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Abstract

We introduce a novel approach based on the recently introduced functional mode analysis to
identify collective modes of internal dynamics that maximally correlate to an external order
parameter of functional interest. Input structural data can be either experimentally deter-
mined structure ensembles or simulated ensembles, such as molecular dynamics trajectories.
Partial least squares regression is shown to yield a robust solution to the multidimensional
optimization problem, with a minimal and controllable risk of overfitting, as shown by ex-
tensive cross-validation. Several examples illustrate that the partial least squares based
functional mode analysis successfully reveals the collective dynamics underlying the fluctu-
ations in selected functional order parameters. Applications to T4 lysozyme, the Trp-cage,
the aquaporin channels Aqy1 and hAQP1 and the CLC-ec1 chloride antiporter are presented
in which the active site geometry, the hydrophobic solvent accessible surface, channel gating
dynamics, water permeability (pf ), and a dihedral angle are defined as functional order pa-
rameters. The Aqy1 case reveals a gating mechanism that connects the inner channel gating
residues with the protein surface, thereby providing an explanation of how the membrane
may affect the channel. hAQP1 shows how the pf correlates with structural changes around
the aromatic/arginine region of the pore. The CLC-ec1 application shows how local motions
of the gating Glu-148 couple to a collective motion that affects ion affinity in the pore.

Key words: principal component analysis; essential dynamics; molecular dynamics; Yeast-
Aquaporin; human aquaporin-1; CLC chloride channel family
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Introduction

Protein function frequently requires dynamics. Ranging from transporters to enzymes, from
motors to signaling proteins, conformational transitions are usually at the heart of protein
function. Consequently, a key step in understanding protein function is detailed knowledge of
the underlying dynamics. Molecular dynamics (MD) simulations and related techniques are
routinely used to study the dynamics of biomolecular systems at atomic detail at timescales
of typically nanoseconds to microseconds. Although in principle allowing to directly address
function-dynamics relationships, such analyzes are frequently hampered by the large dimen-
sionality of a protein’s configuration space, rendering it non-trivial to identify collective
modes of motion that are directly related to a functional property of interest.

Principal component analysis (PCA) is a powerful tool to effectively reduce the dimen-
sionality of a protein’s configuration space (1, 2). Diagonalisation of the variance-covariance
matrix yields a large number of eigenvectors with near-zero eigenvalues, corresponding to
modes with only a minor contribution to the overall dynamics, leaving a relatively small
percentage of principal modes that contribute to the vast majority of overall fluctuation.
Even though PCA frequently aids a structural or functional interpretation enormously, it
is not primarily designed for that purpose. PCA sorts the collective modes (eigenvectors)
according to their contribution (eigenvalue) to the total mean-square fluctuation. Hence,
the eigenvectors corresponding to the largest eigenvalues are defined as principal modes by
virtue of the size of their fluctuation, irrespective of the actual contribution to a functional
property of interest. Some functional properties may be influenced by the principal modes,
but only in a specific combination, thereby further obscuring the relation between dynamics
and function.

The PCA-based functional mode analysis (FMA) aims to overcome this problem by taking
a linear combination of principal modes that is maximally correlated to a defined functional
property of interest (3). FMA yields a linear model for an unidimensional functional property
f(t) (subsequently denoted as vector f to indicate that it is applicable to any ensemble, not
only to time series). The correlation between the model and f , particularly the correlation
for a cross-validation subset of the data that was not used to train the model, provides
a measure for the goodness of fit or the predictive power of the linear relation between
coordinates (dynamics) and function. The linear model, also termed maximally correlated
mode (MCM), can be expressed in terms of the original (cartesian) coordinates and visualized
as a collective mode of motion, either directly or in an ensemble-weighted fashion (ewMCM
for ensemble-weighted MCM), to yield a direct visualization of the dynamics underlying
fluctuations in f .

In its original implementation FMA uses the principal modes provided by PCA as a basis
for the correlation optimization and therefore takes advantage of the dimensionality reduction
provided by PCA, rendering it unnecessary to carry out the correlation optimization in the
full coordinate space, that would easily lead to an overfitting issue due to the large number
of parameters involved. However, this rests on the assumption that fluctuations in f are
predominantly influenced by the principal modes, which may or may not be the case. Indeed,
a number of FMA applications require a relatively high-dimensional PCA basis (3), indicating
that not only principal modes contribute. Working with such a high-dimensional basis suffers
from an inherent overfitting risk, and suggests that PCA does not offer an optimal basis in
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such cases.
Here, we present a generalization of an FMA-based partial least squares (PLS) algorithm,

