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Abstract

This paper proposes a numerically simple method for locally adaptive smooth-

ing. The heterogeneous regression function is modeled as a penalized spline

with a varying smoothing parameter modeled as another penalized spline.

This is formulated as a hierarchical mixed model, with spline coefficients

following zero mean normal distribution with a smooth variance structure.

The modeling framework is similar to Baladandayuthapani, Mallick & Car-

roll (2005) and Crainiceanu, Ruppert, Carroll, Adarsh & Goodner (2006). In

contrast to these papers the Laplace approximation of the marginal likelihood

is used for estimation. This method is numerically simple and fast. The idea

is extended to spatial and non-normal response smoothing.

Keywords: Function of locally varying complexity; Hierarchical mixed model;

Laplace approximation

∗ORSTAT, K.U. Leuven, Naamsestraat 69 - bus 3555, B-3000 Leuven, Belgium (email:
Tatyana.Krivobokova@econ.kuleuven.be)

†Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N.Wolfe
St. E3636 Baltimore, MD 21205 (email: ccrainic@jhsph.edu)

‡Department of Economics, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
(email: gkauermann@wiwi.uni-bielefeld.de)

1



1 Introduction

Penalized spline smoothing has become increasingly popular in recent years. Origi-

nally introduced by O’Sullivan (1986) it was Eilers & Marx (1996) who gave it the

name P-spline smoothing. The idea is quite simple. A smooth unknown regression

function is estimated by assuming a functional parametric shape constructed via a

high dimensional basis function. The dimension of the basis is chosen generously

to achieve the desired flexibility, while the basis coefficients are penalized to ensure

smoothness of the resulting functional estimates. The idea of penalized splines has

led to a powerful and applicable smoothing technique which is demonstrated and

motivated in the book by Ruppert, Wand & Carroll (2003). The actual dimension

of the basis used has little influence on the fit as has been shown in Ruppert (2002)

who concludes that “at most 35 to 40 knots (basis functions) could be recommended

for all sample sizes and for all smooth functions without too many oscillations”.

The penalized spline methodology is particularly appealing because it can be shown

that the penalized spline fit is the Best Linear Unbiased Predictor (BLUP) in a par-

ticular mixed model Wand (2003), Ruppert, Wand & Carroll (2003), Kauermann

(2004). Thus, standard mixed models software can be used for smoothing, see Ngo

& Wand (2004), Crainiceanu, Ruppert & Wand (2005) or Lang & Brezger (2004).

Even though penalized spline smoothing is simple and practical, using a single

penalty parameter may fail to correctly capture the features of functions that ex-

hibit strong heterogeneity. This type of function occurs, for example, in applications

where the signal changes rapidly in some regions while remaining relatively smooth

in others. Regression with strongly heterogenous mean function has been addressed

before in the literature and a number of solutions are available. For kernel based

methods Fan & Gijbels (1995) and Herrmann (1997) may serve as references. For
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spline smoothing Luo & Wahba (1997) suggested hybrid adaptive splines. The idea

is to replace the n dimensional spline basis, where n is the sample size, by an adap-

tively selected subset of the basis functions. This idea has similarities to adaptive

knot selection for regression splines as suggested in Friedman & Silverman (1989).

An alternative approach is to allow the smoothing parameter to vary locally. Using

a reproducing kernel Hilbert space formulation this has been suggested in Pintore,

Speckman & Holmes (2005) using piecewise constant smoothing parameters. Sim-

ilarly, using the penalized spline idea Ruppert & Carroll (2000) allow the penalty

to act differently for each spline basis, where the smoothing parameters are then

selected using a multivariate generalized cross validation. A similar approach is

suggested in Wood, Jiang & Tanner (2002) working with mixtures of splines in a

fully Bayesian framework.

In this paper, we focus on a framework similar to the one in Ruppert & Carroll (2000)

and achieve spatial adaptivity by imposing a functional structure on the smoothing

parameters. This is in line with Baladandayuthapani, Mallick & Carroll (2005) and

Crainiceanu, Ruppert, Carroll, Adarsh & Goodner (2006) who also estimate the er-

ror process variance function. However, these two papers require the use of Bayesian

MCMC methods and are limited to the case of normal responses. Our paper shows

how the MCMC techniques can be circumvented by simple Laplace approximation.

While this might be viewed as a small step back in terms of methodology, it actually

is a forward leap in terms of numerical simplicity. This allows us to develop fast R

software and extend the methodology to non-normal responses.

The paper is organized in Sections that contain their own comparative simulation

studies. Section 2 introduces our spatially adaptive modeling methodology. Section

3 extends the methods to spatial smoothing. Section 4 generalizes the approach to
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the non-normal responses and provides an example of adaptive bivariate smoothing

for binary data. Section 5 contains our conclusions.

