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Abstract
In dieser Bachelorarbeit wird die Reduktion von Teststrahldaten eines hochgranularen
Kalorimeters mit Hilfe der diskreten Kosinustransformation untersucht. Ziel ist es, eine
datenbasierte, schnelle Teilchenschauersimulation zu implementieren, die im Vergleich
zu Vollsimulationen eine stark reduzierte Rechenzeit und einen geringeren Bedarf an
Rechenressourcen aufweist. Für die schnelle Simulation werden Kerndichteschätzer für
die Erzeugung simulierter Ereignisse verwenden. Der verwendete Teststrahldatensatz
umfasst Daten von elektromagnetischen Schauern, ausgelöst von Elektronen verschiedener
Energien, und wurde 2018 am CERN mit dem hochgranularen Analogen Hadronkalorime-
ter der CALICE-Kollaboration aufgezeichnet.
Für die Untersuchung werden die Hitenergien mittels der diskreten Kosinustransformation
in Koeffizienten von Kosinusschwingungen transformiert. Die Koeffizienten der Schwingun-
gen, von denen angenommen wird, dass sie ausschließlich zum Rauschen beitragen, werden
durch zufällige, gaußverteilte Werte ersetzt. Nach Anwendung der Inversen der diskreten
Kosinustransformation werden die Verteilungen der kinematischen Variablen zwischen
dem Originaldatensatz und dem, welcher zufällig erzeugtes Rauschen beinhaltet, ver-
glichen. Die Untersuchung zeigt, dass eine gute Übereinstimmung erzielt werden kann,
wenn die Parameter der Gauß-Verteilungen sowie die generierten Koeffizienten sorgfältig
ausgewählt werden. Weitere Untersuchungen könnten zu einer noch stärkeren Komprim-
ierung und damit auch zu einer stärkeren Verringerung des Rechenaufwands führen.

Abstract
In this Bachelor thesis, the reduction of highly granular calorimeter test beam data is
investigated by using the discrete cosine transformation. The aim is to implement a data-
driven fast particle shower simulation with greatly reduced computing-time and easier
requirements for computational resources compared to full simulations. The fast simula-
tion will then use kernel density estimators for the generation of simulated events. The
test beam dataset this investigation is based on comprises electromagnetic shower data,
initiated by electrons of various energies. The dataset has been recorded in 2018 at CERN
with the highly granular Analogue Hadron Calorimeter of the CALICE Collaboration.
For the investigation, hit energies have been transformed via the discrete cosine transfor-
mation into coefficients of cosine nodes. The coefficients of nodes considered to be only
contributing to noise have been replaced by random values that are Gaussian distributed.
After applying the inverse discrete cosine transformation, distributions of kinematic vari-
ables have been compared between the original dataset and the one based on randomly
generated noise. The investigation showed that good agreement can be achieved if the
parameters of the Gaussian distributions as well as which coefficients are being replaced
are chosen carefully. Further investigations could lead to even greater compression, and
thus greater reduction of computational resources too.
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1. Introduction

The smallest building blocks of our known universe are the elementary particles, which
are currently described by the Standard Model of particle physics [1–7]. The Standard
Model (SM) predicts a variety of elementary spin-1

2 particles, so-called fermions, that
form matter as well as integer spin particles, the bosons, that mediate forces between
fermions. It is a well established theory, as its predictions have been verified over and
over again by using particle accelerators such as the Large Hadron Collider (LHC) [8] in
Geneva. Experiments at the LHC, but elsewhere too, continuously search for evidence
that supports the SM, but also for hints of theories beyond known ones. The last major
confirmation of the SM’s predictions was the latest discovery of an elementary particle,
the Higgs boson, by the CMS and ATLAS Collaborations [9, 10] in 2012.

The detection of elementary particles requires different detection systems such as trackers,
calorimeters or muon chambers. Since most elementary particles are unstable and decay
before they can be directly detected, their properties must be inferred indirectly from
measurements of their decay products. Calorimeters in particular are used to measure
the energy of showers initiated by elementary particles or their decay products. Calorime-
try is an active field of research investigated by different projects around the world. For
example, the CALICE Collaboration [11] concentrates on the research and development
of highly granular calorimeters for the future International Linear Collider. The Ana-
logue Hadron Calorimeter Technological Prototype (AHCAL) [12, 13] is one of the many
detector prototypes of CALICE.

In order to improve the energy resolution of future calorimeters, test beam campaigns
for performance testing as well as particle shower simulations are of great importance. To
make such simulations more efficient, it is crucial to minimise computational resources
and time significantly, with a minimum of information loss. A method that offers such
resource-saving alternatives are data-based fast simulations, in conjunction with (loss-
free) data compression. This thesis investigates the possibility of compressing a dataset
recorded at CERN using the discrete cosine transformation and how this affects the shape
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1. Introduction

of particle showers. To do so, electron test beam data of the AHCAL is used.

The thesis is structured as follows. Chapter 2 presents an overview of the Standard Model,
as well as the theory behind particle showers and different calorimeter types. The energy
resolution for such showers will be explained too. Chapter 3 introduces the CALICE
Collaboration and their test beam campaigns, as well as the structure of the AHCAL pro-
totype. In Chapter 4, the fast particle shower simulation method, the kernel density esti-
mation, and data reduction using the discrete cosine transformation are explained, and the
results are presented and discussed. In the end, a conclusion and an outlook are given in
Chapter 5.
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2. Theoretical Background

2.1. Theory of the Standard Model

The Standard Model (SM) is a widely accepted theory which describes physics accurately
on the scale of the smallest known particles [1–7, 14]. The model contains a set of ele-
mentary particles and their antiparticles, the latter differing in the sign of their electric
charges, as well as three of the four fundamental forces: the electromagnetic force, the
weak nuclear force and the strong nuclear force. The fourth fundamental force, the grav-
itational one, is not described by the SM.

The elementary particles can be classified through their spin into those with spin 1
2 , called

fermions, and those with an integer spin, called bosons. Fermions make up all matter,
while bosons are force carrying particles. The particle content of the SM is illustrated in
Figure 2.1.

Figure 2.1.: The fundamental particles of the Standard Model of particle physics [15].
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2. Theoretical Background

Fermions can further be divided into quarks and leptons. The six quarks are the only
colour-charge-carrying fermions and thus subject to the strong force. Possible colour
charges for quarks are red, blue, and green, and for antiquarks anti-red, anti-blue and
anti-green. Since only colourless objects exist in nature, quarks are prevented from ap-
pearing isolated. This property is called confinement and leads to quarks only occurring
as hadrons, which are particles composed of multiple quarks [16].

