Sensitivität für die Produktion von einzelnen Top-Quarks in Assoziation mit einem Z-
Boson beträgt dabei ±0.15 (stat.) +0.37

−0.16(syst.), wobei für die Produktion von Top-Quark-
Paaren in Assoziation mit einem Z-Boson die Sensitivität ±0.06 (stat.)± 0.03 (syst.) be-
trägt.

Abstract
This thesis deals with the simultaneous measurement of the single top quark and top
quark pair in association with a Z boson. Therefore, only events with trileptonic fi-
nal states are considered. Furthermore, an artificial neural network is used, in order
to separate the single top quark and top quark pair in association with a Z boson and
background events from each other, so that the uncertainties are decreased. The mea-
sured sensitivity for the production of single top quarks in association with a Z boson is
±0.15 (stat.) +0.37

−0.16(syst.), whereas for the top quark pairs in association with a Z boson,
the sensitivity is ±0.06 (stat.)± 0.03 (syst.).
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1 Introduction

Already since their childhood, people try to observe and understand, how nature and the
environment around them work. Let it be just the plate we lift and then drop, just to see
that it is accelerated downwards crashing into many pieces. In order to understand the
nature and why it behaves as it does, investigations, about what the universe is actually
made of, which properties these fundamental constituents have and how they interact
with each other, are made.

Particle physics deals with these questions and investigates the fundamental particles
and their interaction with each other. In order to study the properties of these particles
and their interactions, scattering experiments are used. The best theory, to describe the
physics of the elementary particles and their interactions, is currently the Standard Model
of elementary particle physics (SM).

The elementary particles within the SM, which are of particular interest for this the-
sis, is the top quark and the Z boson. This is due to the fact, that the tt̄Z and tZq

processes are sensitive to the coupling of the top quark to the Z boson. Furthermore, the
coupling of the top quark with the Z boson is interesting, because the third component of
the weak isospin can be extracted from this coupling. The third component of the weak
isospin is one of the fundamental parameter of the SM. Therefore, the sensitivity of the
tt̄Z and tZq processes are studied in this thesis.

However, the experimental challenge of measuring the production of tt̄Z and tZq is, to
disentangle the tt̄Z and tZq processes from each other. Therefore, in this thesis a neural
network is used, to separate and classify these two processes.
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2 The Standard Model of Particle
Physics

In today’s view, the world is made up of ’elementary particles’. The Standard Model
of particle physics (SM) describes the elementary particles and how they can interact
through the weak, strong, and electromagnetic force with each other. Furthermore, the
SM predicts finite cross sections and decay widths.

The interactions within the SM are based on the U(1)Y , SU(2)L and the SU(3)Colour
gauge groups. Here Y stands for the hyper charge and L stands for the left handed-
ness. The U(1)Y × SU(2)L group describes the electroweak interaction in context of the
electroweak unification [1–4]. Furthermore, the SU(3)Colour group describes the strong
interaction in the context of QCD [5, 6].

Figure 2.1: Elementary particles of the SM. The fermions are divided into two different
types: leptons which are indicated in green and quarks indicated in purple.
The bosons are divided into vector bosons, which are marked in red, and
scalar bosons in yellow.
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2 The Standard Model of Particle Physics

Moreover, these gauge groups give rise to the gauge bosons, from which then the physical
bosons originate as a superposition of the gauge bosons. The physical bosons are the force
carriers, which mediate the different forces between particles. W± and Z bosons mediate
the weak force, photons mediate the electromagnetic force and the gluons mediate the
strong force, which are represented in red in Figure 2.1. These bosons can only couple
to particles with the corresponding charge. For the strong interaction this charge is the
colour charge. For the electromagnetic interaction this is the electrical charge. The W±

bosons can only couple to left handed particles, whereas the Z boson can couple to left
and right handed particles, but with different coupling strength.

Furthermore, the twelve fermions are grouped into leptons and quarks. They are dis-
played in Figure 2.1 in green and red, respectively. The difference between quarks and
leptons is, that leptons do not carry colour charge while quarks do. Therefore, quarks can
interact with each other via the strong interaction and leptons can not.

Furthermore, the up type quarks, carrying an electrical charge of 2
3 e, are called up (u),

charm (c), and top (t). The down type quarks carry an electrical charge of −1
3 e and are

called down (d), strange (s), and bottom (b). Moreover, the down type leptons all have
an electrical charge of 1 e and are called electron (e), muon (µ) and tau (τ), whereas the
up type leptons carry no electrical charge and are called electron neutrino (νe), muon
neutrino (νµ) and tau neutrino (ντ ).