2 Smoothly varying local penalties for P-spline

regression

2.1 Hierarchical penalty model

We start with the following model

yi ∼ N{m(xi), σ
2
ε}, i = 1, ..., n, (1)

where m(x) is a function modeled as a truncated polynomial spline

m(x) = β0 + β1x + ... + βqx
q +

Kb∑
s=1

bs{x− τ (b)
s }q

+, (2)

τ
(b)
1 , ..., τ

(b)
Kb

are knots covering the range of xs, and {x−τ
(b)
s }q

+ is equal to {x−τ
(b)
s }q if

{x−τ
(b)
s } > 0 and zero otherwise. The dimension Kb of the basis is chosen generously

and the knots τ
(b)
s are placed over the range of xs, e.g. at the empirical quantiles of xs.

In practice we follow the suggestion of Ruppert (2002) and set Kb ≥ min(n/4, 40).

The penalized spline approach is to impose a penalty on the coefficients bs in (2).

A standard approach is to minimize the sum of squares plus a quadratic penalty

λbT Db, where λ is the penalty parameter and D is the penalty design matrix. For

truncated polynomials the matrix D is the identity matrix and the penalty is λbT b.

For B-splines the penalty is constructed from differences between neighboring spline

coefficients (see Eilers & Marx, 1996). The methodology presented in this paper

is developed for any type of penalized splines and different basis functions will be

used for illustration. Notational simplicity is our only reason for using truncated

polynomial bases.

An important feature of penalized spline smoothing is its link to linear mixed models.
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It can be shown that the penalized spline fit is the BLUP in a particular mixed

model. More precisely, in this model b ∼ N(0, σ2
bD

−) where b is the vector of spline

coefficients, σ2
b = σ2

ε /λ, and D− is a (generalized) inverse of D. For truncated

polynomials D = I and b ∼ N(0, σ2
bI). One limitation of this approach is that a

single parameter, σ2
b , is used to shrink all the spline coefficients. Because of the

global nature of the smoothing parameter, σ2
b , information is borrowed from regions

exhibiting high oscillations to regions without and viceversa. The Doppler curve in

Figure (1) is a typical example of such a complex function. To avoid this pitfall we

allow the coefficients b1, ..., bKb
to have different prior variances

bs ∼ N [0, σ2
b{τ (b)

s }], s = 1, ..., Kb,

and assume that the shrinkage variance process σ2
b{τ (b)

s } is a smooth function mod-

eled as a log penalized spline

σ2
b{τ (b)} = exp[γ0 + γ1τ

(b) + ... + γpτ
(b)p

+
Kc∑
t=1

ct{τ (b) − τ
(c)
t }p

+], (3)

where τ
(c)
1 , ..., τ

(c)
Kc

is a second layer of knots covering the range of τ
(b)
1 , . . . , τ

(b)
Kb

. The-

oretically we could have Kc = Kb but in practice we choose Kc much smaller than

Kb. Our hierarchical penalized smoothing model is completed by the shrinkage as-

sumption ct ∼ N(0, σ2
c ), t = 1, . . . , Kc, where the variance σ2

c is constant. We now

rewrite the model in matrix form. Let

Y =




y1
...

yn


 , Xb =




1 . . . xq
1

...
...

1 . . . xq
n


 , Zb =



{x1 − τ

(b)
1 }q

+ . . . {x1 − τ
(b)
Kb
}q

+
...

...

{xn − τ
(b)
1 }q

+ . . . {xn − τ
(b)
Kb
}q

+


 ,

β = (β0, . . . , βq)
T , and b = (b1, . . . , bKb

)T . We also define

Xc =




1 τ
(b)
1 . . . τ

(b)p

1
...

...

1 τ
(b)
Kb

. . . τ
(b)p

Kb


 , Zc =



{τ (b)

1 − τ
(c)
1 }p

+ . . . {τ (b)
1 − τ

(c)
Kc
}p

+
...

...

{τ (b)
Kb
− τ

(c)
1 }p

+ . . . {τ (b)
Kb
− τ

(c)
Kc
}p

+


 .
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Thus, our hierarchical smoothing model can be written as

Y |b, c = Xbβ + Zbb + ε, ε ∼ N(0, σ2
ε In),

b|c ∼ N(0, Σb), Σb = diag{exp(Xcγ + Zcc)},

c ∼ N(0, σ2
cIKc). (4)

The marginal likelihood of model (4) is

L(β, γ, σ2
ε , σ

2
c ) = f(Y ; β, γ, σ2

ε , σ
2
c )

= (2π)−
(n+Kc)

2 σ−n
ε σ−Kc

c

∫

RKc

exp{−g(c)}dc, (5)

where

g(c) =
1

2
log |Vε|+ cT c

2σ2
c

+
(Y −Xbβ)T V −1

ε (Y −Xbβ)

2σ2
ε

,

and Vε = In + ZbΣbZ
T
b /σ2

ε . Note that Σb and Vε depend on c and γ, but this

additional notational burden will be omitted throughout the paper. The integral

in (5) is not available analytically, which explains why other authors chose to use

Bayesian MCMC techniques. In contrast, we use the Laplace approximation, which

is justifiable because Kc and Kb are bounded while sample size n is growing, i.e.