Furthermore, quarks can be divided into up-type and down-type quarks. Up-type quarks
such as up (u), charm (c) and top (t) carry an electric charge of +2

3 in units of the ele-
mentary charge, while down-type quarks like down (d), strange (s) and bottom (b) carry
a charge of −1

3 . All the left-handed quarks and right-handed antiquarks, referring to
their chirality, carry weak isospin, which is the charge of the weak interaction. While the
up-type quarks have an isospin of 1/2, the down-type quarks carry an isospin of −1/2.
It is the same for right-handed antiquarks, but with changed sign, left-handed antiquarks
and right-handed quarks are all considered to have a weak isospin of zero. Quarks are
also categorised in generations, where the first generation includes the lightest quarks, up
and down, the second the heavier ones with charm and strange, and the third the heaviest
with top and bottom.

A similar division can be made for the leptons, which include electrons e−, muons µ−,
and tauons τ−, all carrying a charge of −1, and the electrically neutral electron neutrino
νe, the muon neutrino νµ and the tau neutrino ντ . The electron and the electron neutrino
form the first generation, the muon and the muon neutrino the second and the tau lep-
ton and its corresponding neutrino the third. The generations are again sorted from the
lightest to the heaviest. Leptons that are left-handed in terms of their chirality also carry
weak isospin. Here, the neutrinos have a weak isospin of 1/2 and the charged leptons of
−1/2. Again, it is the same for their antiparticles, but with opposite sign. Right-handed
leptons and left-handed antileptons have an weak isospin of zero.

Elementary particles with a spin of 1 are called gauge bosons. They are force-carrying
particles and act as mediators between fermions. The exchange particle of the electro-
magnetic force is the photon γ. It couples to electrically charged particles, which means it
does not couple to itself. As a virtual particle, it exchanges four-momentum between two
real particles. The quantum field theory describing the electromagnetic force is Quantum
Electrodynamics.
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2.2. Electromagnetic Showers

The gauge bosons of the weak force are the electrically neutral Z- and the W±-bosons,
which have an electric charge of ±1 and masses of mW = 80.376(33) GeV [17] for the W-
and mZ = 91.1876(21) GeV [17] for the Z-Boson. Both couple to all leptons, since all
leptons carry the weak isospin, the charge of the weak interaction. The W±-boson itself
carries an isospin of ±1, while the Z-Boson has a isospin of zero. The weak isospin can be
described as a doublet of either a charged lepton and a neutrino or two quarks. By emit-
ting a W±-boson, one fermion changes to the other part of its doublet, with the electric
charge always being conserved. While only specific doublets for leptons are possible, as
in Ref. [18]

νe

e−

 ,

νµ

µ−

 ,

 τe

τ−

 , (2.1)

mixing between generations is possible for quarks as long as an up-type quark is combined
with a down-type quark. The weak and the electromagnetic force have already been uni-
fied into the electroweak interaction [1, 2].

The gluon represents the strong nuclear force, which is described by Quantum Chro-
modynamics [4, 14]. It couples to colour charged particles like quarks. The gluon itself
carries a colour and an anti-colour too, which is why it couples to itself. By emitting a
gluon, the colour charge of a quark or a gluon changes. Like the photon, the gluon is a
massless particle.

The last elementary particle of the SM is a spin-0 particle, the Higgs boson [5–7]. The
Higgs boson can be understood as an excitation in the Higgs field, which has a non-
vanishing vacuum expectation value, unlike other fundamental quantum fields. The in-
teraction of the Higgs field with other massive, elementary particles causes them to obtain
mass. The Higgs boson was discovered in 2012 by the ATLAS and the CMS Collaborations
at CERN [9, 10].

2.2. Electromagnetic Showers

There are two main processes contributing to the development of electromagnetic showers
at high energies: bremsstrahlung and pair production [19]. Bremsstrahlung is relevant
for electrons and positrons passing through matter. When being slowed down by the
electric potential of nuclei of the medium of the calorimeter, the electron/positron will
emit a photon, which is considered to be bremsstrahlung. Tau leptons cannot initiate
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2. Theoretical Background

an electromagnetic shower, since they will decay before reaching the calorimeter. Muons
usually do not start a shower either, since they do not radiate off enough bremsstrahlung
due to their mass [19].

The relevant process for photons, on the other hand, is pair production, where the pho-
ton decays into an electron-positron pair, which will emit bremsstrahlung again. These
emitted photons will proceed with pair production, and so on. In this way, the electro-
magnetic shower will evolve until the average energy of a particle in the shower reaches
the critical energy Ec. As long as an electron has an energy above Ec, it will lose its
energy mainly through bremsstrahlung. As soon as the energy falls below the critical
energy, the energy loss through ionisation will dominate and the electromagnetic shower
will stop soon afterwards.
An important characteristic of electromagnetic showers is the radiation length X0 [17]. It
is defined as the distance an electron has to travel to be left with a fraction of 1/e of its
initial energy. Similarly, it can be approximated as the average distance after which the
electron will emit bremsstrahlung. Analogously, the electromagnetic absorption length
[17, 19],

λ ≈ 9
7X0 , (2.2)

is the average distance after which a photon undergoes pair production at high energies.
Both radiation and absorption length are used to parametrise the total length of an elec-
tromagnetic shower. The schematic development of a simplified electromagnetic shower
is shown in Figure 2.2, where X0 = λ has been assumed for simplicity.

Figure 2.2.: Simplified model of the development of an electromagnetic shower, where
E0 is the energy of the initial particle and x/X0 the distance to the shower
start in units of the radiation length [19].
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2.2. Electromagnetic Showers

The approximate longitudinal length in units of absorption lengths, in which 98% of the
total shower energy is included, is [20]

t98% ≈ (tmax + 13.6) ± 2.0 . (2.3)

Here, tmax is the position of the shower maximum, which is the point where the energy
deposition is maximal. The distance to the shower maximum (given in units of absorption
lengths) is determined by [17]

tmax = ln E0

Ec
+

−0.5 , electrons

+0.5 , photons
, (2.4)

where E0 is the energy of the initial particle. Therefore, the shower length increases
with higher energy E0, but only logarithmically, which means that calorimeters, with
fixed lengths can be used for a large range of beam energies. The energy distribution in
longitudinal direction is then described by the empirical formula [21]

dE

dt
= E0

ba

Γ(a)ta−1e−bt , (2.5)

where a and b are parameters depending on the initial energy and the atomic number of
the material used, and Γ(a) is the gamma function defined as

Γ(x) =
∫ ∞

0
yx−1e−ydy . (2.6)

Using Equation (2.5) the shower maximum is determined to be most probably at

tmax = a − 1
b

. (2.7)

The longitudinal shape of an electromagnetic shower described by Equation (2.5) can be
seen as a fit in Figure 2.3, where the average energy deposit is plotted against the hit
position in units of the radiation length. The data for the fit are taken from a shower
initiated by a 10 GeV positron beam. The fit parameters are listed in the legend. Here,
a is represented as α and b as 1/β. It can be seen that the energy of the shower, which
is detected in the medium, rises rapidly after just a few radiation lengths and then falls
of more slowly. Almost no energy is measured after 20 radiation lengths, which indicates
that the shower only developed in the front of the material.
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2. Theoretical Background

Figure 2.3.: Data and fit of the average energy deposit ∆E depending on the hit po-
sition z in units of the radiation length using Equation (2.5) for data of
electromagnetic showers initiated by positrons with 10 GeV beam energy
[22].