Lepton pairs as well as quark pairs, which are ordered in one column regarding Fig-
ure 2.1 belong to one generation. Within the generations, the lepton and quark pairs are
represented in their left handed weak isospin doublet. The third component of the weak
isospin is I3 = 1

2 for up-type quarks and I3 = −1
2 for down-type quarks. Moreover, while

all charged fermions can exist as right-handed singlets too, experiments [7] have shown
that neutrinos only exist as left-handed particles. Furthermore, the mass of the particles
increases with the generation.

Without the mechanism of electroweak symmetry breaking, all SM particles should be
massless. Nevertheless, non-zero masses were measured for all charged fermions and the Z
and W bosons. This could be solved, by introducing the Higgs mechanism [8–12]. There-
fore, massive particles are possible through the process of electroweak symmetry breaking.
Furthermore, the higgs mechanism gives rise to the physical Higgs boson, which is the
only scalar boson within the SM with spin 0.
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3 Top Quark

The top quark was discovered in 1995 by the DØ and CDF experiments [13, 14]. It is the
heaviest elementary particle within the SM. The top quark decays nearly in 100% of the
cases to a W boson and a b-quark, due to the suppression of the CKM matrix for other
decays [15, 16]. Therefore, the top decay is characterised by the W decay. The W can
decay leptonically W → `ν` or hadronically W → qq̄. The production of a top quark pair
or a single top with an additional Z boson is shown in the following.

3.1 tt̄Z and tZq Production

The most important properties of the top quark pair production in association with a Z
boson are explained. The leading order Feynman diagrams are shown in Figure 3.1. If
the Z boson decays into a lepton pair (here electron and muon), then the decay channel
of tt̄Z can be classified into three channels.
The dilepton channel for the tt̄ decay is characterised by two b jets, four leptons with
opposite signs and missing transverse energy, due to the two neutrinos.
The single lepton channel for the tt̄ decay is also characterised by two b jets, two further
quark jets, where the sum of the charges is equal to the charge of the W boson, three
leptons and missing transverse energy, due to the one neutrino.
The last channel for the tt̄ decay is the all-hadronic channel, which is also characterised
by two b jets, four quark jets and two leptons with opposite signs.

Moreover, the most important properties of the tZq production are explained. The lead-
ing order Feynman diagrams for the tZq production are shown in Figure 3.2. Assuming
that the Z boson decays into a lepton pair, then the tZq decay can be classified into two
different channels.
One channel is called the single lepton channel, which is characterised by one b jet, one
further quark jet, three leptons and missing transverse energy due to the neutrino.
Then there is the all hadronic channel, characterised by one b jet, three quark jets and
two leptons with opposite signs.
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3 Top Quark

Furthermore in the tt̄Z and tZq decay channel atleast one lepton pair with opposite sign
and same flavour is included, due to the Z boson decaying into two leptons.

In Figure 3.2 on the bottom right and in Figure 3.1 on the right side and the bottom left
side, it can be seen, that tt̄Z as well as tZq are sensitive to the weak coupling of the Z
boson to the top quark, as the coupling of the Z boson is proportional to ∝ vf−afγ5, with
vf = I3f − 2Qf sin2 (θW ) and af = I3f . Here f is the fermion type, Qf is the electrical
charge of the fermion f , θW the Weinberg angle and I3f is the third component of the
weak isospin. Therefore, by measuring the production cross section of tt̄Z and tZq, one
can probe the third component of the weak isospin of the top quark. The measurement
of this parameter is of particular interest, because it is a fundamental parameter of the
SM.

Figure 3.1: Leading order Feynman diagrams for the tt̄Z production. The diagram on
the upper left belongs to the initial state radiation and the others to the
final state radiation. Only the final state radiations are sensitive to the top
- Z coupling.
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3 Top Quark

Figure 3.2: Leading order Feynman diagrams for the tZq production. Only the bottom
right process is sensitive to the top - Z coupling
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4 The ATLAS Experiment

The Lhc is a two ring superconducting hadron accelerator and collider with a centre of
mass energy of

√
s = 13 TeV for the pp collisions with a circumference of 26.7 km. Fur-

thermore, Atlas [17] is one of the experiments at the LHC. A cut-away view is shown in
Figure 4.1.