that overcomes this issue by simultaneously optimizing model and basis. PLS-based FMA
therefore yields a model with the lowest possible basis dimensionality that provides optimal
correlation between fluctuations in f and protein dynamics. In other words the objective
of the PLS algorithm is to get a relation (in this implementation a linear combination of
coordinates) that correlate the best with f , but at the same time that allows to identify the
dynamics information in the input coordinates that contribute the most to the fluctuation in
f . Applications to the active-site geometry of T4 lysozyme and solvent accessible surface of
the Trp-cage illustrate that a very specific combination of atomic fluctuations of the backbone
atoms contribute to f . Furthermore, FMA based on PLS requires a significantly smaller
basis than PCA-based FMA. Due to the minimal dimensionality employed, the overfitting
risk is minimized, leading to an optimal predictive power, as observed in cross-validation
experiments. Furthermore, complex applications to the gating of aquaporin water channels,
and to a CLC antiporter illustrate the use of PLS as a general and robust method to study
function-dynamics relationships in proteins.

Theory

The partial least squares algorithm

A multiple linear least squares regression of the type f = Xβ+ǫ, with f a vector containing
n samples of the unidimensional functional property to be described in terms of a n×pmatrix
X of p cartesian coordinates, yields a set of p-dimensional coefficients β with residuals ǫ.
Minimizing ǫ optimizes the correlation between f and the linear model Xβ. In practice,
such a regression can yield poor results (particularly in prediction) if some of the columns
of X are nearly dependent (or colinear in statistical terms).

In PCA-based FMA, rather than the original coordinates X the principal coordinates
P = XU (with U as eigenvectors of X tX, where X t denotes the transpose of X) are used
instead, with the advantage that generally a smaller number of principal components m ≪ p
can be chosen for P , leading to a more stable fit, where the choice of m is data driven.

In PLS (4–6), k new regressors T k are defined iteratively such that each coordinate is
a linear combination of the original coordinates X (T k = XW k) with maximal covariance
with f , while being uncorrelated to each previous coordinate in T k (7). Subsequently, the
regression problem f = XW kαk+ǫ is solved usingXW k as basis. This has as an advantage
that both the variance in f and X as well as the correlation between f and X is taken
into account, and therefore a basis W k is generated such that by construction includes only
components of X that are correlated to f and have sufficient variance to contribute to f .
In contrast, in the PCA-based FMA the basis is selected only according to variance in X.

Therefore, PLS combines the advantage of PCA-based FMA with the requirement of
correlation to f , thereby yielding another substantial dimension reduction (k ≤ m) and
offering a robust fit also if the number of independent observations is small relative to the
size of the molecular system p. A priori it is not possible to estimate a proper choice for
k. In fact, k serves as a regularization parameter, which has to be chosen appropriately to
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maximize the predictive power, similar as m in PCA-based FMA. In practice the optimal
choice is derived by cross-validation by varying k systematically until the highest correlation
is obtained between f and XW kαk for an independent subset of f . Algorithm (8) as
implemented by Denham (7) was used for the applications shown here. In this paper, this idea
will be extended to an ensemble-weighted model, analogous to the ewMCM in PCA-based
FMA (3). The ensemble-weighted model can be constructed from the PLS output by first
converting W k to an orthogonal basis by diagonalization of T k and subsequently applying
Eq. 12 from Hub and de Groot (3) to obtain the weights of the ewMCM. Alternatively, the
ewMCM can be obtained as the scaled first column of W k.

Implementation

The PLS-based FMA has been implemented based on Helland’s algorithm (8) as provided
by Denham (7) and is available from the authors. Explicit details about the algorithm
implementation can be found in the Supporting Material. The current implementation of
the analysis tool takes coordinate trajectories in the gromacs (9) XTC format as input
together with f in a generic ASCII format with two columns: One for the frame/structure
identifiers and the second for the functional property of interest associated with the structure.
Input coordinates should be fitted (i.e., least-squares) to a reference frame before analysis to
filter out overall translation and rotation. The tool uses a preselected part of the trajectory
for model building, therefore automatically allowing to use the remaining part for cross-
validation. Typical computational times for ∼1000 frames of a protein of 200 amino acids
(protein atoms excluding hydrogens) are in the range of a few minutes.