Similar to t98%, a cylinder with the Molière radius [17]

RM = Es

Ec
X0 where Es = 21.2 MeV (2.8)

around the shower axis contains approximately 90% of the shower energy in the transverse
plane. The proportionality of the ratio between the Molière radius and the radiation
length is [19]

RM

X0
∝ 1

Ec
∝ Z . (2.9)

Here, Z is the atomic number of the medium. This implies that the shower is slimmer in
relation to its length in media with high values for the atomic number Z.

The radial distribution can be parametrised by [22]

∆E

∆S
(r) = E

2π
·
{

fc ·
exp (−r

βc
)

β2
c

+ (1 − fc) ·
exp (−r

βh
)

β2
h

}
, (2.10)

which is divided into a core component, given by the first summand, describing the
inner electromagnetically dominated region, and a halo component, given by the second
summand, describing the outer part. fc is the fraction of the total energy deposited in the
core, and ∆S is the area of a ring with a thickness of ∆r, where r is the distance from the
shower axis. βc and βh are fit parameters describing the core or halo part, respectively.
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2.3. Hadronic Showers

The energy deposit in radial direction depending on the radial distance to the shower axis
of an electromagnetic shower started by positrons with 10 GeV beam energy can be seen
in Figure 2.4. Figure 2.4 also shows a fit using Equation (2.10) and fit parameters, which
are explained in [22]. It is recognisable that the energy deposit falls continuously with
the distance to the shower axis, while the fall is more rapid closer to the centre.

Figure 2.4.: Data and fit of the average energy deposit ∆E (scaled with ∆S, which is
a ring of width ∆r) depending on the hit position r as distance from the
shower axis for data of electromagnetic showers initiated by electrons with
10 GeV beam energy [22].

2.3. Hadronic Showers

High energy hadrons passing through dense matter will develop hadronic showers. Unlike
electromagnetic showers, there are many processes involved, which make the hadronic
shower development more complicated and lead to greater fluctuations in their deposited
energy. The first phase of the shower development is a high energy cascade, where a
hadron collides inelastically with a nucleus of the medium. Through the inelastic scat-
tering, new particles are formed. The hadronic cascade continues when the new particles
scatter inelastically as well. However, some of these newly formed particles will be neu-
tral pions, which are most likely to decay into two photons. Those photons will start an
electromagnetic subshower which will spread independently of the hadronic shower.

A more detailed description of the initial inelastic scattering is that the incoming hadron
interacts with only one of the nucleons of the nucleus. This results in newly formed par-
ticles with high energy inside the nucleus, starting an intranuclear cascade by interacting
inelastically themselves. Over time, the particles will either have less energy than needed
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2. Theoretical Background

to continue the inelastic scattering or will escape the nucleus, which leads to highly exited
nuclei emitting nucleons and light nucleus fragments. This process is called spallation and
takes place about 10−22 s after the initial collision of the hadron with the nucleon [19].
The emitted particles have an energy of the order of 100 MeV [19]. The next phase takes
place about 10−18 s after the first collision [19]. The still exited nucleus emits further
nucleons and light nucleus fragments, which is called evaporation, but now with just a
few MeV. During evaporation, a nucleus may undergo nuclear fission as well [19]. The
schematic development of the hadronic shower can be seen in Figure 2.5.

Figure 2.5.: Model of the development of a hadronic shower. The incoming hadron
will first scatter inelastically with one nucleon of the nucleus, starting an
intranuclear cascade. Eventually, nucleons will escape the nucleus, form-
ing new hadrons, which will again scatter inelastically with other nuclei.
Neutral pions are produced too, which start electromagnetic showers by
emitting two photons each [19].

As already mentioned, hadronic showers also contain electromagnetic subshowers, mostly
initiated through neutral pion decays. The mean fraction of energy of a hadronic shower
which belongs to electromagnetic subshowers, ⟨fEM⟩, is described through

⟨fEM⟩ ≈ 1 −
(

E

Ẽ

)k−1
, (2.11)

where k ≈ 0.82 and Ẽ is the average energy necessary to produce a neutral pion [19,
23]. The value of Ẽ depends on the medium in which the hadronic shower develops.
Since electromagnetic shower development only involves two processes, their fluctuations
are smaller than those of hadronic shower development, which results in broader energy
distributions for hadronic showers. According to Equation (2.11), the relative energy
of the electromagnetic part of the hadronic shower increases with beam energy, thus
fluctuations in the hadronic shower decrease with higher energy. However, the actual
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2.3. Hadronic Showers

value of fEM fluctuates strongly. The strong fluctuations are recognisable in Figure 2.6,
where the electromagnetic fraction of a shower per event is plotted for data of pions with
150 GeV beam energy. The dependence of the calorimeter response and therefore of the
energy resolution on the electromagnetic fraction will be discussed in Section 2.4.2.

Figure 2.6.: Distribution of the electromagnetic fraction per event for showers initiated
by negative pions with 150 GeV beam energy [24].

Similar to the radiation length of electromagnetic showers, the nuclear interaction length
can be approximated by [19]

λint ≈ 35 g cm−2 A1/3

ρ
, (2.12)

which parametrises the total length of a hadronic shower. Here, A is the atomic weight
and ρ the density of the medium. The ratio of the nuclear interaction length to the
radiation length can be parametrised as [19]

λint

X0
≈ 0.37Z . (2.13)

Here, a linear dependence on the atomic number Z of the medium can be observed. Since
materials made from elements with higher atomic numbers tend to be more dense, the
interaction length is significantly larger in dense materials than the radiation length.

