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Which p-values can you expect? 
 

Which p-values can you expect to observe if there is a true effect, and you repeat the 

same study one-hundred thousand times? And which p-values can you expect if there is 

no true effect, and you repeat the same study one-hundred thousand times? Take a 

moment to try to answer these two questions for yourself, before you will learn the 

answer in this assignment. 

 

In your life, you might never do enough studies to get a feel for which p-values you should 

expect Luckily, we can easily simulate studies, calculate a p-value for each simulated 

study, and see what happens. Understanding which p-values you can expect is very 

important, because it will help you to better interpret p-values. 

 

Which p-values you can expect is completely determined by the statistical power of the 

study, or the probability that you will observe a significant effect, if there is a true effect. 

The statistical power ranges from 0 to 1. Let’s get started by performing some 

simulations. Open the file WhichPvaluesCanYouExpect.R. The first two lines of the script 

will install pwr (a package to perform power calculations). In line 7 you can set the number 

of simulations (the higher the number the more accurate the results, but the longer it 

takes – leave them at 100.000 for this assignment). The script simulates one-sample t-

tests. The idea is that we simulate IQ scores for a group of people (line 10 determines the 

sample size, which is set to 26 by default). We know the standard deviation of IQ scores 

is 15 (specified in line 11). For now, we will set the mean IQ score in the simulated group 

to 106 (specified in line 9), which we will compare to the average IQ score of all people 

(which is known to be 100 – that’s how IQ tests are normalized). We are testing if the 

people in our simulated sample have a higher IQ than average (and we know the correct 

answer is ‘yes’, because we made it so in the simulation). 

 

In the simulation, we generate n (by default 26) normally distributed IQ scores with a 

mean of M (106 by default) and a standard deviation of 15 (the code to simulate data is 

in line 18). We then perform a one-sample t-test (line 19) and store the p-value (line 20). 

Run the script by selecting all lines (click on the script, hit CTRL+A to select all lines, and 

then hit CTRL+ENTER to run the entire script). 

 

The script will take a while to run, simulating 100.000 studies, and then it will create a plot 

of all observed p-values that should look similar to the one below. 
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On the x-axis we see p-values from 0 to 1 in 20 bars, and on the y-axis we see how 

frequently these p-values were observed. There is a horizontal red dotted line that 

indicates an alpha of 5% (located at a frequency of 100.000*0.05 = 5000) – but you can 

ignore this line for now. In the title of the graph, the statistical power that is achieved in 

the simulated studies is given (assuming an alpha of 0.05): The studies have 50% power.  

 

Q1: Since the statistical power is the probability of observing a statistically significant 

result, if there is a true effect, we can also see the power in the figure itself. Where? 

A) We can calculate the number of p-values larger than 0.5, and divide them by the 

number of simulations. 

B) We can calculate the number of p-values in the first bar (which contains all ‘significant’ 

p-values from 0.00 to 0.05) and divide the p-values in this bar by the total number of 

simulations. 

C) We can calculate the difference between p-values above 0.5 minus the p-values below 

0.5, and divide this number by the total number of simulations. 

D) We can calculate the difference between p-values above 0.5 minus the p-values below 

0.05, and divide this number by the number of simulations.  
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Q2: Change the sample size in line 10 from n<-26 to n<-51. Run the simulation by selecting 

all lines and pressing CTRL+Enter. What is the power in the simulation now that we have 

increased the sample size from 26 people to 51 people? 

A) 55%   C) 80% 

B) 60%   D) 95% 

 

Q3) If you look at the distribution of p-values, what do you notice? 

A) The p-value distribution is exactly the same as with 50% power 

B) The p-value distribution is much steeper than with 50% power 

C) The p-value distribution is much flatter than with 50% power 

D) The p-value distribution is much more normally distributed than with 50% power 

 

Feel free to increase and decrease the sample size and see what happens if you run the 

simulation. When you are done exploring, make sure that n<-51 in line 10. 