The Inner Detector (ID) is immersed in a 2 T magnetic field, which is generated by
the superconducting solenoid surrounding the ID cavity. In the ID the trajectories of the
particles can be measured through the semiconductor pixels, strip detectors and the use of
straw detectors, which cover the region of |η| < 2.5, with η = − ln

(
tan Θ

2

)
. Here the polar

angle Θ describes the angle from the beam axis. Due to the magnetic field the charged
particles trajectories are bent. By measuring the curvature, the transverse momentum pT

is determined. Furthermore, the tracks are used to reconstruct primary and secondary
vertices, which are then used for b-tagging.

Figure 4.1: Cut-away view of the Atlas detector, © 2022 Cern.
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4 The ATLAS Experiment

The calorimeters are surrounded by three large superconducting toroids, arranged in an
eight fold azimuthal symmetry. The electromagnetic and the hadronic calorimeters of
Atlas are sampling calorimeters.

The electromagnetic calorimeter is a lead liquid argon (LAr) calorimeter. The electro-
magnetic calorimeter covers the region 1.375 < |η| < 2.5 and 2.5 < |η| < 3.5. It is used
to measure mainly the energy of electrons and photons, by measuring the energy loss
fragmentation at each active layer of the sampling calorimeter.

The hadronic calorimeter consists of a LAr sampling calorimeter, which is surrounded
by layers of steel and plastic scintillating tiles. The hadronic calorimeter covers the region
|η| < 4.9. It is used to measure mainly the energy of the hadrons, analogue to the energy
measurement of the electrons and photons.

The muon detector is based on the magnetic deflection of muon tracks in the large super-
conducting air-core-toroid magnets with tracking chambers. The muon detector covers
the region |η| < 2.7. Therefore, the trajectory and also its momentum is measured. Since
the muon is a minimal ionising particle, it can not be stopped, neither by the electro-
magnetic, nor by the hadronic calorimeter. Therefore, the muon chamber is needed and
located at the outermost layer, to improve the muon identification.
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5 Object Reconstruction and Signal
Region

In order to analyse the physics collision data, the kinematic reconstruction of particles is
necessary, because the final states characterises these processes. Furthermore, the recon-
struction of the kinematic properties of the particles is necessary to extract distributions,
which are sensitive to the previously mentioned SM parameters. In this chapter, the ob-
ject reconstruction is discussed.

The primary vertex is identified as the point, whose sum of associated tracks has the
highest transverse momenta and has in total a pT > 400 MeV [18]. The primary vertex is
used for the reconstruction of the leptons or the missing transverse energy Emiss

T .

Electrons are reconstructed by matching the energy measured in the EM calorimeter
with the reconstructed tracks from the inner detector. Moreover, they have to be within
the regions 0 < |η| < 1.37 and 1.57 < |η| < 2.47, satisfying the condition of ET > 20 GeV
and being isolated. At last a likelihood-based discriminant, using a set of variables, is
constructed. This discriminant is used to improve the electron identification, which is
further described in [19].

Muons are reconstructed by matching the track from the inner detector with that from
the muon detector. Furthermore, they have to be in the region |η| < 2.5 and have to
have pT > 20 GeV. In order to decrease misidentification rates of muons, requirements
described in [20] are applied.

Jets are reconstructed by using the anti-kT algorithm with a cone width of 0.4 [21].
Moreover, the reconstructed jets have to satisfy the condition pT > 35 GeV and have to
be in the region |η| < 4.5. In order to decrease the jets, which come from pileup effects,
a likelihood-based discriminant called jet vertex tagger is introduced, on which a further
selection criterion is set if the jet has pT < 120 GeV and |η| < 2.5 [22]. For the identifica-
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5 Object Reconstruction and Signal Region

tion of b-jets, a multivariate algorithm called DL1r b-tagging algorithm is used [23].

The missing transverse energy is reconstructed as the negative vector sum of the trans-
verse momenta of all reconstructed objects [24].

In the following, the production of tZq and tt̄Z is analysed. Therefore a signal region is
constructed, in order to filter the background processes, while at the same time, trying to
preserve as many signal processes as possible. Therefore the channel, where the Z boson
decays into two leptons and exactly one W boson, which originated from a top decay and
decays leptonically, is taken into consideration. Hence in total three leptons (trileptonic)
are expected. Moreover, further cuts are applied, regarding the reconstructed objects, in
order to construct the regions with purer tt̄Z and tZq contribution. This region is defined
as the SR-3` region, whose event selections are shown in Table 5.1.