The hadronic shower length in longitudinal direction which includes 95% of the total
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shower energy on average can be approximated by [20]

t95% ≈ tmax + 2.5λint

(
E

GeV

)0.13
, (2.14)

where E is the initial energy and tmax the length where the hadronic shower reaches its
maximum, approximated by [20]

tmax ≈ 0.2 ln E

GeV + 0.7 . (2.15)

Both quantities are shown in units of the interaction length and were tested to be valid for
energies between a few GeV to multiple 100 GeV [20]. The longitudinal energy distribution
can be described through [25, 26]

dE

dz
= E0 ·

{
fEM

Γ(αs)
·
(

zs
βs

)αs−1
· exp (−zs/βs)

βs
+ 1 − fEM

Γ(αl)
·
(

zl
βl

)αl−1
· exp (−zl/βl)

βl

}
, (2.16)

where the first term, the “short” component, describes the electromagnetic part of the
shower and the second term, the “long” component, represents the pure hadronic part.
Moreover, αs, βs, αl and βl are parameters describing the shower shape (depending on
the energy of the shower) for the “short” (index s) and for the “long” component (index
l). zs is the depth in units of the radiation length for the “short” component and zl in
units of the interaction length for the “long” component. A fit using Equation (2.16) can
be seen in Figure 2.7 (red), where the average energy deposit is plotted against the hit
position in units of the interaction length. The data are taken from a shower initiated
by a 200 GeV pion beam. The “short” (blue) and the “long” (green) component are also
plotted individually. The fit parameters are shown in the legend.
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2.3. Hadronic Showers

Figure 2.7.: Data and fit of the average energy deposit depending on the hit position z
in units of the interaction length using Equation (2.16) for data of hadronic
showers initiated by pions with 200 GeV beam energy [22].

In the transversal direction, a radius of approximately the size of the interaction length
[19],

R95% ≈ λint , (2.17)

can be used to draw a cylinder around the shower, which contains about 95% of the total
energy. Therefore, hadronic showers are larger in the transverse plane as well, compared to
electromagnetic showers, since the Molière radius is proportional to the radiation length.
The radial difference between electromagnetic and hadronic showers can be seen in the
mean radius distribution in Figure 2.8, where the number of events is plotted against the
event radius, which is the average distance of the hit to the centre of gravity. The plot
shows data from showers initiated by electrons or pions at a beam energy of 60 GeV.
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Figure 2.8.: Distribution of the mean radius with respect to the centre of gravity for
electromagnetic and hadronic showers initiated by electrons and pions with
a beam energy of 60 GeV, respectively, based on data from the AHCAL test
beam run of 2018.

2.4. Calorimeters in Particle Physics

Since many particles cannot be detected directly due to their short lifetime, calorimeters
are crucial in particle detection. In this way, the energy of the decay products of the
initial particles can be measured, which enables physicists to reconstruct which particle
initiated the shower. There are two main categories of calorimeters: sampling calorime-
ters and homogenous calorimeters.

In general, a sampling calorimeter consists of alternating active and passive materials.
The shower development takes place in the passive material while in the active medium,
measurable signals, like charged ions, Cherenkov- or scintillator light are generated. In
some calorimeters, the active and the passive medium are combined into just one material.
These calorimeters are called homogenous and are able to take data at any point in the
calorimeter [19].
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2.4. Calorimeters in Particle Physics

2.4.1. Electromagnetic Calorimeters

Electromagnetic calorimeters can measure the energy of an electromagnetic shower, which
can be initiated by an electron, a positron, or a photon. For electromagnetic calorimeters,
both homogeneous and sampling calorimeters can be used. While sampling calorimeters
can be better sectioned, which results in a better position determination and particle
identification, homogeneous calorimeters have a better energy resolution. The energy
resolution for calorimeters in general can be parametrised by [19]

σE

E
= a√

E
⊕ b

E
⊕ c , (2.18)

where a, b and c are free parameters and where σE is the standard deviation of the energy
E. The symbol ⊕ indicates addition in quadrature. The term with the parameter a

describes stochastic fluctuations. Since the distribution of the number of shower particles
N follows the Poisson distribution, the standard deviation is described by

√
N . The

number of particles is then proportional to the beam energy, thus the standard deviation
is proportional to

√
E. The parameter b describes the effect of electronic noise which is

independent of the beam energy. Lastly, the term with c characterises imperfections of
the calorimeter, which results in a linear dependence on energy, since more energy will
remain undetected if more energy is put into the particle beam. The energy resolution
in homogeneous calorimeters also depends on the active material used. Since sampling
calorimeters have sections where it is not possible to measure energy deposits, the energy
resolution is on average worse than that of a homogenous calorimeter. For example, the
liquid argon calorimeter, a sampling calorimeter, from the H1 detector at HERA at DESY
had an energy resolution of [27]

σE

E
= 11%√

E/GeV
⊕ 150 MeV

E
⊕ 0.6% , (2.19)

whereas a homogeneous calorimeter such as the PbWO4 calorimeter of the CMS detector
has an energy resolution of [28]

σE

E
= 2.8%√

E/GeV
⊕ 120 MeV

E
⊕ 0.3% . (2.20)

15



2. Theoretical Background

2.4.2. Hadronic Calorimeters

Hadronic calorimeters measure the energy of showers initiated by hadrons. One of the first
characteristics of hadronic calorimeters is that they are almost always sampling calorime-
ters. In homogeneous calorimeters, the material used is very dense, such that the shower
can develop, since it acts as a passive medium as well. As mentioned in Chapter 2.3 the
hadronic interaction length is much larger than the radiation length, especially in dense
materials, which would result in very large calorimeters if homogeneous ones were to be
used. Therefore, usually homogeneous calorimeters are not used for hadronic showers,
but sampling calorimeters instead [19].

A suitable passive medium for hadronic sampling calorimeters is iron. It has a density of
ρ = 7.87 g cm−3 and a comparatively small ratio of λint/X0 = 9.5, which indicates that
electromagnetic and hadronic showers develop similarly in iron. This is necessary to keep
the calorimeter compact and costs low [19]. For active media, typically scintillators or
liquid argon are used. Liquid argon creates signals through ionisation, while scintillators
will be excited by the energy of the particles entering the material, which is then emitted
again as photons [19].

The energy resolution of a hadronic calorimeter can also be described via Equation (2.18).
Another parametrisation is [29]

σE

E
= a√

E/GeV
+ b

(
e

h
− 1

)
, (2.21)

where σE is the standard deviation of the total energy E, a and b are real parameters and
e/h is the ratio of the signal efficiency of the electromagnetic part of the shower (e) and
the hadronic part (h), which is an intrinsic property of the calorimeter. The signal for a
hadronic shower S(π) and an electromagnetic shower S(e) can be described via [19]

e

π
:= S(e)

S(π) = e/h

1 − fem
(
1 − e

h

) , (2.22)

where it can be seen that the calorimeter response is directly dependent on the electro-
magnetic fraction of the shower energy. This implies that, if the electromagnetic fraction
fluctuates strongly, fluctuations will occur in the electromagnetic and hadronic signals
too, which ultimately has an impact on the energy resolution.
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Equation (2.22) also shows that for e/h = 1, e/π = 1 follows. Therefore, a calorime-
ter with e/h = 1 generates the same signal for electrons and hadrons. Such calorimeters
are called compensating calorimeters, and their energy resolution is given by the first term
of Equation (2.21). Compensation can be achieved by adjustments in the choice of mate-
rial of the active and passive media, as well as their thickness and the general construction
of the calorimeter. Another way to accomplish compensation are software corrections [19].

