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Thomas Kneib What is Correlation?

What is Correlation?

e Development economics is often faced with data evolving in both time and space.

e Statistical analyses have to take the special structure into account, i.e.
— account for spatio-temporal correlations,
— account for space- and time-varying effects,

— model unobserved heterogeneity due to spatial and temporal variation.

e Are these really different tasks or merely different phrases for the same goal?
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What is Correlation?

e What is (positive) correlation?
=> Observations which are positively correlated behave "similar”.

Autocorrelation: 0.45 Autocorrelation: 0.96

e Correlation is commonly assumed to be a stochastic phenomenon.

e The above data have been generated from deterministic models:

Y = t+ Et Y = Slﬂ(t) + &¢
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Thomas Kneib What is Correlation?

e Temporal correlation is often (at least partly) attributable to a trend function.

e The trend itself is typically introduced by unobserved, temporally / spatially varying
covariates.

e Usually the response is not influenced by time or space directly (no causal relationship).
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Mixed Models I: Classical Perspective

e Longitudinal data: Repeated measurements
Yite, t=1,...,n, t=1....T
on a fixed set of subjects . =1,...,n at time pointst =1,...,T.
e Classical model for such data: Mixed effects / random effects models.
e Simplest example: Random intercepts
Yit = Ty B+ bi + €t
where

b; iid. N(0,7%),
gie iid. N(0,07).
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e Two sources of random variation: Variation on the subject level (b;) and variation on
the measurement level (g;¢).

e Rationale: The observations ¢ are a random sample from the population of individuals.

e The random effects distribution b; i.i.d. N(0,72) describes the distribution of
individual-specific effects b; in this population.

e Corresponding density:

272

1
p(b) o< exp (——b’b)
where b = (b1, ...,b,)".
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Mixed Models I: Classical Perspective

Thomas Kneib
e Estimation in mixed models is based on the joint likelihood

p(y,b) = p(y|b)p(b)

1 1
X exp (—T‘Q(y — XB—-2b)'(y—XB— Zb)) exp (—2—T2b’b) — n%a%x.

e Equivalently, we can consider the joint least-squares criterion

0.2

(y — XB — Zb)(y — XB — Zb) + —b'b — min.
T 3,b
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Mixed Models Il: Marginal Perspective

e Hierarchical formulation of mixed models:

yielbi ~ N(xi,B+ b;,0%)
bi ~ N(0,7%).

e What happens, if we marginalize with respect to the ;7

= Correlation between observations on one individual are induced due to the shared
random effects b;.

e To be more specific: An equicorrelation model is obtained

Var(b;) =

Corr(yity, Yita) = Var(b;) + Var(e;t) T 242 P
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e Marginal model in matrix notation:

where
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Mixed Models Ill: Penalised Likelihood Perspective

e Start with the model equation
Yir = T3+ bi + €y
without a distributional assumption for b;.

e The b; are individual-specific regression coefficients that shall capture effects of
unobserved, individual-specific covariates.

e The number of these effects is large

= Add a ridge penalty to stabilise estimation.
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e Instead of the least squares criterion

(y—XB—2b)(y— X3 — Zb) — Hﬁligl

we minimise the penalised least squares criterion

(y — XB—2b)(y— XB— Zb) —|—)\b/b—>ngigl

e The penalty shrinks parameters b; to zero, in particular if the database for individual
7 1s small.

e The penalised least squares criterion is equivalent to the joint likelihood of the mixed

model with

0.2

99
-
i.e. the error to signal ratio determines the strength of the penalisation.

\ —
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Mixed Models IV: Bayesian Perspective

e Bayesian view: The random effects distribution can be considered as a prior
distribution that expresses our knowledge about the individual-specific effects.
e b; ~ N(0,72) a priori implies that
— we expect the effects to be "not too far” from zero,
— we expect the family of effects in the population to be Gaussian.
= Qualitatively similar to the random effects view.

e No formal differentiation between fixed and random effects: Both are random
quantities but with different a priori knowledge.

p(B) occonst  p(b) x exp (—Lb’b>

272
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e Estimation is based on the posterior

p(y|B,b)p(B)p(b)

p(B,bly) = (1)

o< p(y|3,b)p(b).

e [he posterior mode coincides with the penalised least squares estimate.
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Mixed Models V: Summary

e Four views on the model
Vit = Ty + bi + €t
for longitudinal data:

— Mixed model perspective: b; is a random effect from the population distribution.
— Marginal perspective: the b; induce equicorrelation.

— Penalised likelihood perspective:  the b; are individual-specific regression
coefficients.

— Bayesian perspective: the random effects distribution expresses a priori knowledge.

e Both the mixed model and the Bayesian perspective combine features of the two
further perspectives.

e Different rationales but the same goal: Describe / analyse why observations of one
individual behave more similar than randomly selected measurements.
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e What do we gain by the different perspectives:

— Different estimation schemes have been developed by the different statistical
communities.

— Additional insight in more complicated types of models, e.g.  concerning
identifiability problems when modelling both trend functions and correlation.
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Mixed Models VI: Extensions

Mixed Models VI: Extensions

e Similar considerations can be made for extended models such as

— Models with random slopes:

Yit = wétﬁ + thbz' + Eit.