Results

T4 lysozyme

T4 lysozyme (T4L) is an enzyme from the bacteriophage T4 that catalyzes the hydrolysis of
1,4-beta-linkages in peptidoglycans and chitodextrins from bacterial cell walls. A prerequisite
for catalysis is the correct orientation of the active site residues E11 and D20 with respect
to the substrate (10). We used the distance between the Cδ of Glu11 and the Cγ of Asp20
(dED) as the functional order parameter f (Fig. 1 A). All backbone atoms of the protein
were used as the coordinate set. Of an MD trajectory with a length of 460 ns, we used the
first half for model building and the second half for cross-validation. A comparison of the
results of the PLS algorithm to the PCA-based FMA is shown in Fig. 1, B–G. Correlation
coefficients between model and data are shown in Fig. 1, B and C for the model building
(Rm) and cross-validation (Rc) parts as a function of the number of components in the case
of PLS and the number of PCA eigenvectors in the case of PCA-based FMA. The Rm for
both PLS- and PCA-based FMA converge for fewer than 10 components/eigenvectors, with
the PLS-based variant converging to a value closer to 1. The cross-validation Rc shows that
PLS-based FMA converges at around 10 components whereas the PCA-based FMA requires
a larger basis, of approx. 20 PCA eigenvectors.

In Fig. 1, D and E the overlayed MD data and PLS/PCA-based FMA model data are
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shown both for the model building and cross-validation parts, using a basis of dimensionality
10 and 20 for PLS- and PCA-based FMA, respectively. These graphs show that both PLS-
and PCA-based FMA provide an adequate model that cover the general features of the
fluctuations in dED. The ewMCM molecular representations of these models are shown in
Fig. 1, F and G. It is observed that in general terms the motions described by both models
are similar, especially around the E11 and D20 amino acids.

For the PLS-based FMA we also tested if the 10 components model was accurate enough
to predict the dED distance of an x-ray set of 38 T4L structures. We observe (Fig. S1, A
in the Supporting Material) that the PLS model gives a Rc of 0.93 for these experimental
structures. Then we used the T4L x-ray structures as the model building set and the MD
frames as the cross-validation set. As can be seen in Fig. S1 B this small experimental
ensemble is also able to predict correctly the MD ensemble with only 4 components. It was
also tested how the reference structure (the one used for least-squares fitting the trajectory)
can influence the Rm and Rc. Using reference structures with dED of 0.76, 1.01 (the one used
above) and 1.24 nm showed not influence on the model quality (See Fig. S1, C and D).

Robustness

To test the consistency and robustness of the PLS- and PCA-based FMA models and the
influence of the basis dimensionality, we sliced the T4L data in four equally sized parts. For
each part, we built a FMA model and calculated scalar products between the MCM and
ewMCM from each part (Fig. 2, A and B). In addition, cross-validation was carried out
using the three parts that were not used for model building (Fig. 2, C and D). Two model
dimensionalities with cross validation correlation coefficients (Rc) of approx. 0.9 were chosen
for the scalar product analysis. For PLS-based FMA, we chose dimensionalities 5 and 10,
whereas for PCA-based FMA we chose dimensionalities 20 and 25. In the Fig. 2, A and B
we plotted the distance dED to guide the eye which part of the trajectory was used for model
building. The middle and lower panels show the MCM and ewMCM scalar product matrix
in a color-coded way for both PLS- and PCA-based FMA.

In general, it is observed that the overlap between the different parts is remarkably
high, particularly for the MCM. Note that the FMA modes of the T4L backbone span a
1476-dimensional space (164 residues times 3 backbone atoms per residue times 3 spatial
dimensions). The scalar product for two random, normalized vectors of that dimension
follows a gaussian distribution with mean zero and a standard deviation of 0.026. Therefore,
the probability of a scalar product of 0.5 or larger for two such random vectors is vanishingly
small, at an estimated 10−82. The observed scalar products therefore represent significant
and substantial overlap, indicative of a robust model. The scatter in the ewMCM is by nature
higher than in the MCM, as the ensemble weighting of the ewMCM introduces additional
uncertainty due to non-converged variances in MD caused by incomplete sampling.

The overlap is found to be lower for a higher basis dimensionality for both PCA- and
PLS-based FMA (only the ewMCM is basis independent in the case of PLS-based FMA).
This indicates that a model with the lowest dimensionality that shows adequate predictive
power in cross-validation should be chosen for maximal model robustness. It is interesting
to note that the cross-validation correlation coefficient Rc provides a qualitative measure of
MCM robustness: as can be seen in Fig. 2, trajectory parts that yield more similar models
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(high scalar products) also display a larger Rc when one part is used for model training and
the other for validation. This renders Rc a useful measure not only of predictive power but
also of model robustness.

As an example of a highly non-linear functional property f , we analyzed unfolding tra-
jectories of the Trp-cage peptide (11) in terms of the hydrophobic solvent accessible surface
(hSAS). The results are shown in the Supporting Material and Fig. S2. Surprisingly also for
this non-linear case an acceptable quality model is obtained, with PLS-based FMA requiring
a substantially lower dimentional basis than the PCA-based FMA.