The origin of non-compensating calorimeters having a ratio of e/h ̸= 1 is non-measurable
shower energy. Due to pion and kaon decays, neutrinos and muons are produced, which
will escape the calorimeter. A fragment of neutrons, produced during nuclear reactions,
does not leave signals in the calorimeter either. Consequently, the non-measurable energy
fraction is part of the pure hadronic component of a hadronic shower, and that leads to a
fraction of e/h > 1 [29]. Therefore, the energy resolution for non-compensating calorime-
ters is worse than for compensating ones. In compensating calorimeters, materials such as
uranium are used, which are able to store the energy of the neutrons that would otherwise
escape in non-compensating calorimeters [30].

Energy resolutions of non-compensating calorimeters are typically 50%√
E/GeV

, while the
resolution of compensating calorimeters is better. For example, the energy resolution
of a Pb/scintillator sandwich calorimeter is σE

E
≈ 45%√

E/GeV
+ 1%, for a Pb/scintillator

spaghetti calorimeter, which has scintillator fibres surrounded by the passive medium, it
is σE

E
≈ 28%√

E/GeV
+ 2.5% and for a U/scintillator calorimeter it is σE

E
≈ 35%√

E/GeV
+ 1% [19].

The Analogue Hadron Calorimeter (AHCAL), which is a prototype for a hadronic calorime-
ter and the focus of this thesis, has an energy resolution for electromagnetic showers of
[31]

σE

E
= (21.9 ± 1.4)%√

E/GeV
⊕ 58 MeV

E
⊕ (1.0 ± 1.0)% (2.23)

and for hadronic showers of [32]

σE

E
= (57.6 ± 0.4)%√

E/GeV
⊕ 0.18 GeV

E
⊕ (1.6 ± 0.3)% . (2.24)
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3. The CALICE Collaboration and
the AHCAL Prototype

The CALICE Collaboration (“Calorimeter for Linear Collider Experiment”) is an inter-
national collaboration concentrating on the research and development of highly granu-
lar calorimeters, including electromagnetic and hadronic calorimeters, for a future linear
electron-positron collider, the International Linear Collider (ILC) [11, 12, 33]. In test
beam programs, different groups of the collaboration test different calorimeter prototypes
as well as a tail catcher and muon tracker [11]. This thesis focuses on a prototype for
a hadronic calorimeter called the Analogue Hadron Calorimeter (AHCAL) which is de-
scribed in Chapter 3.1. Two test beam campaigns for the AHCAL have already taken
place in 2018 and 2022, respectively. The test beam run of 2022 is not part of this thesis.

3.1. The AHCAL Technological Prototype

The Analogue Hadron Calorimeter (AHCAL), shown in Figure 3.1 together with a tail-
catcher, is a prototype from the CALICE Collaboration for a high granularity sampling
calorimeter with steel as the passive and scintillator tiles as the active medium. The tiles
are read out individually via silicon photomultipliers (SiPMs) directly attached to them.
The information about the position of a particle in the calorimeter is provided, as well
as information about the time-of-arrival of the particle on the scintillator tiles, with a
resolution of the order of 1 ns. The prototype was built in 2017 [12].
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Figure 3.1.: The AHCAL prototype with an additional tail-catcher [13].

The active parts of the AHCAL comprise 3 mm thick injection-moulded
polystyrene scintillator tiles, each with an area of 3 × 3 cm2, covered in reflective foil
(to reduce optical cross talk between tiles). A tile and a foil covered tile can be seen
in Figure 3.2. The SiPM is placed in a dimple in the centre of the tile. A base unit of
the AHCAL (HBU, which stands for HCAL Base Unit) is 36 × 36 cm2 wide and contains
144 tiles. An active layer of the size of 72 × 72 cm2 is composed of four HBUs, and thus
encompasses 24 × 24 tiles. One active layer module also shares a common set of interface
boards, connected to power supplies and to the data acquisition system. An active layer
from the top and from the bottom view is shown in Figure 3.3. The active layers are then
arranged in a wedge shaped absorber structure. In total, 38 active layers are built into
the AHCAL.

Figure 3.2.: Scintillator tile with one SiPM (left) and a foil covered scintillator tile
(right) [13].
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3.1. The AHCAL Technological Prototype

(a) (b)

Figure 3.3.: HBU with scintillator tiles seen from the top (a) and from the bottom (b)
[12].

An SiPM is a matrix consisting of usually 1000 pixels per 1 mm2, where each pixel is
composed of a photodiode and a quenching resistor, which are operated just above break-
down voltage [34]. SiPMs are based on single-photon avalanche diodes (SPADs). SPADs
are composed of a p+-i-n+ photodiode and an additional slightly p-doped layer, whose
general structure can be seen in Figure 3.4. Between the anode at the p+ region and the
cathode at the n+ region, a voltage is applied. A photon entering the active material will
be absorbed in the i-layer, which is the intrinsic region, where it induces the production
of an electron-hole pair. The electron then moves in the direction of the cathode, due to
the external field, and the positive hole to the anode and the p+ layer. Once the electron
reaches the p-doped layer, where the electric field suddenly increases, the electron accel-
erates, which enables it to create new electron-hole pairs. These newly formed pairs will
continue with the electron-hole production as well, forming a cascade. This is why the
p-doped and the following n+ layer are referred to as the multiplication region [35]. The
electric signal from the electrons at the n+ layer and the hole at the p+ layer can then be
measured.

An electric signal within an SPAD could also be induced due to thermal electrons, which
is considered to be thermal noise that forms the majority of the noise in a SiPM [34].
The rate of electrical signals created due to noise is called the dark count rate. The dark
count rate can be minimised by operating the SiPMs at low temperatures [36].
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Figure 3.4.: A schematic model of an SPAD, which consists of a highly p-doped layer
(p+) followed by the intrinsic (i) and an additional slightly p-doped layer
(p) connecting to an n-doped layer (n+). At the p+ layer and the cathode,
a voltage is applied. The electromagnetic field strength within the layers
is shown on the left-hand side [35].