Here mll is the minimal invariant mass of a lepton pair and hasOSSFPair describes,
if there is a lepton pair with opposite charge and same flavor. Moreover, tight leptons
refers to the reconstructed leptons, but with tight conditions on the likelihood based
discriminant [25]. The event yields for the SR-3` region is shown in Table 5.2.

Table 5.1: Requirements for the trileptonic signal region.
Selection requirement SR-3`

Lepton & tight lepton multiplicity = 3

Z boson candidates multiplicity = 1

Jet multiplicity ≥ 2

|mz1 - mZ| ≤ 10GeV

hasOSSFPair
√

minimal mll > 12GeV

Leading lepton pT > 25GeV

Sub-leading lepton pT > 15GeV

Sub-Sub-leading lepton pT > 10GeV
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5 Object Reconstruction and Signal Region

Table 5.2: Event yields for the tZq, tt̄Z and background region.
Event background region

tZq 243.6± 1.2

tWZ 74.0± 0.2

tt̄Z 782.1± 1.8

tt̄(X) 25.6± 0.4

WZl 350.8± 2.1

WZc 490.2± 2.3

WZb 240.3± 1.4

V V (V ) 175.0± 2.1

NPL 476.2± 17.5

Total 2857.6± 18.1
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6 Deep Neural Network

In this thesis, the sensitivity of the tt̄Z and tZq production are measured. This is done by
a simultaneous tt̄Z and tZq binned likelihood fit. In order to decrease the uncertainties of
the fitted parameter, tt̄Z, tZq, and background events need to be separated. Therefore,
a multi class deep neural network is used.

A deep neural network (DNN) consists of many layers, represented as one column of
circles in figure 6.1. The circles are called neurons or nodes. The first layer is called the
input layer, where one node represents one input parameter. Therefore the number of
nodes at the input layer correspond to the number of input parameters. Furthermore,
these input parameters represent the properties of the objects, which are used for clas-
sification. Moreover, the nodes of the last layer represent the output and are therefore
called output layer. As the number of nodes in the output layer depends on the number
of outputs, for a binary output, only one node is needed. If there are more than two
outputs, the number of outputs will be equal to the number of nodes. Moreover, the
layers between the input and output layer are called hidden layers. A sketch of the DNN
is shown in Figure 6.1.

Figure 6.1: Sketch of a deep neural network with 3 nodes as the input and output layer
and 6 nodes in each of the two hidden layers.
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6 Deep Neural Network

Every node of each layer takes the value of each node of the previous layer, which can
be represented as a vector ~x. Then for each node, ~x is multiplied component wise by
the weight vector ~w. Each component of the weight vector describes the connection to
the respective node of the previous layers. Then the weighted vector ~xweight needs to be
transformed into a scalar with the transformation T : Rn → R, ~xweight 7→ ~x · ~w, which is
then used as an input variable for a function f : R → R, ~x 7→ f(~x · ~w + b). Here n is
the number of nodes in the previous layer and b is the bias which represents an offset.
Moreover, f is an activation function, which determines how the weighted sum of ~x with
a bias is transformed into the node value. This is how the input values are propagated
through the layers, until the output layer is reached. The values of the nodes of the output
layer are not weighted, and take directly the vector ~x, which represents the previous layer
and uses this as input for its activation function f : Rn → R, ~x 7→ f(~x).

In order to quantify the "goodness" of the DNN, a loss function is introduced. Using
this loss function, the DNN can then be trained, by adjusting the weights and biases
from the former layers, so that the loss function is optimised. These adjustments of the
weights and biases are done by the method called backpropagation [26]. The value of the
loss function therefore represents, how reliable the DNN classifies the objects, based on
their input parameters.

Further, the DNN also needs data on which it can train and learn how the input val-
ues of the different objects differ, in order to classify them. Nevertheless, a problem of
DNNs can be, that they overfit the data, which means, that they have a strong predictive
power on the data the DNN trained on, but perform worse on any other data. In order
to use the whole data, to train the DNN and not just a sub set, the k-fold method is
introduced. Therefore, the whole data set is divided into k equal and statistically inde-
pendent subsets, where only k-1 sets are identified as the training set and the last one is
identified as the test set. From the training set, p percent are set aside and used as the
validation set. Therefore, only 1 − p percent of the training set is used for the training
of the DNN in each fold. Further, not the whole training set is passed to the DNN at
once, but rather small shares of the training set, called batches. Passing all batches once
through the DNN is called one epoch. During these epochs, the DNN adjusts the weights
and biases, where the learning rate represents the amount of changes of the weights and
biases in each epoch. Then the validation set is used, to validate the performance of the
DNN for each epoch.
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6 Deep Neural Network