Gating of Aquaporin channels

Yeast Aquaporin: Aqy1

Aqy1 is a tetrameric water channel of the yeast Pichia pastoris. The high-resolution structure
revealed a closed channel, whereas functional studies indicated water channel activity (12).
Together, these results therefore suggest that Aqy1 is a gated channel. Indeed, molecular
dynamics simulations showed that channel opening can be reproducibly induced in response
to phosphorylation of Serine 107 and by an increase of membrane pressure (mechanosensitiv-
ity) (12). By iterative, manual inspection of the trajectories it was noted that the signal was
predominantly located in loop D and the lower parts of helices 4, 5 and 6. A PCA of only
this region indeed identified a collective mode that correlated with channel opening events.

Here, we address the question if this collective mode can be detected unbiasedly using
FMA, and tested both the PCA and PLS variants. For this study we took an MD simulation
of 100 ns length of the S107D mutant of Aqpy1 and a simulation in which a lateral pressure
of 10 bar in the membrane plane was applied. We used the distance between Ala190 and
the center of mass of residues Pro29 and Tyr104 as f , a measure of the degree of channel
opening of Aqy1 (Fig. 3 A). For the FMA analysis we consider all the backbone atoms of
each monomer and used the data of the S107D trajectory as the model training set and
the lateral pressure simulation for cross-validation. In addition, we used a smaller and
independent cross-validation set (30 ns) of a Aqy1 simulation where the membrane was bent
toward the cytoplasmic side of the protein and also opening events were observed.

In Fig. 3 we show the comparison between the PLS- and the PCA-based FMA mode
for Aqy1. Fig. 3, B and C show that the correlation between data and model in terms of
both Rm and Rc is higher for the PLS as compared to the PCA-based FMA. The correlation
coefficients converge to 0.9 between 10 and 20 components for the PLS-based FMA whereas
the PCA-based FMA results do not yet seem to be fully converged at 100 PCA vectors. In
Fig. 3, D and E it can be seen that the channel geometry data is captured adequately for the
PLS-based model with 10 components and the PCA-based FMA model with 60 components.
The membrane bending simulations were used as an extra and independent cross-validation
set (12). Here (Fig. 3, F and G), we observe a similar trend as before: the PLS shows
an acceptable model with Rc = 0.68 whereas PCA-based FMA shows a model with only
Rc = 0.44, with PLS requiring a smaller basis than PCA. The ewMCM representation of
the PLS-based FMA fluctuations is shown in Fig. 3 H. The PLS- and the PCA-based FMA
versions of the ewMCM have a scalar product of 0.99, and show collective motions in the
protein. Backbone motions involve primarily loop D and the lower halves of helices 1, 3, 4,
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and 6 which are coupled to the local opening of the pore. Hence, the ewMCM provides an
explanation of how the gating residues, that are not in direct contact with the membrane,
are affected by changes in the membrane, either induced by an applied lateral pressure, or
by membrane bending. The signal seems to be transmitted from helix 1 and 6, that are in
direct contact with the membrane to the lower parts of helices 3, 4 and 5, and loop D, that
line the water pore.

We compared the first PCA eigenvector of the lower parts of helix 4, 5, 6 and loop D as
described in (12) with the PLS-based FMA of the full backbone of Aqy1. The scalar product
of both modes in this subset of atoms is 0.66 which implies a high degree of similarity of the
motions. Together, in this case, these results show that unbiased PLS-based FMA analysis
gives similar modes compared with a selective/iterative PCA analysis as described in (12)
(see Fig. S3).

Human aquaporin-1: hAQP1

hAQP1 is a tetrameric water channel ubiquitously expressed in the cell membranes. The
x-ray structure of its high-identity bovine homolog (13) shows two constrictions for the
water conduction: The NPA signature motif and the aromatic/arginine (ar/R) site, the
later formed by R195, H180 and F56. Molecular dynamics simulations showed that channel
opening and closing could be induced in response to voltage changes (14) in the range of
–1.5 to 1.5 V. Those analyses showed a correlation between the permeability coefficients (pf )
and the membrane potential, with the channel more open at positive potentials. It was also
reported that the flipping of the R195 side chain is involved in the open-close transitions.

Here, we address the question if we can find a global structural model that is able to
explain the changes in the functional property pf using PLS-based FMA. For this purpose we
took 22 MD simulations of 60 ns length calculated in a double membrane setup at ± 1.5 V
(14). We calculated the single-channel permeabilities pf from the collective diffusion model
proposed by Zhu et al. (15) at a single monomer basis. Because pf is a property that does
not depend on a single structure, pf values were calculated using the last 50 ns of each
trajectory, using 5 ns windows. For the FMA analysis we used the average structures of
the monomer atoms (excluding the hydrogens) of the same time windows used for the pf
calculation. Since we had 8 monomers in total in the double membrane setup, we used 6 of
them for model building and 2 for cross-validation.