Kc < Kb ¿ n. Thus, the Laplace approximation has an error of order O(n−1)

(see Severini, 2000), which makes it an attractive alternative to simulation based

techniques. The Laplace log-likelihood approximation is, up to a constant,

−2l(β, γ, σ2
ε , σ

2
c ) ≈ n log σ2

ε + Kc log σ2
c + log |Vε(ĉ)|+ log |Icc(ĉ)|

+ ĉT ĉ/σ2
c + (Y −Xbβ)T V −1

ε (ĉ)(Y −Xbβ)/σ2
ε , (6)

where ĉ is the solution to

∂g(ĉ)

∂ci

=
1

2
tr

(
V −1

ε

∂Vε

∂ci

)
+

ci

σ2
c

− 1

2σ2
ε

(Y −Xbβ)T V −1
ε

∂Vε

∂ci

V −1
ε (Y −Xbβ) = 0, (7)
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{Icc(c)}ij = E

(
∂2g(c)

∂ci∂cj

∣∣∣∣ c

)
=

δij

σ2
c

+
1

2
tr

(
V −1

ε

∂Vε

∂ci

V −1
ε

∂Vε

∂cj

)
, (8)

and δij is Kronecker’s delta. It is easy to show that the derivative appearing in the

above equations results in ∂Vε/∂ci = Zbdiag(Zc,i)ΣbZ
T
b /σ2

ε , where Zc,i stands for the

ith column of the matrix Zc. The prediction of b is defined by ZT
b V −1

ε (y −Xbβ) =

σ2
ε Σ

−1
b b̂ and tr (V −1

ε ∂Vε/∂c) = ZT
c wdf , where wdf is the Kb dimensional vector of

diagonal elements of A := ZT
b Zb(σ

2
ε Σ

−1
b + ZT

b Zb)
−1. Thus, (7) and (8) become

∂g(c)

∂c
= −1

2
ZT

c

(
Σ−1

b b̂2 − wdf

)
+

c

σ2
c

= 0,

and

Icc(c) = E

(
∂2g(c)

∂c∂cT

∣∣∣∣ c

)
=

1

2
ZT

c diag(vdf )Zc +
IKc

σ2
c

,

respectively. Here vdf is the Kb dimensional vector of diagonal elements of A2. Note

that dfb =
∑Kb

s=1 wdf = 1T
Kb

wdf is the number of degrees of freedom used for fitting b.

Note that ∂vdf/∂γi = 2diag{(A2−A3)diag(Xc,i)} with Xc,i as the ith column of the

matrix Xc indicating that the weights vdf vary very slowly as a function of γ. Thus,

using this observation we can estimate γ and c simultaneously using the following

iterated weighted least squares (IWLS) algorithm. If θ = (γT , cT )T the algorithm

starts by setting

θ̂ =
1

2

(
1

2
W T

c diag (vdf )Wc +
Dc

σ2
c

)−1

W T
c diag (vdf ) u, (9)

where Wc = (Xc, Zc), Dc = diag{0(p+1)×(p+1), IKc}, and u = Wcθ+diag(v−1
df )(Σ−1

b b̂2−
wdf ). Minimizing (6) for fixed θ̂ one obtains

σ̂2
c = ĉT ĉ/wc

df

β̂ = (XT
b V −1

ε (θ̂)Xb)
−1XT

b V −1
ε (θ̂)y, (10)

σ̂2
ε = (y −Xbβ̂)T V −1

ε (θ̂)(y −Xbβ̂)/n,
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with wc
df = tr(Zcdiag(vdf )Z

T
c I−1

cc /2) and obvious definition for Vε(θ). Finally, we

obtain the estimated best linear unbiased predictor (EBLUP) via

b̂ = Σ̂bZ
T
b V̂ −1

ε (y −Xbβ̂)/σ̂2
ε .

The latter steps are standard in linear mixed model methodology. Estimation can

now be carried out using the EM type algorithm (see e.g. Searle, Casella, & Mc-

Culloch, 1992 or Breslow & Clayton, 1993) by iterating between (9) and (10) until

convergence. It should be noted that the estimation consists of two simple steps and

is, therefore, numerically fast. In fact, for n = 1000 the fit is obtained in seconds

on standard computers. In contrast Bayesian MCMC methods (Crainiceanu, Rup-

pert, Carroll, Adarsh & Goodner, 2006 or Baladandayuthapani, Mallick & Carroll,

2005) require more than 10 minutes on similar computers. As we will show in subse-

quent sections our proposed method can be extended to non-normal responses and

is robust to small changes of the model. This allowed us to develop the R package

“AdaptFit” which implements the methodology described in this paper (please see

the Appendix).

2.2 Restricted maximum likelihood

The above results are presented for maximum likelihood estimates. The use of

restricted maximum likelihood (REML) is, however, more common in mixed models

(see Harville, 1977). The restricted maximum log-likelihood for the model (4) is

lR(β, γ, σ2
ε , σ

2
c ) = l(β, γ, σ2

ε , σ
2
c )−

1

2
log |XT

b V −1
ε (ĉ)Xb/σ

2
ε |,

with l(β, γ, σ2
ε , σ

2
c ) as given in (6). The estimation method is similar to the one in

Section 2.1, with the matrix A in wdf and vdf replaced by

AR = A− ZT
b V −1

ε Xb(X
T
b V −1

ε Xb)
−1XT

b Zb(Z
T
b Zb + Σ−1

b σ2
ε )
−1,
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and the variance estimate replaced by σ̂2
ε = (y−Xbβ̂)T V −1

ε (θ̂)(y−Xbβ̂)/(n− q−1).