Except for the division of the data into validation and training sets, another method
called early stopping is used, in order to prevent overfitting. The idea behind early stop-
ping is, if the loss starts to only change by a small amount, which is smaller than ∆min,
then the DNN stops the training and moves to the next fold. However, the DNN does not
stop immediately after the change of the learning rate is smaller than ∆min, but rather if
it happens for a certain number of epochs called patience. This prevents that the DNN
adapts the weights and biases to the small statistical fluctuations of the training data
sets, which would make the generalisation of the DNN worse.

In order to detect overfitting, calculating the loss of the DNN for the validation and
the test set is needed. If the validation accuracy and loss are far worse than that of the
test set, the DNN has been overfitted.

6.1 tt̄Z-tZq-Background Multi-Class Classifier

In this analysis of the tt̄Z and tZq production, a multi-class DNN is used, in order to
separate the classes tt̄Z, tZq and the background from each other. A DNN with 4 hidden
layers with 20, 30, 30, 20 nodes is chosen. The activation functions for the hidden layers
are chosen to be ReLU, which is defined as

f(x) =

0 x < 0

x x ≥ 0
,

whereas the activation function of the output layer is chosen to be the softmax function,
which is defined as

σ(~x)i = exp (xi)
K∑
j=1

exp (xj)
.

Further, ~x represents the values of the nodes in the previous layer, σ(~x)i is the i-th value
of the output node and K is the number of nodes in the previous layer. Due to the
normalisation, the output nodes have values between zero and one, which adds up to
one. Moreover, the output value of the DNN can be interpreted as probability, regarding
how likely it is, that the input object belongs to one of the classes. Furthermore the loss
function g is chosen to be the categorical cross-entropy, which is defined as follows:

g = −
n∑
i=1

ti · log (yi) .
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6 Deep Neural Network

Assume, that the j-th output node represents the actual class of the object, which is clas-
sified by the DNN. Then n is the number of classes, ti is the i-th element of the vector t,
which represents the actual class, by setting one as value at the j-th spot and anywhere
else zero. Furthermore yi represents the value of the i-th output.

The DNN uses Nadam [27–29] as optimiser, has a learning rate of 0.0005 and uses as
metric accuracy. Furthermore the number of folds is chosen to be 3, the validation size is
chosen to be 25 %, the batch size is chosen to be 5000 and the epoch number is chosen to
be 2000. For this DNN, also early stopping is implemented. Therefore the patience is cho-
sen to be 100 and ∆min is chosen to be 0.0005. The data, used for the DNN are all within
the SR-3` region and the input variables used to discriminate between the processes tt̄Z,
tZq and the background is shown in Table 6.1.

Table 6.1: Discriminating variables for the DNN for separation of the process tt̄Z, tZq
and background. NPLS correspond to events with at least one non-prompt
lepton.

Variables Reason

trailing lepton pT NPLS vs Signal

trailing jet pT ttZ/tWZ/ttX vs all other

pmiss
T VVV/NPLS vs all other

central jets with pT > 35 multiplicity tZq vs all other

forward jets with pT > 35 multiplicity tZq vs all other

jet multiplicity NPLS vs ttZ

η of leading forward jets tZq/ttZ vs all other

η of leading central jets ttZ/ttX/tWZ vs all other

b-jet multiplicity at working point of 60/70/77/85 WZ vs ttZ/tZq

trileptonic invariant mass NPLS/ttX vs all other

b-Tag working point of (sub-)leading jet ttZ/tZq/ttX/WZ+b vs all other

invariant transverse mass of the W boson tZq/Wz+l vs all other
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6 Deep Neural Network

Here the trailing lepton/jet pT refers to the three highest transverse momenta of the
leptons/jets. Furthermore the b-tag working point refers to, how tight the requirement are,
so that it has an efficiency 60/70/77/85%. The output for each class and its separation
of the other classes is shown in Figure 6.2.