In Fig. 4, A we show the correlation between data and model in terms of both Rm and
Rc for the PLS-based FMA. The correlation coefficients of the training part converged to 0.9
around 30 components. The Rc values converged to 0.6 with the same number of components.
Note in Fig. 4, B that the pf signal intrinsically suffers from a low signal to noise ratio. So, the
favorable correlation in the cross-validation stage is remarkable. A ewMCM representation
of the PLS-based FMA fluctuations and extremes are shown in Fig. 4 C and D. In terms
of fluctuations Fig. 4 C shows the ewMCM changes in the loops and in the backbone of
the extracellular half of the protein, mainly around R195. The extremes representation of
the ewMCM in Fig. 4 D shows that the displacement of R195 side chain that changes its
distance to H180, as previously suggested from visual inspection (14). In addition, we noted
the displacement of N127, F212, I211 and W210 which seems to move correlatedly with
R195. Interestingly, the R195V mutant in rat AQP1 does not change the water permeability
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but allows urea, glycerol, amonia and protons to pass (16). Simlilarly, R195S shows proton
and cation permeability and a higher osmotic water permeability (17).

Conformational transitions of CLC-ec1

CLC comprises a family of transport proteins that function as chloride channels or pro-
ton/chloride exchangers (18). CLCs share a similar fold (18 α-helices, labeled from A to
R) and dimeric architecture as it observed in x-ray structures from bacteria to eukaryotes
(19, 20). Mutation and electrophysiology studies have identified a glutamate in the selec-
tivity filter which is essential for the exchange mechanism and for gating in the channels
counterpart (21–24). In CLC-ec1 from Escherichia coli this conserved glutamate (E148)
resides in the selectivity filter, between the extracellular and intracellular vestibules of the
protein (Fig. 5 A). Close to E148 two chlorides can be found in the wild-type, which define
the central and internal binding sites for anions (Scen and Sint). It has been shown by x ray
(21), MD (25) and Metadynamics (26) that E148 shows an intrinsic flexibility which may
play a role in transport mechanisms.

By using MD, PLS-based FMA and electrostatic calculations we show that the intrinsic
flexibility of E148 also depends on the chloride occupation and these changes are related
to local and global changes in the CLC structure. We simulated wild-type CLC-ec1 (un-
protonated state of E148) inserted in a pre-equilibrated 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine (POPE) membrane patch. We ran six different CLC-ec1 simulations
for which we changed and enforced the chloride occupation of Scen and Sint. The ion con-
figurations were: No ions ; Sint restrained; Scen restrained; Sint and Scen restrained; Sint

restrained and Scen free; free Sint and Scen. In restraining the ions we used a force constant
of 1000 [kJ mol−1 nm−2]. The simulations were ran 100 ns each.

The simulations were stable and showed no spontaneous chloride translocations events. In
contrast, E148 showed spontaneous flexibility in the simulations. The flexibility corresponded
to transitions of the glutamate from the α-helical to the β-sheet zone in a Ramachandran
space. To quantify the E148 variability we calculated the Ψ dihedral angle distribution
of each simulation. In the Fig. 5 B we observe the Ψ histograms which show three main
peaks around −75° (α), 25° (I for intermediate) and 120° (β). Interestingly, the Ψ angle
distributions clearly correlate with the single anion occupation or absence of anions in the
selectivity filter. When the protein is occupied at Scen the main E148 conformation is α;
when occupied at Sint the main conformation is β; and when the protein lacks anions at
the selectivity filter sites, E148 adopts mainly the intermediate conformation. The doubly
occupied monomers showed different proportions of the three Ψ peaks (Fig. S4). Structurally,
the conformations of E148 imply a change in the backbone atoms of the glutamate and
glycine of the highly conserved sequence GREGP (19) which flank the central site Scen.
They change from orienting the amide nitrogen of G149 toward Scen in the α conformation,
to orient the carbonyl group of E148 in β. In the intermediate state (I ) the peptidic bond
between these amino acids is parallel to Scen.

We used PLS-based FMA to understand the structural changes of the CLC-ec1 protein
related with changes in the E148 Ψ angle. For that we calculated FMA in a monomer basis
using the protein excluding the hydrogens atoms. We constructed the FMA models using
75 % of the data and the remaining 25 % for cross-validation. In Fig. 5 C we observe
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that Rm converges to values close to 1 after 40 PLS components, whereas Rc reaches values
above 0.8 for 10 or more PLS components and above 0.9 after 40 components. An overlay
of the original data set, the model and the cross-validation for the model built using 40
PLS components is shown in Fig. 5 D, showing that the FMA model recovers most of the
features of the original Ψ data. The structural changes observed in the ewMCM model show
delocalized fluctuations in the whole monomer, (Fig. 5 E ) mainly in the loops B-C, F-G, I-J,
K-L, O-P and helices Q and R. At E148 the ewMCM includes the transition of its backbone
atoms from −70° to 90° in the Ψ angle.