In our performance study the ML and REML methods provided similar results.

2.3 Variance estimation

We denote by m̃(x)|c = Xbβ̃+Zbb̃|c the BLUP of the function m(x)|c = Xbβ+Zbb|c,
where β̃ = (XT

b V −1
ε Xb)

−1XT
b V −1

ε y and b̃|c = ΣbZ
T
b V −1

ε (y −Xbβ̃)/σ2
ε . In the mixed

model framework the function m(x)|c is random because b is random and m̃(x)|c is

unbiased for m(x)|c. Thus, confidence intervals for m(x)|c can be obtained from

{m̃(x)−m(x)}|c ∼ N [0, Var{m̃(x)−m(x)|c}],

where Var{m̃(x) −m(x)|c} = σ2
ε S(θ) = σ2

ε Wb{W T
b Wb + σ2

ε Db(θ)}−1W T
b with Wb =

(Xb, Zb) and Db(θ) = diag{0(q+1)×(q+1), Σ
−1
b }. Using the delta method and unbiased-

ness of m̃(x)|c one can approximate the unconditional variance by

Var{m̃(x)−m(x)} = E[Var{m̃(x)−m(x)|c}] + Var[E{m̃(x)−m(x)|c}] ≈ σ2
ε S(ĉ).

Let m̂(x)|c = Xbβ̂ + Zbb̂|c denote the EBLUP obtained from m̃(x)|c by plugging in

the estimates of variance parameters. This can be used to obtain a plug in estimate

V̂ar{m̂(x)−m(x)} ≈ σ̂2
ε S(θ̂).

The variance estimate can also be justified in the Bayesian framework. Assuming

that the parameters Σb = diag{exp(Wcθ)} and σ2
ε are known, the posterior distri-

bution of m(x) is N{m̂(x, θ), σ2
ε S(θ)}, where m̂(x, θ) = S(θ)y. An empirical Bayes

approach would replace the unknown values Σb and σ2
ε in the prior by estimates and

then treat these parameters as if they were known. Thus, the approximate posterior

distribution of m(x) is N{m̂(x, θ̂), σ̂2
ε S(θ̂)}, yielding the same confidence intervals

as the frequentist mixed model approach.

The variance formula is simple but does not account for the estimation variability
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of θ, the parameters of the shrinkage process. This is the price to pay when using

Laplace’s method instead of a full Bayesian approach. For further discussion we

refer to Morris (1983), Laird & Louis (1987), Kass & Steffey (1989) or Ruppert &

Carroll (2000). To correct for this additional variability, we use the delta-method

correction proposed by Kass & Steffey (1989) and obtain

Var{m(x)|y} = E[Var{m̂(x)|θ̂, y}] + Var[E{m̂(x)|θ̂, y}]

≈ σ̂2
ε S(θ̂) +

(
∂m̂(x, θ)

∂θ

∣∣∣∣
θ=θ̂

)T

Var(θ̂)

(
∂m̂(x, θ)

∂θ

∣∣∣∣
θ=θ̂

)
.

As estimate of Var(θ̂) one can use the inverse of the Fisher information matrix Iθθ(θ̂)

obtained from the last iteration of the estimation algorithm. The derivative in the

last term, ignoring the dependence of σ̂2
ε on θ, is

∂m̂(x, θ)

∂θi

∣∣∣∣
θi=θ̂i

= σ̂2
ε Wb(W

T
b Wb + σ̂2

ε D̂b)
−1W̃c,iD̂b(W

T
b Wb + σ̂2

ε D̂b)
−1W T

b y,

with D̂b = Db(θ̂) and W̃c,i = diag{0(q+1)×(q+1),Wc,i}, where Wc,i is the i-th column

of the matrix Wc.

2.4 Numerical implementation

Our proposed algorithm is simple and can be presented as a sequence of mixed model

fits using standard mixed effects software:

1. Obtain initial estimates for all parameters from a non-adaptive fit, using any

mixed model software;

2. Get next estimates for θ̂ and σ̂2
c from (9) and (10);

3. Update estimates for the remaining parameters with a mixed model software,

taking the estimated variance matrix Σ̂b = diag{exp(Wcθ̂)} into account;
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4. Iterate between 2 and 3 until convergence.

We implemented this algorithm in the package “AdaptFit” described below. We

compared B-splines of different degrees and penalty orders, quadratic and cubic

truncated polynomials as well as cubic thin plate splines. Although all spline bases

produced almost indistinguishable results, the cubic thin plate splines were slightly

more numerically stable and were preferred in the subsequent simulation studies.