Figure 6.2: Plots for the DNN classification and the respective separation plots. The
upper plot is the class tt̄Z, in the middle the class is tZq and on the bottom
is the class background. The class background shown as the red curve in
the bottom plot corresponds to every background events, excluding tZq and
tt̄Z events.
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6 Deep Neural Network

The DNN was able to separate the tt̄Z processes the best, then the background processes
and the worst separation was achieved regarding the tZq processes. This can be seen in
Figure 6.2 with their respective separation plots. In order to evaluate the classification
performance, the confusion matrix is introduced, shown in Figure 6.3

The diagonal elements of Figure 6.3 shows the probability, with which the background,
tt̄Z and tZq is classified correctly. Based on the Figure 6.3, the tt̄Z classification is the
best, then the tZq classification and the worse performance regarding the classification
were the background processes. Furthermore, the loss for each epoch is shown in Figure 6.4

As mentioned in Chapter 6, a problem of DNNs is, that they could overfit the data.
Therefore it needs to be ensured, that the DNN, used in this analysis did not overfit the
data. In order to do so, it needs to be checked, whether the loss performance on the
validation set and the training set have high deviations. The loss for each epoch is shown
in Figure 6.4. It can be seen, that in neither of the three folds, the loss of the training
set has high deviations from the validations set. However, at the tail of the loss plot, the
validation loss and the train loss starts to deviate. Nevertheless, due to early stopping,
the DNN training was stopped.

It can be concluded, that a slight indication of overfitting can be observed, However,
due to early stopping, this could be prevented, as the deviation of the loss is still very
small.

Figure 6.3: Confusion matrix for the DNN with the classes tt̄Z, tZq and background.
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6 Deep Neural Network

Figure 6.4: Accuracy and loss for each epoch. The upper left plot belongs to the first
fold, then the upper right belongs to the second fold and the plot on the
bottom belongs to the third fold.
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7 Binned Likelihood Fit

As mentioned in Chapter 6, the binned likelihood fit is performed, to extract the signal
strength of the processes tZq and tt̄Z. The signal strength is defined as

µ = σexp.
σSM

.

In that equation, σExp. is the experimental production cross section of a certain pro-
cess and σSM is the theoretically predicted production cross section of the same process.
Therefore the experimental cross section can be extracted from the signal strength, which
on the other hand can be extracted through a binned likelihood fit.

For the binned likelihood, assume N measurements, where each measurement outcome
belongs to one of in total k bins. The measured observable is ~n, where ~n contains the
number of outcomes within the bin j with j ≤ k. In the frame of this thesis, the measured
data are resulting from a counting experiment, where every event is independent from any
other. The likelihood for the binned observables, in the case that the measurements are
independent, is then

L =
k∏
j=1

fj(nj|θ).

Here the fj represents the conditional probability, that nj of the outcome has a value,
which is within the j-th bin, under the condition that the parameters are chosen to be θ.
Furthermore fj(nj|θ) follows a Poisson distribution, so that the likelihood is then

L =
k∏
j=1

µ
nj

j (θ)
nj!

exp (−µj(θ)).

µj is the expectation value for the number of events within the j-th bin and is defined as

µj = N ·
∫
{nj}

p(x|θ)dx.

p(x|θ) describes in this case the probability, that the measurement outcome is x, under
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7 Binned Likelihood Fit

the condition, that the parameters are θ. Moreover, in the binned likelihood fit, the like-
lihood is maximised, by optimising the parameters θ.

7.1 Definition of Binned Likelihood Fit Regions

In order to decrease the uncertainties in a simultaneous binned likelihood fit with the
signal strength of tZq and tt̄Z as parameter of interest (POI) fit parameters, histograms
enriched only in tt̄Z and tZq are needed. Furthermore, variables with high separation
power are needed, in order to decrease the uncertainties.

Therefore the chosen variables are the output values of the DNN. The three orthogo-
nal regions, one for each class of the DNN, are constructed. The cuts on the output value
for the tZq region are tZq ≥ 0.4 and background < 0.4. For the tt̄Z region the cuts are
tZq < 0.4 and background < 0.4. The last region is the background, where the cut is
only set on the background output with background < 0.4.