The absorber material of the AHCAL is non-magnetic stainless steel whose ratio between
the interaction and radiation length is comparatively small, as already mentioned in Sec-
tion 2.4.2. One absorber layer has a thickness of 1.7 cm which corresponds to one radiation
length or 0.1 interaction lengths. The whole absorber consists of 44 absorber layers with
gaps for active layers in between. Combined with active layers, it measures a depth of 4.4
interaction lengths [12].

3.2. The Test Beam Run in 2018

The test beam run in 2018 was performed at the H2 beam line at the CERN Super Proton
Synchrotron beam test facility and was divided into three periods. The first period was
during the first two weeks of May. The prototype, including 38 active layers placed in
the first 38 gaps of the absorber structure, was installed on a platform adjustable in the
x-y-plane which was placed orthogonal to the beam axis. The event recording relied on
the matching triggering of two external scintillators in the beam line. Data were taken for
electrons with beam energies of 10 GeV, 20 GeV, 30 GeV, 40 GeV, 50 GeV, 60 GeV, 70 GeV,
80 GeV, 90 GeV and 100 GeV, for muons for energies between 40 GeV and 120 GeV and
for negative pions in the range between 10 GeV and 160 GeV [12].

The second run took place during one week in June. The 38th active layer, which had
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scintillator tiles of the size 3 × 3 cm2, was replaced with a layer comprising 6 × 6 cm2 tiles.
Furthermore, the previous 38th layer was placed in the 41st gap of the absorber structure.
This time, the AHCAL was tested together with a pre-shower layer in front and a tail
catcher in the rear of the calorimeter prototype. The pre-shower layer was one HBU. The
tail catcher consisted of 12 HBUs, which had a different tile geometry than those used in
the prototype, alternating with 7.4 mm thick steel as absorber. Everything was placed on
the adjustable platform. Data were taken for positrons with beam energies in the range
between 10 GeV and 100 GeV in steps of 10 GeV, for muons at a beam energy of 40 GeV,
and for negative pions for 10 GeV, 20 GeV, 30 GeV, 40 GeV, 60 GeV, 80 GeV, 120 GeV,
160 GeV and 200 GeV [12].

The third period of the 2018 test beam campaign was in October. The AHCAL, with 39
layers, which includes 38 layers with 3×3 cm2 tiles and one with 6×6 cm2 tiles, was tested
together with the prototype for the silicon part of the CMS High-Granularity Calorimeter
(HGCAL), which was placed in front of the AHCAL. The system of both calorimeter
prototypes was installed on a fixed platform, since it was too large to be mounted on the
movable one. Due to the depth of the HGCAL being five interaction lengths, only tails
of showers and muons could reach the AHCAL. In total, about 93 million events were
recorded in 2018 [12].
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4. Electromagnetic Shower
Simulation with the Discrete
Cosine Transformation

Simulations are an essential tool in modern high energy particle physics. Not only are
simulations used to verify whether detectors function as expected or not, but they also
allow for probing the SM and its interactions, as well as putting its theories to the test.
Unfortunately these simulations are very time- and computing-resource-consuming due
to large amounts of data that have to be simulated. Therefore, it is necessary to find
alternatives that offer simpler simulation methods without losing important information
about particle showers. Since electromagnetic subshowers are a crucial part of hadronic
showers and have a significant impact on the energy resolution of hadronic calorimeters,
their development in hadronic calorimeters, in particular highly granular ones such as the
AHCAL test beam setup, needs to be simulated as well. Therefore, this thesis concen-
trates on the data reduction of electromagnetic showers in the AHCAL using the discrete
cosine transformation in order to enable fast shower simulation methods to achieve good
agreement with data within reasonable time and with high efficiency.

Section 4.1 describes how particle showers can be simulated via kernel density estima-
tors. In Section 4.2 the discrete cosine transformation will be explained as well as how
it will be used to reduce data. Section 4.3 addresses centre-of-gravity cuts simplifying
the computation of the hit energy positions relative to the centre of gravity. Section 4.4
shows properties of the nodes and how these are used in the data reduction. Sections 4.5
and 4.6 present distributions of kinematic variables for several methods of random node
generation. Finally, a comparison of hit energy data of a single event before and after the
discrete cosine transformation is presented in Section 4.7.
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4.1. Shower Simulation using Kernel Density
Estimators

The kernel density estimation [37] is a method of describing distributions of data. It
relies on estimating and approximating probability density functions (PDFs), which is
particularly useful when working with very large amounts of data of which underlying
PDFs are not known or have no analytical form. In one dimension, PDFs can, for instance,
be approximated by the following kernel density estimator (KDE) [37]

f(x) = 1
nh

n∑
i=1

K
(

x − xi

h

)
, (4.1)

where x can be any physical variable of which n measurements (x1, x2, ..., xn) have been
taken. The kernel K is a non-negative density function describing individual data points
well enough. For example, a Gaussian distribution

K(x) = 1√
2π

exp
(

−1
2x2

)
(4.2)

can be chosen. The free parameter h is the so-called bandwidth. It determines the smooth-
ness of the estimated PDF. If h is chosen too small, the curve of the KDE will show every
data point as a peak, in contrast to when h is chosen too big, the curve becomes flat,
which results in the desired structure of the PDF being lost.

The KDE simulates the PDFs of the hit energy well, which can be seen in Figure 4.1a and
4.1b, where the distributions of the energy in layers 1 (4.1a) and 20 (4.1b) are shown for
actual data of an electron beam with 60 GeV beam energy and for the simulated energies
using KDEs with a bandwidth of h = 0.01. For both plots, the simulation differs from the
original data only in the form of small fluctuations. It was shown that global kinematic
variables for hadronic showers are simulated well by KDEs [38], therefore it is assumed
that the KDEs are able to simulate electromagnetic showers as well.

Even though some hits have been measured in layer 20, for most events no energy has
been detected in this layer, which is indicated by the peak at 0 MIP. Therefore, an event
usually comprises many hit energies per tile equal to zero. These values require a great
amount of storage and are not crucial in describing the shower accurately, which compli-
cates the simulation via KDEs a lot, since the large amount of input data results in very
long computing-time, which is unpractical for a fast simulation. To make the simulation
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more efficient, the simulation could be sped up by minimising the large amount of zero
energy values simulated by the KDEs. One possible way to do that is to use transfor-
mations that transform the data into more manageable values, or even into a dataset of
smaller size. Such transformations, ideally, are information-loss-free. If not, one must
find ways to keep information loss as small as possible. How exactly the data reduction
has been done in the context of this thesis is described in the following Sections.

(a) (b)

Figure 4.1.: Distribution of the energy deposited in layers 1 (a) and 20 (b) for data and
simulated data with KDEs.