As a next step we calculated pore radii profiles (using Mole (27)) and the electrostatic
potential (using APBS (28)) along the ewMCM. We used the position of E148 as starting
point for Mole paths searches that connected the central site (Scen around 44 Å in the z
coordinate) with the extracellular side or with the intracellular vestibule (by Sint around
38 Å) through the chloride path (29). Fig. 5 F (upper panel) shows the radii and the elec-
trostatic profile projected onto the z coordinate for interpolated frames along the ewMCM.
We selected frames corresponding to α, I and β conformations of E148. The radii profiles
show similar trends for the three frames. i.e., all pore profiles show a constriction below 2 Å
radius between 37 and 53 Å. Within this zone they also show a 2 Å peak at the location of
Scen. Frames I and β also show an increase of the radii between Sint to 30 Å, in the intra-
cellular part of the chloride path. The electrostatic potentials (Fig. 5 F lower panel) along
these paths was multiplied by −1 to display the attractive potential for anions (positive) as
wells. Profiles are more attractive to anions in the intracellular side and slightly repulsive
toward the extracellular side. The most dramatic changes in the potentials occur in the zone
between 38 to 48 Å. We observe a first well around 39 Å (Sint) which increases systematically
along the ewMCM (α to β from -22 to -10 kBT/e). Similarly, the well around 44 Å (Scen)
changes form -28 to 4 kBT/e. From the Scen site to the extracellular site we found some
discontinuities in the paths, which correspond to the most constricted zones of the channel
(radii below 1 Å). We speculate that these changes in electrostatic potential and radii are
inherent to the occupation of chlorides in CLC. These changes may modulate the relative
affinity and accessibility of the sites in the transport cycle of these proteins, therefore directly
linking local changes in E148 to global changes in the CLC-ec1 structure. In a transport
context, the changes along the Ψ angle show opening of the intracellular chloride path. These
changes include the motion of the helices Q,R and Y455 which have been indicated (30) as
part of an internal gate in CLC-ec1. Also, the changes show how the anion occupation can
tweak the electrostatic potential at Scen (31), where anions and protons can go through.

Discussion

The applications presented in the results section demonstrate that PLS-based FMA provides
a general method to identify a hidden relation between coordinates and a functional order
parameter f of interest. In the current implementation only a unidimensional f is allowed.
It yields a linear model in the form of a collective mode of dynamics that optimizes the
covariance with the observed data. This collective mode allows a direct interpretation of the
relation between the functional order parameter and the underlying protein mechanics. It
also allowd to make hypothesis about the relevant amino acids contributing the most to the
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funtional property.
Due to the inherent overfitting risk encountered in fitting high-dimensional data sets,

cross-validation with independent data is a mandatory step to assess model quality. In all
investigated cases, a satisfactory correlation coefficient between model and data was obtained
for cross-validation subsets (Rc) of the data that did not substantially deviate from the
training subsets (Rm). Increasing the dimensionality of the basis leads to an ever increasing
Rm, but to a Rc that goes through a maximum and then deteriorates due to overfitting.

PLS-based FMA models derived from independent trajectories were found to be remark-
ably similar, indicating that the models, represented as MCM, are a robust representation of
the relation between f and the atomic coordinates (Fig. 2). Naturally, the ewMCM scatters
more for different independent trajectories, as the limited sampling in each (sub)trajectory
will affect the ensemble weighting. This effect is analogous to the observation that the eigen-
values along individual PCA modes converge slowly in MD (32). It is interesting to note
that the cross-validation correlation coefficient Rc provides a qualitative measure of MCM
robustness: as can be seen in Fig. 2, trajectory parts that yield more similar models (high
scalar products) also display a larger Rc when one part is used for model training and the
other for validation.

The robustness assessment shown in Fig. 2 also indicates that the robustness decreases
when increasing the dimensionality of the basis, even for a dimensionality where Rc does not
yet indicate overfitting. This is likely due to coordinates with relatively little variance that
on the one hand aid to marginally improve the model (as probed by Rc), but on the other
hand deteriorate model robustness by including additional dimensions. For most pratical
purposes, a minimal basis dimensionality with adequate Rc should therefore be prefered.

A prerequisite for the application of FMA is the availability of a suitable functional order
parameter f . This poses a limitation for cases where a unique parameter of functional
interest cannot be uniquely defined.

The current PLS-based implementation is restricted to linear correlations. As shown
before, FMA can be extended to general correlations based on mutual information (MI) (3).
An extention to a MI based implementation is considered for the future.