2.5 Simulations and comparisons with other univariate
smoothers

We performed a number of simulations. A particular focus is to compare our results

with those reported in Ruppert & Carroll (2000) and Baladandayuthapani, Mallick

& Carroll (2005). First, for n = 400 x equally spaced on [0, 1] and independent

εi ∼ N(0, 0.22) we examined the regression function

m1(x) =
√

x(1− x) sin

{
2π(1 + 2(9−4j)/5)

x + 2(9−4j)/5

}
,

with j = 6. We performed 500 simulations with Kb = 80 and Kc = 20, choosing the

number of knots to be consistent with Ruppert & Carroll (2000). The top plot of

Figure 1 shows the fit and 95% confidence intervals for one simulated data set. The

corresponding estimated variance of random effects is shown in the middle plot. The

average MSE over all x’s obtained as AMSE = n−1
∑n

i=1{m̂(xi) −m(xi)}2 equals

0.0034, which is comparable with 0.0027 reported in Baladandayuthapani, Mallick

& Carroll (2005) and 0.0026 of Ruppert & Carroll (2000). We also computed the

pointwise coverage probabilities of the 95% confidence intervals over all 500 simu-

lated datasets. The smoothed pointwise coverage probabilities can be seen in the

bottom plot of Figure 1. For small values of x ≤ 0.1, i.e. in the region with low

signal-to-noise ratio, there is clear under-coverage but beyond 0.1 the coverage prob-
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ability exceeds 95% being slightly conservative. The average coverage probability is

94.95%.

Next, we considered the heterogeneous regression function

m2(x) = exp{−400(x− 0.6)2}+
5

3
exp{−500(x− 0.75)2}+ 2 exp{−500(x− 0.9)2},

with n = 1000, the x values being equally spaced on [0, 1] and εi ∼ N(0, 0.52). We

applied our approach to 500 simulated datasets, using Kb = 40 and Kc = 4, following

the choice of Ruppert & Carroll (2000) and Baladandayuthapani, Mallick & Carroll

(2005). The top and middle plots of Figure 2 represent one of the simulated fits and

estimated variance of random effects, respectively. The resulting AMSE is equal

0.0048, which is smaller than 0.0061 and 0.0065, obtained by Baladandayuthapani,

Mallick & Carroll (2005) and Ruppert & Carroll (2000), respectively. The smoothed

pointwise coverage probabilities can be seen in the bottom plot of Figure 2. The av-

erage coverage probability for this function equals 95.94%, which is comparable with

95.22% and 96.28% reported by Baladandayuthapani, Mallick & Carroll (2005) and

Ruppert & Carroll (2000), respectively. For the same setting Baladandayuthapani,

Mallick & Carroll (2005) reported the simulation results for the BARS approach

of DiMatteo, Genovese & Kass (2001). BARS employs free-knots splines with the

random number and location of knots, using reversible jump MCMC for estimation.

The AMSE based on this approach is 0.0043, while the average coverage probability

is 94.72%, both comparable to our approach.

To show the robustness of our approach to the choice of number of subknots Kc, we

performed simulations both for m1(x) and m2(x) with different values of Kc. AMSE

based on 500 simulations for the function m1(x) using 10, 20 and 30 subknots, re-

spectively, resulted in 0.00344025, 0.00344029 and 0.00344023. AMSE based on 500

simulations for the function m2(x) based on Kc equal to 4, 10 and 15, respectively,
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results in 0.0048405, 0.0048330 and 0.0048313. In general there should be enough

subknots to capture the structure of the variance of random effects and further in-

crease of Kc has little effect on the fit.

Our approach provides good results even when adaptive smoothing is not necessary.

In such cases, the variance of the random effects is estimated to be nearly con-

stant and has little effect on the resulting fit. To show this we run 150 simulations

based on the function sin(2πx). We used n = 400 points and εi ∼ N(0, 0.32). The

adaptive and non-adaptive estimates approaches provided nearly indistinguishable

results, with the AMSE values being 0.0017038 and 0.0017351, respectively.

Overall, our method provides comparable results to other approaches, but with sig-

nificantly less numerical effort.

3 Spatial smoothing

3.1 Hierarchical modeling

We now generalize the ideas from the previous section to spatial smoothing. We

consider the model yi ∼ N{m(xi), σ
2
ε} for i = 1, . . . , n, where xi ∈ R2 and m(.)

is a smooth function of two covariates. Following Crainiceanu, Ruppert, Carroll,

Adarsh & Goodner (2006) we use radial basis functions (for details see Ruppert,

Wand & Carroll, 2003) and choose Kb knots τ
(b)
1 , ..., τ

(b)
Kb
∈ R2. In this case, the

fixed effects matrix Xb is the matrix with i-th row equal to [1,xT
i ]1≤i≤n and the

random effects matrix is equal to Zb = ZKb
Ω
−1/2
Kb

, where ZKb
= [‖xi−τ

(b)
s ‖2 log ‖xi−

τ
(b)
s ‖]1≤s≤Kb,1≤i≤n and ΩKb

= [‖τ (b)
t −τ

(b)
s ‖2 log ‖τ (b)

t −τ
(b)
s ‖]1≤s,t≤Kb

with ‖.‖ denoting

the Euclidean norm in R2. The penalized thin plate spline spatial smoother is

equivalent to the following linear mixed model

Y |b = Xbβ + Zbb + ε, ε ∼ N(0, σ2
ε In), b ∼ N(0, Σb). (11)
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As in the case of univariate smoothers, local adaptiveness is achieved by allowing

the coefficients b to have spatially variable smoothing parameters. As in Section