Furthermore, one more region is constructed, but without the usage of the outputs of
the DNN. This region is not orthogonal to the upper three regions, as the histogram for
this region is used for another independent binned likelihood fit. The fit result is then
used to compare the performance of the method with DNN and the method, were only
variables are used, which are already in the ntuples, called cut and count method. As the
central jet multiplicity is the chosen variable, the region is called the nCJets region. For
the nCJets region, the cuts of the SR-3` region is implemented. Moreover, a cut on the
b-tag working point is set to be equal or bigger than 77. The event yields for these four
regions are shown in Table 7.1.
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7 Binned Likelihood Fit

Table 7.1: Event yields for the tZq, tt̄Z and background region.
Event background region tt̄Z region tZq region nCJets region

tZq 43.3± 0.6 40.2± 0.6 160.1± 1.0 209.9± 1.1

tWZ 16.5± 0.1 38.5± 0.2 19.0± 0.1 61.6± 0.2

tt̄Z 89.0± 0.6 533.5± 1.5 159.5± 0.8 691.0± 1.7

tt̄(X) 3.9± 0.2 16.4± 0.3 5.2± 0.2 22.8± 0.4

WZ_l 324.1± 2.1 10.4± 0.3 16.2± 0.4 22.5± 0.6

WZ_c 393.6± 2.1 42.9± 0.6 53.8± 0.8 128.4± 1.3

WZ_b 86.1± 1.0 68.1± 0.6 86.1± 0.8 195.8± 1.2

V V (V ) 138.0± 2.0 15.1± 0.3 21.8± 0.7 56.0± 1.1

NPL 282.0± 17.3 82.9± 1.8 111.2± 2.5 329.6± 14.2
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8 Systematic Uncertainties

Before performing the fit, systematic uncertainties need to be taken into account by
implementing these as nuisance parameter (NP) for the likelihood. The systematic uncer-
tainties arise from an imperfect knowledge of the detector and the underlying theoretical
modelling of physics processes These systematic uncertainties, which are included, are
categorised in the following.

One systematic uncertainty category is the theoretical uncertainties. The systematic
uncertainties included are the choice of renormalisation and factorisation scale, parton
distribution functions (PDF) and the modelling uncertainties. These uncertainties arise,
due to the fact, that the scaling factor or the showers are just approximations to what
is observed. That is why Monte Carlo samples are taken into account, which are gen-
erated with different scaling factors or alternative shower algorithms. Here the default
shower algorithm is Pythia8 and the alternative shower algorithm is Herwig7. Further-
more, the PDFs can only be measured experimentally. As these PDFs are needed and
included within the theoretical calculations, this leads to further theoretical uncertainties.

Additionally there are the object reconstruction uncertainties. The systematics, which
were included in this category, are the lepton identification, trigger and isolation. More-
over, the b-tagging uncertainties for the jets are also included, but no further jet system-
atics uncertainties are included in this analysis. These systematic uncertainties arise, due
to the fact, that the resolution of the detector for the energy or the reconstruction of the
track of any object is not perfect.

Moreover, there is the integrated luminosity uncertainty. The whole uncertainty for the
integrated luminosity for 2015-2018 is 1.7 % [30].

The last uncertainties that have been included, are the pile up uncertainties. These
are taken into consideration, by varying the reweighing of the Monte Carlo simulations.
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9 Results

9.1 The DNN Method

For the DNN method, a DNN was trained, in order to classify the events into three classes.
One class were the tt̄Z processes, the second were the tZq processes and the third were
the background processes. After that, the tt̄Z, tZq and the background region were con-
structed, by setting further cuts on the DNN output value within the SR-3` region. For
each of these regions, one histogram with systematic uncertainties is created, which can
be seen in Figure 9.1. Furthermore, the pull plots for the systematic uncertainties for the
three histograms is shown in Figure 9.2 and 9.3. The pull plots show, how much the NPs
have changed after the fit. In the pull plots, created in this thesis, the change is zero, due
to the fact, that these are Asimov fits. Asimov fits describe a fit, which is performed not
on real data, but on simulated once. Therefore the MC samples are fitted on itself in the
frame of an Asimov fit. Furthermore the pull plots show the uncertainties for the NPs,
represented by the black bars.

On the histograms, shown in Figure 9.1, an Asimov fit is performed, where the Monte
Carlo simulation is used as pseudo data. The resulting signal strengths are µtt̄Z =
1± 0.06 (stat.)± 0.03 (syst.) and µtZq = 1± 0.15 (stat.) +0.37

−0.16(syst.).
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Figure 9.1: Distributions for the tZq, tt̄Z and background region. On the left, the tZq,
in the middle the tt̄Z and on the right the background region is shown.
The horizontal is chosen to be the output of the DNN for the corresponding
class.