 

Q4) What would happen when there is no true difference between our simulated samples 

and the average IQ score? In this situation, we have no probability to observe an effect, 

so you might say we have ‘0 power’. Some people prefer to say power is not defined when 

there is no true effect. I tend to agree, but we can casually refer to this as 0 power. Change 

the mean IQ score in the sample to 100 (set M<-106 to M<-100 in line 9) There is now no 

difference between the average IQ score, and the mean IQ in our simulated sample. Run 

the script again. What do you notice?  

 

A) The p-value distribution is exactly the same as with 50% power 

B) The p-value distribution is much steeper than with 50% power 

C) The p-value distribution is basically completely flat (ignoring some minor variation due 

to random noise in the simulation) 

D) The p-value distribution is normally distributed 

 

The question below builds on the simulation above where there was no true difference 

between the groups.  
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Q5) Look at the leftmost bar in the plot, and look at the frequency of p-values in this bar 

What is the formal name for this bar?  

 

A) The power (or true positives) 

B) The true negatives 

C) The Type 1 error (or false positives) 

D) The Type 2 error (or false negatives) 

 

When there is no true effect, p-values are what is called ‘uniformly distributed under 

the null’. Every p-value is equally likely when the null hypothesis is true, and every bar in 

the graph will contain 5% of all the p-values (as indicated by the dotted red line). When 

there is no true effect, a p-value of 0.08 is just as likely as a p-value of 0.98. This is 

important to realize. When there is no true effect, p-values are uniformly distributed. 

When there is a true effect, the p-value distribution depends on the power, and the higher 

the power, the more p-values fall below 0.05, and the steeper the p-value distribution 

becomes. 

 

Let’s take a look at just the p-values below 0.05. The goal of the next few steps in this 

assignment is to cure you from a bi-polar p-value disorder, where people incorrectly think 

all p-values > 0.05 are support for the null-hypothesis, and all p-values below 0.05 are 

support for the alternative hypothesis. Bear with me for the next few steps – it will be 

worth it. In line 15, you will find the variable that determines how many bars there are, in 

the statement bars<-20. Change it to bars<-100. We will now get 1 bar for p-values 

between 0 and 0.01, one bar for p-values between 0.01 and 0.02, and 100 bars in total. 

The red dotted line will now indicate the frequency of p-values when the null hypothesis 

is true, where every bar contains 1% of the total number of p-values. We only want to 

look at p-values below 0.05, and we will cut off the plot at 0.05. In line 33, change xlim = 

c(0, 1) to xlim = c(0, 0.05). Instead of seeing all p-values between 0 and 1, we will only see 

p-values between 0 and 0.05. Re-run the simulation (still with M<-100). We see the same 

uniform distribution, but now every bar contains 1% of the p-values, so the p-value 

distribution is very flat and almost impossible to see (we will zoom in on the y-axis later 

this assignment). The red line now clearly gives the frequency for each bar, assuming the 

null hypothesis is true. 

 

Change the mean in the simulation in line 9 to M<-107 (remember n is still 51 in line 10). 

Re-run the simulation. It’s clear we have very high power. Most p-values are in the left-

most bar, which contains all p-values between 0.00 and 0.01.  
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Q6) The plot from the last simulation tells you we have 90.5% power. This is the power if 

we use an alpha of 5%. But we can also use an alpha of 1%. What is the statistical power 

we have in the simulated studies when we would use an alpha of 1%, looking at the graph? 

Pick the answer closest to the answer from your simulations. 

 

A) ~90% 

B) ~75% 

C) ~50% 

D) ~5% 

 

To be able to look at the p-values around 0.03 and 0.04, we will zoom in on the y-axis as 

well. In line 33 change ylim=c(0, nSims) to ylim = c(0, 10000). Re-run the script. You’ll get a 

plot that looks like the one below: 

 

 

 

Change the mean in our sample to 108 in line 9 (M<-108), and leave the sample size at 

51. Run the simulation. Look at how the distribution has changed compared to the graph 

above. 
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Look at the fifth bar from the left. This bar now contains all the p-values between 0.04 

and 0.05. You will notice something peculiar. Remember that the red dotted line indicates 

the frequency in each bar, assuming the null hypothesis is true. See how the bar with p-

values between 0.04 and 0.05 is lower than the red line. We have simulated studies with 