4.2. The Discrete Cosine Transformation

The discrete cosine transformation (DCT) is similar to the discrete Fourier transforma-
tion (DFT). It is a mathematical series used to describe the shape of a distribution via
superposition of cosine nodes. The DCT can be derived from the DFT, which is described
through

X̃k =
N−1∑
n=0

xn · e−i 2πkn
N , (4.3)
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where {X̃k} = X̃0, X̃1, · · · , X̃N−1 and {xn} = x0, x1, · · · , xN−1. The sequence {xn} will
be mirrored and doubled, such that

x̃n =

xn, 0 ≤ n < N

x2N−1−n, N ≤ n < 2N − 1
. (4.4)

Described via the DFT, one then finds that

X̃k =
N−1∑
n=0

xn · e−i πkn
N +

2N−1∑
n=N

x2N−1−n · e−i πkn
N , (4.5)

and using the index shift (2N − 1 − n) 7→ n in the second sum, it follows that

X̃k =
N−1∑
n=0

xn · e−i 2πkn
2N +

N−1∑
n=0

xn · e−i 2πk
2N

·(2N−1−n) . (4.6)

It is then possible to rearrange Equation (4.6), using cos(x) = 1
2 (eix + e−ix), into

X̃k = ei
π(k/2)

N 2 ·
N−1∑
n=0

xn cos
(

π
k

N
·
(

n + 1
2

))
. (4.7)

The discrete cosine transform is then defined as

Xk =
N−1∑
n=0

xn cos
[

π

N

(
n + 1

2

)
k
]

. (4.8)

Here, xn represents the data points, N is the number of data points and k = 0, 1, ... , N −1
is the index of the coefficients Xk. The DCT coefficients quantify how strongly a specific
cosine node is represented in the given distribution of data, and will henceforth be referred
to as “nodes”. This concept can be visualised in Figure 4.2. The cosine nodes shown in
Figure 4.2b contribute differently to a probability density function (PDF), such as the
blue curve in Figure 4.2a. The cosine nodes from 4.2b are also plotted together with the
PDF in Figure 4.2a, which already allows to estimate that in this example, node 2 has
the highest contribution, followed by node 1 and node 3.

A visualisation of the cosine nodes in two dimensions can be seen in Figure 4.3. Here, each
square represents a specific two-dimensional standing cosine wave with the dark shades
indicating minima and the light regions indicating maxima.
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(a)

(b)

Figure 4.2.: Visualisation of cosine nodes in one dimension for an arbitrary variable.

Figure 4.3.: Visualisation of cosine nodes in two dimensions, where the light shade
represents maxima and the dark minima [39].
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The DCT is widely used for image compression. In order to use the DCT for data reduction
for particle showers, the hit energies of a shower are inserted as the data points xi. The
resulting coefficients Xk describe the contribution of the cosine nodes to the shape of the
hit energy distribution in the calorimeter. For the investigation of this thesis, cosine nodes
with coefficients close to zero can be seen as noise and are generated randomly with the
help of Gaussian distributions. Nodes with larger coefficients, on the other hand, would
then be simulated using KDEs. The more nodes are generated randomly, the less nodes
need to be simulated later on. After the generation and simulation of nodes, the nodes
can be transformed back using the inverse DCT [40]

xn = 2
N

(
1
2X0 +

N−1∑
k=1

Xk cos
[

π

N

(
n + 1

2

)
k
])

, (4.9)

to obtain hit energies again.

The initial hit energy dataset contains one value for each tile of the calorimeter per event,
which can be characterised by their position in the calorimeter in x, y and z direction.
Here, z is the beam direction and x and y form the transverse plane. Because of this
three-dimensional arrangement of the hit energy data, it is necessary to use the three-
dimensional DCT and its corresponding inverse. One can obtain the three-dimensional
transformations by multiplying three one-dimensional transformations. This way, the
three-dimensional DCT results in the expression:

Xk1,k2,k3 =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

xn1,n2,n3×

cos
[

π

N1

(
n1 + 1

2

)
k1

]
cos

[
π

N2

(
n2 + 1

2

)
k2

]
cos

[
π

N3

(
n3 + 1

2

)
k3

] (4.10)

and the three-dimensional inverse DCT in

xn1,n2,n3 = 8
N1N2N3

ϵ1ϵ2ϵ3

N1−1∑
k1=0

N2−1∑
k2=0

N3−1∑
k3=0

Xk1,k2,k3×

cos
[

π

N1

(
n1 + 1

2

)
k1

]
cos

[
π

N2

(
n2 + 1

2

)
k2

]
cos

[
π

N3

(
n3 + 1

2

)
k3

]
.

(4.11)

Here, the indices indicate the three spacial dimensions. The factors ϵi with i ∈ {1, 2, 3}
equal 1/2 for ki = 0, else they equal 1.
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4.3. Shower Coordinates Relative to the Centre-of-Gravity

In order to be able to describe showers with varying shower starts and centres of gravity,
it is necessary to reformulate the given hit energy data relative to these two variables.
For this, one must subtract the shower start from the z- and the CoG in the transverse
plane from the x- and y-coordinates of a hit. The CoG in x-direction is defined as

xCoG = 1
Etot

∑
hits

Ehit · xhit , (4.12)

with analogous definitions for yCoG and zCoG. Here, Etot is the total energy of the shower,
Ehit the hit energy and xhit the tile number of the hit (or the layer number in z-direction).
The distributions of the CoG in the transverse plane for showers initiated by electrons for
beam energies of 10 GeV, 50 GeV and 80 GeV are shown as the two-dimensional histograms
in Figure 4.4. The axes show the tile number in x- or y- direction and the colour scale,
which varies for each plot, indicates the probability of the CoG to lie in a specific tile.

(a) (b)

(c)

Figure 4.4.: Centre of Gravity in the transverse plane for electromagnetic showers initi-
ated by electrons with beam energies of 10 GeV (a), 50 GeV (b) and 80 GeV
(c).
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In the plots for 10 GeV and 50 GeV the probability is the highest for the CoG to be in
the lower right part of the calorimeter. It is noticeable that the plot for 80 GeV electrons
shows four distinct clusters with non-zero CoGs. This is likely due to movement of the
test beam during the test beam run. Additional plots of the CoG for the energies 20 GeV,
30 GeV, 40 GeV and 60 GeV can be seen in the Appendix in Figure A.1.

