Non-Equilibrium Statistical Physics

AG Peter Sollich

Institut für Theoretische Physik, Georg-August-Universität Göttingen

Motivation

Equilibrium statistical physics

- · Well-defined framework
- · Fluctuation-response relations for dynamics
- · Changes of scale / coarse-graining straightforward

$$Z = \operatorname{Tr} e^{-\beta H} \rightarrow ?$$

Non-equilibrium statistical physics

- · Many / most systems of interest not at equilibrium
- May take too long to equilibrate: transients matter, aging
- Or be driven from outside (biological systems), which breaks detailed balance (microscopic reversibility)
- Often no Hamiltonian, system defined purely by dynamics (e.g. agent-based models, network dynamics)
- · Even this dynamical description may be unknown

Research questions

- · What general frameworks for non-equilibrium are there?
- How do we change scale or focus on subsystems?
- What structures and behaviours can non-equilibrium dynamics produce?
- How do we analyse systems with many different timescales?
- · Can we learn dynamical models from data?

Techniques you can learn

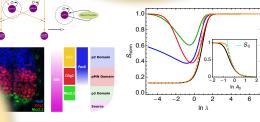
- Path integrals (coherent states, Martin-Siggia-Rose)
- · Trajectory thermodynamics, large deviation techniques
- Projection approaches (nonlinear Zwanzig-Mori)
- · Cavity methods for networks
- · Long-time scaling, stochastic simulation
- Bayesian inference, variational approximations

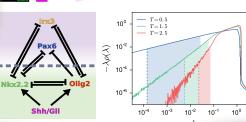
Sample areas for Bachelor projects

Fluctuations in reaction networks

- Chemical reaction / protein interaction networks, gene regulation, ...
- Problem: strong fluctuations at small copy numbers (e.g. genes)
- Approximate path integrals using techniques from spin glasses
- Estimate for data likelihood, can use to learn parameters

Dynamics with non-Gaussian noise

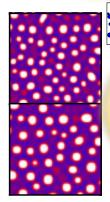

- Relevant in bacterial swimmer suspensions, granular gases, ...
- Exact solutions in low noise limit
- Time for crossing potential barrier?
- Is non-Gaussian noise more efficient than thermal noise?
- Effects of active noise (selfpropulsion)? Dimensionality?


Trajectory bias, dynamical phases

- Study dynamical large deviations: trajectories with high current, activity
- Probe by biasing trajectory distribution: dynamical phase transitions
- Interaction of bias and aging?
- Effective dynamics in biased system?

Subnetworks,

- Most biological networks too large for intuitive understanding: reduce to subnets
- Gives memory functions, can be nonlinear (for multiple fixed points)
- Identify dynamical modules from memory?
- Extend to general coarse-graining beyond local equilibrium?



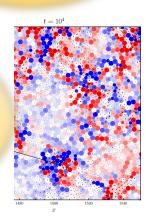
2 3

Dynamics on networks

- Simple picture of amorphous material: hopping on network of metastable states
- Non-eq dynamics: competition of energetic (barriers) & entropic (connectvity) effects
- Flexible model: energy-connectivity correlations (local minima, saddles),
- Related: diffusion in confined environments

Phase s

Phase separation in complex mixtures


- Relevant in soft matter (colloids), biology (cytoplasm, lipid membranes)
- How do particle species redistribute between phases? Effect of crowding?
- Stabilization of non-equilibrium structures by slow kinetics?
- Polymers vs spherical particles?

 Effect of active components?

Athermal aging

- Amorphous materials (glass, sand, emulsions) trapped in metastable states
- Local plastic rearrangements can allow movement, leading to aging
- How to model & analyse dynamics?
- · Differences entropic glass & elastic jam?
- Effect of pinned particles?
- Extension to active materials?

 Relaxation time spectra?