9.2 The Cut and Count Method

The second method, which is used to investigate the sensitivity for the production of tt̄Z
and tZq, is the cut and count method. This method is mainly used, in order to compare,
if a DNN really improves the sensitivity, or if the cut and count method is just as good.
For the cut and count method, a fourth region, called the nCJets region was constructed.
This region uses only cuts on variables. The chosen variable is the multiplicity of the
central jets, as this gives the best separation between tt̄Z and tZq from all investigated
variables. The histogram is shown in Figure 9.4. Furthermore, the pull plots for the
systematic uncertainties for the nCJets histogram is shown in Figure 9.5 and 9.6.

On the distribution, shown in Figure 9.4, an asimov fit is performed, where the Monte
Carlo simulation is used as pseudo data. The resulting signal strengths are µtt̄Z =
1± 0.08 (stat.)± 0.02 (syst.) and µtZq = 1± 0.25 (stat.)± 0.48 (syst.).
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Figure 9.2: Pull plots for the lepton and b-tag systematic uncertainties.
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Figure 9.3: Pull plots for the theory, photon, integrated luminosity, jet vertex tagger
and pile up uncertainties.
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Figure 9.5: Pull plots for the lepton and b-tag systematic uncertainties.
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Figure 9.6: Pull plots for the theory, photon, integrated luminosity, jet vertex tagger
and pile up uncertainties.
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10 Discussion and Outlook

10.1 Performance with and without DNN

In this analysis, a DNN was used, to decrease the uncertainties. This can be achieved,
by creating histograms, using the output of the DNN. However, it needs to be discussed,
if there is really a difference between using a DNN or not and if the DNN might even
perform worse than just using the cut and count method. Comparing the uncertainties
of the signal strength of tZq for both methods, it can be seen, that the maximal total
uncertainty for the DNN method is 52 %, whereas the overall total uncertainty for the
cut and count method is 73%. Therefore the usage of the DNN improves the precision
by 21 %, which is a lot, as the total uncertainty for the last tZq measurement was only
14 % [31]. For the tt̄Z uncertainty, an improvement of 1 % could be achieved, by using
the DNN method instead of the cut and count method. However, this improvement is
negligible, as it is just a slight improvement.

Therefore it can be concluded, that the usage of the DNN methods makes a difference
and can significantly decrease the uncertainties.

10.2 Uncertainties Comparison with Previous Paper

In this thesis, the signal strength for tt̄Z and tZq is simultaneously measured via a binned
likelihood fit. In the following it will be discussed, how big the uncertainties in this anal-
ysis were, compared to the uncertainties in the signal strengths previously measured at
Atlas, from which the cross section is then extracted. However, the value of the fit
results in this thesis will not be discussed, as the Monte Carlo simulations was set as the
data, on which the parameters were fitted. Therefore the cross section, extracted from
the signal strength, will be identical to the theoretically predicted cross section.

The most recent cross section measurement at Atlas for tt̄Z had a total uncertainty
of 10% [32], whereas the most recent tZq cross section measurement had a total uncer-
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10 Discussion and Outlook

tainty of 14 % [31]. In comparison to the uncertainties in Chapter 9.1, the most recent
tt̄Z measurement by Atlas has a higher uncertainty, whereas for tZq the most recent
measurement by Atlas has a lower uncertainty.

Furthermore it can be observed, that the statistical uncertainty for tZq in this thesis
is already worse, than the total uncertainty, in the most recent measured cross section by
Atlas. However, the simultaneous measurement does not lead to the high tZq uncer-
tainty of this thesis, as the fit was also performed as tZq single parameter, which did not
improve the uncertainty.

An assumption for the bad performance of the tZq fit would be, that the tZq classi-
fication of the DNN was not very good, due to the used input parameters. If the input
parameters of the most recent Atlas tZq measurement is compared to the input param-
eters of this thesis, it can be seen, that the highest ranking ones of the Atlas paper are
not included in the training of the DNN in this analysis.

10.3 Outlook

This analysis was able to improve the uncertainties for tt̄Z compared to the most recent
Atlas tt̄Z cross section measurement. However, the uncertainties for tZq in this thesis,
compared to the most recent Atlas tZq cross section measurement, are way worse. The
next step is to check if the tZq uncertainties can be reduced, by training a DNN with the
variables, used in the tZq Atlas paper [31].

Moreover, regions with higher tZq yields could be constructed, in order to reduce the
tZq uncertainties further, although these regions may not be as pure, as the SR-3` region
defined in this thesis. However, regions with high tZq purity can be constructed by using
a DNN. Therefore the uncertainties, arising from the low tZq yields can be avoided and
at the same time the DNN is given more tZq data, to enhance the correct classification
rate.
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