96% power. When power is very high, p-values between 0.04 and 0.05 are very rare – they 

occur less than 1% of the time (most p-values are smaller than 0.01). When the null 

hypothesis is true, p-values between 0.04 and 0.05 occur exactly 1% of the time (because 

p-values are uniformly distributed). Now ask yourself: When you have very high power, 

and you observe a p-value between 0.04 and 0.05, is it more likely that the null-hypothesis 

is true, or that the alternative hypothesis is true? Given that you are more likely to observe 

p-values between 0.04 and 0.05 when the null hypothesis is true, than when the 

alternative hypothesis is true, you should interpret a p-value significant with an alpha of 

0.05 as more likely when the null hypothesis is true, than when the alternative hypothesis 

is true. I said I’d cure you from your bi-polar p-value disorder, didn’t I? 

 

In our simulations, we know there is a true effect or not, but in the real world, you don’t 

know. When you have very high power, use an alpha level of 0.05, and find a p-value of p 

= .045, the data is surprising, assuming the null hypothesis is true, but it is even more 

surprising, assuming the alternative hypothesis is true. This shows how a significant p-

value is not always evidence for the alternative hypothesis.  

 

Q7) When you know you have very high (e.g., 98%) power for the smallest effect size you 

care about, and you observe a p-value of 0.045, what is the correct conclusion? 

A) The effect is significant, and provides strong support for the alternative hypothesis. 

B) The effect is significant, but it is without any doubt a Type 1 error. 

C) With high power, you should use an alpha level that is smaller than 0.05, and therefore, 

this effect can not be considered significant. 

D) The effect is significant, but it is more likely that the null-hypothesis is true, than that 

the alternative hypothesis is true. 

If this sounds counterintuitive, that’s understandable. This is known a Lindley’s paradox. 

A result can be unlikely when the null hypothesis is true, but it can be even more unlikely 

assuming the alternative hypothesis is true, and power is very high. For this reason, 

some researchers have suggested using lower alpha levels in very large sample sizes, and 

this is probably sensible advice. Other researchers have suggested using Bayesian 

statistics (which we will encounter in assignment 2.2), which is also sensible advice. Note 

that it is quite unlikely to find a paradoxically high p-value (e.g., of p = 0.045) when the 

alternative hypothesis is true – but it will happen. 

https://en.wikipedia.org/wiki/Lindley's_paradox
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Q8) Play around with the sample size and the mean IQ in the group (lines 9 and 10, and 

thus, with the statistical power in the simulated studies). Look at the simulation result for 

the bar that contains p-values between 0.04 and 0.05. The red line indicates how many 

p-values would be found in this bar if the null-hypothesis was true (and is always at 1%). 

At the very best, how much more likely is a p-value between 0.04 and 0.05 to come from 

a p-value distribution representing a true effect, than it is to come from a p-value 

distribution when there is no effect? You can answer this question by seeing how much 

higher the bar of p-values between 0.04 and 0.05 can become. If at best the bar in the 

simulation is five times as high at the red line (so the bar shows 5% of p-values end up 

between 0.04 and 0.05, while the red line remains at 1%), then at best p-values between 

0.04 and 0.05 are five times as likely when there is a true effect than when there is no 

true effect.  

 

A) At best, p-values between 0.04 and 0.05 are equally likely under the alternative 

hypothesis, and under the null hypothesis. 

B) At best, p-values between 0.04 and 0.05 are approximately 4 times more likely under 

the alternative hypothesis, than under the null hypothesis. 

C) At best, p-values between 0.04 and 0.05 are ~10 times more likely under the alternative 

hypothesis, than under the null hypothesis. 

D) At best, p-values between 0.04 and 0.05 are ~30 times more likely under the alternative 

hypothesis, than under the null hypothesis. 

 

For this reason, statisticians warn that p-values just below 0.05 (e.g., between 0.04 and 

0.05) are at the very best weak support for the alternative hypothesis. If you find p-values 

in this range, consider replicating the study, or if that’s not possible, interpret the result 

at least a bit cautiously. 

 

If you are interested in the mathematical explanation of p-value distributions, instead of 

the current explanation that is based on simulations, you can read Hung, O’Neill, Bauer, 

& Kohne, 1997.  
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