2, we set spatial subknots τ
(c)
1 , ..., τ

(c)
Kc

∈ R2, Kc < Kb and define matrices Xc

and Zc similarly to the corresponding definition of matrices Xb and Zb. More pre-

cisely, Xs
c = [1, (τ

(b)
s )T ]1≤s≤Kb

, Zc = ZKcΩ
−1/2
Kc

with ZKc = [‖τ (b)
s − τ

(c)
t ‖2 log ‖τ (b)

s −
τ

(c)
t ‖]1≤s≤Kb,1≤t≤Kc and ΩKc = [‖τ (c)

t − τ
(c)
s ‖2 log ‖τ (c)

t − τ
(c)
s ‖]1≤s,t≤Kc , where the x

covariates are replaced by knots τ (b) and the knots are replaced with subknots τ (c).

The model is completed by adding to (11) the hierarchical structure

Σb = diag{exp(Xcγ + Zcc)}, c ∼ N(0, σ2
cIKc).

Estimation can now be carried out as in the case of univariate smoothers. There

are many ways of choosing the knots. We used the clara algorithm described in

Kaufman & Rousseeuw (1990) and implemented in the R package “cluster”.

3.2 Simulations and comparisons with other surface fitting
methods

For comparison with Crainiceanu, Ruppert, Carroll, Adarsh & Goodner (2006) and

Lang & Brezger (2004) we consider the following regression function with moderate

spatial variability

m3(x1, x2) = x1 sin(4πx2),

with x1 and x2 independent and uniformly distributed on [0, 1]. We used n = 300,

σ = 1/4range(m3) and equally-spaced 12× 12 and 5× 5 knot grids for τ
(b)
i and τ

(c)
j ,

respectively, as suggested by Crainiceanu, Ruppert, Carroll, Adarsh & Goodner

(2006). Figure 3 displays the true function (top left plot) and the resulting fit

for one simulation using our approach (top right plot) together with the estimated

variance of random effects (left bottom plot). We simulated 500 datasets to compare

14



log(MSE) of our estimator with values reported in Crainiceanu, Ruppert, Carroll,

Adarsh & Goodner (2006) and Lang & Brezger (2004). Our simulations provide

a median of log(MSE) of −3.79 with an interquartile range [−4.17,−3.80] and a

range [−4.96,−2.27]. This outperforms the results in Crainiceanu, Ruppert, Carroll,

Adarsh & Goodner (2006) (median −3.67, interquartile range [−3.80,−3.53] and a

range [−4.21,−3.13]) which, in turn, outperforms the findings of Lang & Brezger

(2004). The average coverage probability of the 95% confidence intervals is 94.31%.

The smoothed coverage probabilities are displayed in the right bottom plot of Figure

3. Similarly to the Crainiceanu, Ruppert, Carroll, Adarsh & Goodner (2006), the

coverage probability is lowest for x1 ∈ [0.2, 0.5] due to the low signal-to-noise ratio

in this region.

4 Non-normal response models

4.1 Hierarchical modeling

In this section we extend the methods to the case of non-normal response models.

Consider the following generalized linear hierarchical mixed model

E(Y |b, c) = µb,c = h(Xbβ + Zbb), Var(Y |b, c) = φv(µb,c),

b|c ∼ N(0, Σb), Σb = diag{exp(Xcγ + Zcc)},

c ∼ N(0, σ2
cIKc),

where h(.) is the inverse of the link function g̃(.), v(.) is a specified variance function,

and φ is the dispersion parameter. We follow Breslow & Clayton (1993) and estimate

the parameters from the quasi-likelihood

exp{ql(β, γ, σ2
c )} = (2π)−

(Kb+Kc)

2 σ−Kc
c

∫

RKb

∫

RKc

exp{−k1(b, c)}db dc, (12)
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where

k1(b, c) =
1

2φ

∑
qi(yi, µ

b,c
i ) +

1

2
bT Σ−1

b b +
1

2
log |Σb|+ 1

2σ2
c

cT c,

and qi(y, µ) = −2
∫ µ

y
(y − t)/v(t)dt is the deviance function. Assuming that condi-

tionally on b and c the observations are drawn from the exponential family Y |b, c ∼
exp([yϑ(x)− b{ϑ(x)}]/φ + c(y, φ)), the quasi-likelihood (12) is the likelihood of the

data. Using Laplace’s method for approximation of the integral over b one obtains

exp{ql(β, γ, σ2
c )} ≈ (2π)−

Kc
2 σ−Kc

c

∫

RKc

exp{−k2(c)}dc, (13)

where

k2(c) =
1

2
log |In + ZT

b WZbΣb|+ 1

2φ

∑
qi(yi, µ

b,c
i ) +

1

2
b̂T Σ−1

b b̂ +
1

2σ2
c

cT c,

b̂ is the solution to

∂k1(b, c)

∂b
= −ZT

b Wdiag{g̃′(µb,c)}(Y − µb,c) + Σ−1
b b = 0.