Conclusions

We have introduced a versatile and general approach to relate an external order parameter
f to a collective mode of internal dynamics. The partial least squares algorithm proved to
yield robust solutions to the underlying multidimensional regression problem with minimal
and controlable overfitting risk. The aquaporins and CLC-ec1 examples of the PLS-based
functional mode analysis illustrate that the approach succesfully captures the relation be-
tween internal protein dynamics and different functional order parameters of interest. For
the Aqy1 case a putative coupling between the membrane-facing surface and the inner wa-
ter pore was identified, for hAQP1 the osmotic permeability pf was shown to relate mostly
with changes around ar/R region, and for CLC-ec1 the local mobility of the gating residue
Glu-148 was found to be coupled to a collective mode that may modulate the chloride ion
binding affinity in pore locations remote from the gating residue. These examples illustrate
that PLS-based FMA can be successfully used to study functional mechanisms by detecting
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collective modes of dynamics that are most related to the fluctuation of a functional property
of interest. In addition, such modes can be explored dynamically for additional functional
states using techniques like essential dynamics sampling (33) or conformational flooding (34).
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Biol. 7:e1000130.

13. Sui, H., B. Han, J. Lee, P. Walian, and B. Jap, 2001. Structural basis of water-specific
transport through the AQP1 water channel. Nature 414:872–878.

14. Hub, J. S., C. Aponte-Santamaria, H. Grubmueller, and B. L. de Groot, 2010. Voltage-
Regulated Water Flux through Aquaporin Channels In Silico. Biophys. J. 99:L97–L99.

15. Zhu, F., E. Tajkhorshid, and K. Schulten, 2004. Collective diffusion model for water
permeation through microscopic channels. Phys. Rev. Lett. 93:224501.

16. Beitz, E., B. Wu, L. Holm, J. Schultz, and T. Zeuthen, 2006. Point mutations in the
aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and
protons. P. Natl. Acad. Sci. USA 103:269–274.

17. Li, H., H. Chen, C. Steinbronn, B. Wu, E. Beitz, T. Zeuthen, and G. A. Voth, 2011. En-
hancement of Proton Conductance by Mutations of the Selectivity Filter of Aquaporin-1.
J. Mol. Biol. 407:607–620.

18. Chen, T.-Y., 2005. Structure and function of CLC channels. Annu. Rev. Physiol. 67:809–
839.

19. Dutzler, R., E. B. Campbell, M. Cadene, B. T. Chait, and R. MacKinnon, 2002. X-
ray structure of a CLC chloride channel at 3.0 Å reveals the molecular basis of anion
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Figure Legends

Figure 1.

Comparison of PLS- and PCA-based FMA methods for Glu11-Asp20 distance dED (A) of
T4 Lysozyme (T4L). (B/C ) Pearson correlation coefficients between data and model for
PLS- and PCA-based FMA as function of the number of PLS components or PCA vectors
calculated for the model training subset (black, Rm) and the cross-validation subset (red,
Rc). (D/E ) Overlay of data and model for the calculated distances dED as function of time.
The black lines correspond to the MD data, the green to the model training subset and red
to the model cross-validation subset. The models were calculated using 10 components for
PLS-based FMA (D) and 20 PCA eigenvectors for PCA-based FMA (E ). (F/G) Backbone
representation of the ensemble-weighted MCM (ewMCM) contributing to the change in the
distance dED. The red-white-blue color-scaled structures represent the interpolation between
the extremes of the ewMCMs. The PLS- and PCA-based FMA models used to plot the
molecular representations have the same number of components or PCA vectors as the
panels D and E.

Figure 2.

Scalar product analysis of PLS- and PCA-based FMA MCM and ewMCM models derived
from different trajectory parts applied to the distance dED of T4 Lysozyme. (A) and (B)
The upper panels show the T4L distance dED as function of time. The x axis is divided in
four equally spaced sub-trajectories. The mid and lower panels correspond to color-coded
matrices of the scalar products of MCM and ewMCM vectors, respectively. Each (ew)MCM
vector was calculated using one fourth of the T4L trajectory, as indicated in the upper panel.
All the scalar product combinations were calculated for 5 and 10 components for PLS-based
FMA, and 20 and 25 eigenvectors in the case of PCA-based FMA. Panels C and D show
cross-validation correlation coefficients Rc as a function of the basis dimensionality. Indices
of the form i j mean that the model was constructed for fragment i and cross-validated with
fragment j.

Figure 3.