— Nested multi-level models

Yijt = w;jtﬁ + bz + bij -+ Eqjt-

— Non-Nested multi-level models

Yijt = x;jtﬁ + bz + bj + Eqjt-
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Smoothing and Mixed Maodels

e Consider trend estimation in the simple model

Yt = frend(t) + &, & iid. N(0,07).

e Model the trend function as a polynomial spline (in truncated line representation):

ftrend(t) — 60 + ﬁlt + bl(t — /i1)+ + ...+ bd(t — K,d)_|_.
= Piecewise linear function estimate with changing slopes at the knots & ;.

e In matrix notation
y=XB+2Zb+e.
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(a) Basis functions (b) Scaled basis functions
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e To avoid overfitting, introduce a penalty term for the truncated polynomials:

d
2 _ /
A b7 =MD,
j=1
= Variability of the function estimate is controlled by the smoothing parameter .

e ) large = f(z) approaches a linear function.

e )\ small = f(a:) becomes a very wiggly estimate.
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e Estimate the parameters of the trend function by minimising the penalised least
squares criterion

(y — XB—2Zb)(y — XB — Zb) +)\b’b—>rgigl

with smoothing parameter .
e This is the same objective function as for a mixed model
y=XB+2Zb+¢

with distributional assumptions
€ 0 o’ 0
IRRICIRIAT)

= The smoothing approach for trend estimation can be considered a mixed model
with very specific structure.

where A\ = 02 /72,
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e Consequences:

— Mixed model methodology can be used to estimate the smoothing parameter A
(the ratio of error variance and random effects variance).

— Conditionally on b we are modelling a trend function but marginally the model
implies correlation of the response.

= Simultaneous modelling of trend functions and correlated errors may cause
identifiability problems.

— All four perspectives can be applied to the model, yielding for example a Bayesian
Interpretation.
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Autoregressive Processes as Smoothers

e Consider the model
Yit = xétﬁ + b + €44

where g;; i.i.d. N(0,0?) and b; follows an autoregressive process of order 1 (AR(1))

bt — Oébt_l + Uy, Uy ~~ N(O,TQ).

e Note: b; is now a temporally correlated effect, not an individual-specific effect.
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e Correlation function of the autoregressive process (with parameter «):

p(by, by) = alt=*,

e This is a correlation function in discrete time. The continuous time analogue is the
exponential correlation function

o(bi.b,) = exp (—"f : 3') C a—exp (—%)

e |t can be shown that the temporally correlated effect can be rewritten as

T

by = f(t) = Zp(bt, bs)Vt-

s=1

= The AR(1) assumption is equivalent to a basis function approach.
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(a) Basis functions (b) Scaled basis functions

A unifying perspective on smoothing, mixed models and correlated data 23



Thomas Kneib Autoregressive Processes as Smoothers

e Consequences:
— The AR(1) correlation function can be interpreted as a (radial) basis function.

— A similar relation holds for stochastic processes with different types of correlation
functions.

— The autoregressive process assumption turns into a penalty for the parameter
vector ;.

— The result can be immediately extended to spatial models with spatially
autoregressive errors and spatial trend functions.

— The larger the autoregressive parameter, the smoother the basis function.

— ldentifiability problems when including both a highly correlated autoregressive error
and a flexible trend function.
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(a) data
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A Unifying Framework

e Structured additive regression:
— Combines nonparametric regression, spatial regression, random effects, etc.

— General model equation:

y=filz1) + ...+ fr(zr) +25.

— Examples:
f(z) = f(x) z=x smooth function of a continuous
covariate z,
f(2) = fopat(s) z2=35 spatial effect,
f(z) = f(x1,22) 2z = (x1,x2) interaction surface,
f(z) = b, 2=y i.i.d. frailty by, ¢ is a grouping
index.

— Can be extended to non-Gaussian responses.
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e Generic representation of the different effect types:

— Vectors of function evaluations:
fi=Zjv;

— Prior distribution / random effects distribution / penalty term:

1
p(7y) o< exp (—2—7_27’ jy) : Pen(y) = Ay K.
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e Four different perspectives:
— Penalised likelihood setting:

/

y—Xﬁ—Zijj y—Xﬁ—ZZj*yj —I—Z)\jfy;- jyj—>ﬁ7rflin7
]:1 ]:1 jzl ) yerey IT

— Mixed model perspective: The v, are correlated random effects. Estimation is
based on the joint likelihood

p(y|fyl7'"777’)p(717---77r) — 1max
57717---7%°

— Bayesian view: The mixed model distribution defines a prior for ;.

— Marginal view: After integrating out the random effects v;, we obtain a marginal

model
y~ N(XB, V),
where V' is a covariance matrix with correlations induced by the random effects.
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Conclusions

e Four different perspectives on semiparametric regression.
e Though looking different at first sight, there is a close connection between all them.

e In particular, semiparametric smoothing and modelling of correlations are related
tasks.

e |dentifiability problems can be encountered when flexibly modelling correlations and
temporal / spatial trend functions.

e The different perspectives allow to derive different estimation techniques.
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