Here W denotes the n×n diagonal matrix of the GLM iterated weights with diagonal

elements wi = [φv(µb,c
i ){g̃′(µb,c

i )}2]−1, using the simplifying assumption that the

iterative weights wi vary slowly as a function of the mean.

Substituting the current estimate b̂ into (13) and replacing the deviance
∑

qi(yi, µ
b,c
i )

in k2(.) by the Pearson chi-squared statistic
∑

(yi − µb,c
i )2/vi(µ

b,c
i ) provides the fol-

lowing approximation

exp{ql(β, γ, σ2
c )} ≈ (2π)−

Kc
2 σ−Kc

c |W |−1/2

∫

RKc

exp{−k3(c)}dc,

where k3(c) = 1
2
log |V |+ cT c

2σ2
c
+(U −Xbβ)T V −1(U −Xbβ), V = W−1 +ZbΣbZ

T
b , and

U = Xbβ + Zbb̂ + diag{g̃′(µb,c)}(Y −µb,c). Applying again Laplace’s method we end

up with the following quasi-log-likelihood for the remaining parameters

−2l(β, γ, σ2
c ) ≈ Kc log σ2

c + log |V |+ log |kcc
3 |

+ ĉT ĉ/σ2
c + (U −Xbβ)T V −1(U −Xbβ),
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where kcc
3 = ∂2k3(c)/∂c∂cT . As in Section 2 the estimation of parameter θ =

(γT , cT )T can be carried out from the score equation

∂k3(θ̂)

∂θ
= −1

2
W T

c Σ−1
b

(
b̂2 − wdfσ

2
b

)
+ Dcθ/σ

2
c = 0. (14)

As in the normal case, the algorithm iterates between estimation of θ̂ and generalized

linear mixed models fitting implemented in standard software.

4.2 Simulations for non-normal response models

We consider the following model for Bernoulli data Yi ∼ B(1, πi) with canonical

link logit(πi) = m2(xi) where m2(.) is the function introduced in Section 2. The

top plot of Figure 4 represents the adaptive fit (bold line) for a data set of size

n = 5000. For comparison the non-adaptive fit (dashed line) is also shown indicating

the superiority of the adaptive fit. While the benefits of adaptive fit with binary

data are more clearly visible for large sample sizes, the adaptive procedure does not

require very large sample sizes to provide functional estimates. Depending on the

sample size and signal-to-noise ratio the adaptive fit would produce fits that are

closer or further away from its non-adaptive counterpart.

Since the method in this paper is the first one that can provide adaptive smoothing

for binary data, we cannot compare our method to others. However, the BARS

procedure of DiMatteo, Genovese & Kass (2001) allows fitting Poisson responses.

We performed a number of simulations to compare the performance of our routine

with the BARS implemented for this setting. We simulated n = 800 Poisson variates

with means exp{m1(x)}, where m1(.) was introduced in Section 2.5, and use j = 4

which corresponds to moderate heterogeneity. We estimated the data with our

approach using Kb = 60 and Kc = 10 and with the BARS procedure. We ran

10000 MCMC iterations with a burn-in sample of 2000. The bottom plot of Figure
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4 displays estimates based on our adaptive approach (bold) and BARS (dashed).

The AMSE of the five fits based on our approach is 0.010672, while the AMSE

for BARS based fits is 0.020547. We did not perform a more extensive simulation

study, since a single BARS fit required more than 4 hours estimation time on an

up-to-date computer. For comparison, our function asp required only one minute.

We experimented with other mean functions and sample sizes and obtained very

similar results.

4.3 Example

As an illustration we apply spatially adaptive smoothing methods to a dataset on

the absenteeism of workers at a company in Germany. Parts of the data have been

analyzed before in Kauermann & Ortlieb (2004) with a different focus. We consider

absenteeism spells and model the probability of returning to work after a sick leave.

Denoting the duration of such a leave by d, we model the discrete hazard rate as

P (d = t|d ≥ t) = h(t), where t ≥ 1. The duration is measured in days and the

event of interest is ”recovery”, which allows workers to return to work. If the worker

reported sick on one day but returns to work on a consecutive working day thereafter,

we count this as an event and the duration is the number of working days the worker

had been absent. If the last day of absenteeism and the first day of returning to

work are not consecutive working days the duration is viewed as censored with d

being the number of days of absenteeism. To make this more explicit, assume that

a worker reports sick on Friday but returns to work the Monday after. It is unclear

when the worker actually recovered, either Friday, Saturday or Sunday. It is however

known, that the worker was at least sick on one day and the observation is therefore

d = 1 with censoring being indicated. Let δ denote the censoring indicator, which
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is either zero, for censoring, or 1, otherwise. For each absence spell we transform

d to the binary variables y1, ..., yd with yl = 0 for l < d and yd = δ. The hazard

function is then the probability P (yt = 1|yl = 0, l < t). We concentrate on short

term absenteeism spells truncated at d = 10 and define longer spells as censored

observations. Our final model depends both on time since leave, t, and on actual

calendar time, c,

logitP (d = t|d ≥ t, c) = m(t, c). (15)

Data were collected in a company in southern Germany and we analyze the data of

about 370 employees. Not all of these employees were employed during the same time

period with the observation period ranging from 1981 to 1998. On average, about

75% of the employees reported sick at least once per calender year. For illustration

purposes we assume that the durations of different sick leaves of the same worker are

independent. One might, of course, argue whether this is an appropriate assumption,

but for the sake of simplicity we do not address this problem here. Figure 5 shows

the fit of the model (15) using non-adaptive (top) and adaptive (bottom) smoothing.