Comparison of PLS- and PCA-based FMA for the degree of channel opening of yeast Aqua-
porin (Aqy1). (A) The degree of opening was defined as the distance between Ala190 and



PLS functional mode analysis 15

the center of mass of residues Pro29 and Tyr104. Each monomer was considered an indepen-
dent channel and therefore the four monomer trajectories were concatenated. The 100 ns
simulation of the S107D mutant used for model training, therefore represent the first 400 ns
of the concatenated trajectory, and the applied lateral pressure simulations the time win-
dow from 400–800 ns. (B/C ) Pearson correlation coefficients between data and model for
PLS/PCA-based FMA as a function of the number of PLS components/PCA vectors cal-
culated for the model training subset (black, Rm) and the cross-validation subset (red, Rc).
(D/E ) Overlay of data and model for the calculated channel opening distance as function
of time. The black lines correspond to the MD data, the green to the model training subset
and red to the cross-validation subset. (F/G) 120 ns of a membrane bending simulation
were used as an extra cross-validation sets (violet line). The models were calculated using
10 components for PLS (D) and 60 PCA vectors for PCA-based FMA (E ). (H ) Side and
bottom view backbone representations of the PLS-based FMA ewMCM contributing to the
change in the channel gating distance. The color-scale (blue-green-red) and the line thick-
ness represents the RMSF of the ewMCMs. S107, Y104, P29 and A190 backbone atoms are
shown as spheres. The model used for PLS- based FMA ewMCM representations has the
same number of components as the model in panel D.

Figure 4.

PLS-based FMA for single-channel water permeability (pf ) of human Aquaporin 1 (hAQP1)
in the presence of a transmembrane voltage. The pf and protein average structures were
calculated within 5 ns trajectory windows and each monomer was considered an independent
channel. The simulations of 6 monomers were used for model training, and 2 independent
monomers for cross-validation. (A) Pearson correlation coefficients between data and model
for PLS-based FMA as a function of the number of PLS components was calculated for the
model training subset (black, Rm) and the cross-validation subset (red, Rc). (B) Overlay of
data and model for the calculated pf values using 30 components (arrow in panel A) as a
function of time. The black lines correspond to the MD data, the green to the model training
subset and red to the cross-validation subset. (C ) Backbone and stick representations of the
amino acids in the ewMCM mode contributing to the change in pf . The color-scale (blue-
green-red) and the thickness of the lines represent the root mean-square fluctuation of the
ewMCM. Red and thicker sticks means amino acids with higher RMSF. (D) Cartoon and
overlay representation of the helices and amino acids contributing to the ewMCM. The color-
scale (red-green-blue) represent the conformations, associated with low (red), intermediate
(green) and high (red) estimated pf values. The side chain motion of R195 asociated with
the low and high pf values is highlighed by the curved arrow. The locations of R195, H180,
N127, F212, I211, W210 and K36 amino acids are indicated in the panels (C ) and (D) by
sticks of their corresponding RMSF or pf conformation color. The model used for PLS-based
FMA ewMCM representations have the same number of components as the model in panel
B.
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Figure 5.

PLS-based FMA analysis for the Ψ angle of the gating glutamate E148 of E. coli CLC
protein. (A) Cartoon representation of CLC-ec1 dimer. E148 is shown in ball and stick
representation. Chlorides occupying the crystallographic binding sites Scen and Sint are
shown as green spheres. (B) Distribution of the E148 Ψ angle for single occupied monomers
at Scen and Sint, or for empty monomers (No-ions). Scen-occupied monomers mostly populate
the α-helical conformation (blue), Sint-occupied populate the β-sheet conformation (red) and
in the empty monomers E148 populate an intermediate (I, green) conformation, between α
and β. (C ) Pearson correlation coefficients between data and model for PLS-based FMA
as a function of the number of PLS components calculated for the model training subset
(black, Rm) and the cross-validation subset (red, Rc). (D) Overlay of data and model for
the calculated CLC-ec1 angle ΨE148 as function of time. The black lines correspond to the
MD data, the green to the model training subset and red to the cross-validation subset.
(E ) Backbone representations of the PLS-based FMA ewMCM contributing to the change
in the ΨE148 angle. (left) The color-scale (blue-green-red) and the thickness of the lines
represent the root mean-square fluctuation of the ewMCMs. (right) Cartoon and overlay
representation of the helices and loops of CLC-ec1, Blue represent the α conformation, green
the intermediate and red the β conformation. The locations of E148, S107, and Y445 are
indicated in both representations by spheres or sticks. The model used for PLS-based FMA
ewMCM representations have the same number of components as the model in panel D. (F )
Path radius and electrostatic potential calculated along the ewMCM. The conformations
correspond to α, I and β for ΨE148. The potential was multiplied by −1 to visualize as wells
the attractive potential on negative particles (like chlorides). Arrows indicate the location
of the central and internal chloride sites.
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