Both fits were obtained using 196 knots (14 for each dimension) and low-rank thin

spline basis as defined in Section 3.1. The variance structure for the adaptive fit

was modelled with 100 knots (10 for each dimension). The differences in the plots

are quite obvious and interesting. Both fits show a higher hazard for years 1992 and

1993 around day 3. The adaptive fit has a sharper peak in this region. In other

regions, particularly for longer absenteeism time, the non-adaptive fit is quite wiggly

while the adaptive approach estimates a much smoother surface. The latter fit looks

more reasonable and easier to interpret and shows the benefits of spatial adaptivity

in a real context.

The peak at year 1993 and duration time at day 3 allows for an interesting economic
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interpretation. In 1992/93 the company went through a major downsizing process

with more than 50% of the workers being dismissed. While this economic situation

has hardly any effect on the hazard function for days d ≥ 5, it does affect the hazard

rate for short absenteeism times, particularly for d = 3. According to the German

law, workers who report sick for more than 3 consecutive working days have to

provide a medical certificate at the latest at the third day of their sick leave. For

shorter periods no special attestation is required. Apparently, during the downsizing

period the duration of sick leaves is shorter with more employees returning after 3

days. This provides indication that economically critical conditions of a company

have a direct influence on the absenteeism of employees.

5 Conclusion

We showed that local adaptive smoothing can be easily carried out by formulating

penalties on the spline coefficient as a hierarchical mixed model. Our major contri-

bution was to show that the Laplace approximation of the marginal likelihood allows

fast fitting of adaptive smoothing models with application to univariate, bivariate

smoothing as well as to non-normal responses. For reasonably sized data sets and

normal responses our algorithm requires seconds while Bayesian MCMC simulations

require tens of minutes. For non-normal responses our algorithm requires less than a

minute while Bayesian MCMC requires more than several hours. In addition, small

changes to the model, such as adding a covariate, standard random effects, or other

smooth components, can be handled very easily by our methods, whereas it may

take hours, days, or even weeks for developing new MCMC software. An impor-

tant reason for having a fast and accurate procedure is that in many situations the

smoothing procedure needs to be applied repeatedly. One trivial example is when
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doing simulations (note, for example how long it would take to perform the BARS

simulations in Section 4.2).

A R Package “AdaptFit”

To implement our approach we developed an R package. We took advantage of the R

package “SemiPar”, written by M.P. Wand to accompany the book Ruppert, Wand

& Carroll (2003). The function spm of this package performs scatterplot, spatial and

generalized (binomial and poisson) smoothing using the (generalized) mixed models

representation of penalized splines. This function handles additive models as well.

To perform adaptive smoothing we had to integrate the Fisher scoring procedure (9)

for θ with updates of the remaining parameters by subsequent calls of function spm.

The current version of our package “AdaptFit” with the function asp is available at

http://cran.r-project.org. The function asp is similar to that of function spm but

may use, in addition, adaptive smoothing. For example, estimation of the function

m1(x) described in Section 2.5 can be performed by

> x <- 1:400/400

> mu <- sqrt(x*(1-x))*sin((2*pi*(1+2^((9-4*6)/5)))/(x+2^((9-4*6)/5)))

> y <- mu+0.2*rnorm(400)

> kn <- default.knots(x,80)

> kn.var <- default.knots(kn,20)

> y.fit <- asp(y~f(x,knots=kn,var.knot=kn.var))

> plot(y.fit)

Switching between maximum likelihood and restricted maximum likelihood estima-

tion can be done by specifying spar.method="ML". In the additive model case some
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components of the model can be fitted non-adaptively. Other examples are provided

within the package.
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Figure 1: Top: Estimated regression function m1(x) (bold) with confidence intervals
(dashed) and true function. Middle: Estimated variance of random effects. Bot-
tom: Smoothed pointwise coverage probabilities of 95% confidence intervals for 500
simulated datasets.
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Figure 2: Top: Estimated regression function m2(x) (bold) with confidence intervals
(dashed) and true function. Middle: Estimated variance of random effects. Bot-
tom: Smoothed pointwise coverage probabilities of 95% confidence intervals for 500
simulated datasets.
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Figure 3: Top row: True regression function m3(x1, x2) (left) and its estimate with
adaptive smoothing parameter (right). Bottom row: Estimated variance of random
effects (left) and smoothed coverage probability of 95% confidence intervals for 500
simulated datasets (right).
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