New positions for the hit energies relative to the CoG will be computed using

xrel = xhit − xCoG and (4.13)

yrel = yhit − yCoG . (4.14)

Here, xrel, yrel indicate the relative position, xhit, yhit the actual hit position and xCoG, yCoG

the CoG in x/y-direction. The new positions will be referred to as “relative tiles”. For
the z-direction, the position of the shower start will be subtracted from the hit position:

zrel = zhit − zss . (4.15)

Here, zrel is the relative position, zhit the hit position and zss the layer of the shower start
in z-direction. The redefinition of the hit energy positions results in a number of relative
tiles differing from the actual number of tiles of the calorimeter prototype. The number
of relative tiles is then limited to 23 relative tiles in the x-direction and 23 tiles in the
y-direction (11 left of the CoG, 11 right of it, and the CoG tile itself).

For the following investigation, only data from the 50 GeV electron beam and events
around the most probable CoG in the transverse plane, which is within a 4 × 4 tile block,
are considered. This includes the tiles 14 to 17 in the x-direction and 8 to 11 in the
y-direction.

4.4. Properties of DCT Nodes

The purpose of data reduction is to improve the computing-time of KDEs while min-
imising information loss at the same time. With a large enough number of nodes being
generated as random noise instead of, based on their actual distributions, being obtained
through KDEs, this goal can be achieved. Therefore, it is necessary to investigate which
nodes are suitable for random noise generation.

After applying the DCT, each event still has the same dimensions as before the DCT,
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which means that the total number of nodes equals the number of tiles. Thus, it is still
possible to assign an x, y and z value to every node, acting as a “position”. In Figure
4.5a, the mean absolute nodes per tile are shown for all x- and y-values and for z = 0. It
is evident that a significant number of nodes possesses a rather small value. These nodes
are generally assumed to be fitting candidates for random noise generation. For higher
z-values, even more nodes feature rather small mean values, which can be seen in Figure
4.5b where the means of absolute nodes are shown for z = 10.

It is important to only consider means of absolute nodes and not of these of the signed
values of nodes, since the distributions of nodes often exhibit a double peak structure, as
shown in Figure 4.6, where the distribution for the node with x = 4, y = 22 and z = 0 is
shown. This double peak structure would yield a mean value near zero, even though the
probability for the node having a larger value is much larger too. Hence, only absolute
nodes are randomly generated, with their signs being separately determined.
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Figure 4.5.: Mean absolute nodes per tile in x- and y-direction for z = 0 (a) and z = 10
(b).
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Figure 4.6.: Node distribution of the node at x = 4, y = 22 and z = 0. The node takes
on large absolute values on an event-to-event basis, which average to zero,
though, for many events.

To begin, all nodes with an absolute value less than or equal to a certain threshold are
generated as random noise. If the data with randomly generated noise still matches
the original well, the threshold can be increased until acceptable agreement is not given
anymore. This investigation is discussed in Section 4.5. An initial threshold of 10 MIP has
been chosen. This means all nodes within (−10, 10) MIP are generated randomly using
appropriate Gaussian distributions. To elaborate on this, Figure 4.7 shows the means of
the absolute nodes sorted by their magnitude. This plot shows that only approximately
3000 nodes have a mean absolute value of ≤ 10 MIP, which is a small fraction out of the
total ~20000 nodes.

0 2500 5000 7500 10000 12500 15000 17500 20000
Node Number

100

101

102

103

Me
an

s [
MI

P]

Absolute Node Means per Tile for 50 GeV Beam Energy

Figure 4.7.: Sorted mean absolute node values. Horizontal lines for orientation are
shown for 1 MIP and 10 MIP.
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In Figure 4.8, the distribution of the actual number of nodes within (−10, 10) MIP per
event is shown, where it becomes clear that an event has on average approximately 7000
nodes that lie in the given interval.

Figure 4.8.: Distribution of the number of nodes within (−10, 10) MIP per event.

4.5. Generating DCT Nodes Randomly and
Kinematic Shower Variables

As already mentioned in Section 4.4, a possible approach to decrease the amount of hit
energy data is to generate all of those node amplitudes randomly that are smaller than
a chosen threshold by using appropriate Gaussian distributions. These nodes would be
small enough to be considered noise. Nodes with larger values are taken directly from
data. This allows to investigate which nodes can be simulated in a random fashion. As a
first attempt, all node amplitudes between (−10, 10) MIP were generated randomly.

The impact of the noise generation can be seen in Figure 4.9 where distributions of the
original data and with randomly generated noise can be seen for the total energy in Figure
4.9a, the energy-weighted mean shower radius in Figure 4.9b and the CoG in z-direction
in Figure 4.4a. The total energy of a shower is defined as the sum over all hit energies
and the energy-weighted mean shower radius r̄ is described through

r̄ = 1
Etot

∑
hits

rhit · Ehit , (4.16)

where rhit is the radial distance of the hit to the CoG in millimetres. Here, it was assumed
that the hit and the CoG are located in the centre of a tile. Furthermore, the distributions
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of the shower moments in z-direction can be seen in Figure 4.9d for the variance, the
skewness in Figure 4.9e and the kurtosis in Figure 4.9f. The variance µ2 in z-direction is
defined as

µ2 = 1
Etot

∑
hits

(zhit − zCoG)2 , (4.17)

the skewness µ3 as

µ3 = 1
Etot

∑
hits

(
zhit − zCoG

σ

)3
, (4.18)

and the kurtosis µ4 as

µ4 = 1
Etot

∑
hits

(
zhit − zCoG

σ

)4
. (4.19)

Here, zhit is the layer number of the hit, zCoG the position of CoG in z-direction and
σ the standard deviation. These moments can be analogously computed for the x- and
y-direction.

The noise generation is divided into two regions. All nodes with a value between −1 MIP
and 1 MIP are generated using a Gaussian distribution with a mean value of
−1.03 · 10−4 MIP and a standard deviation of 0.571 MIP. For nodes within
(−10, −1] ∪ [1, 10) MIP, the Gaussian distribution has a mean of 2 · 10−6 MIP and a
standard deviation of 5.95 MIP.

The mean total energy from Figure 4.9a is ~2250 MIP, and the majority of events has
a total energy between 2000 MIP and 2500 MIP. The data before and after the DCT is
nearly symmetrically spread around the mean, although events with a total energy below
2000 MIP appear as well, whereas almost no events with total energy above 2750 MIP
exist. Both curves for the mean event radius from Figure 4.9b feature a distribution with
two peaks, where the first one is located at 15 mm and the second one between 30 mm and
40 mm. The CoG in z-direction in Figure 4.9c has a peak around the sixth and seventh
layer for both distributions. All shower moments feature a peak structure as well. The
mean variance lies between 0.3 MIP and 0.35 MIP, the mean skewness between 5.0 and
6.0 and the mean kurtosis between 150 and 200. In all plots, the general shape of the
distributions with randomly generated values matches the shape of the data distributions.
Differences only appear in the form of small fluctuations. This can also be seen in the
shower moment distributions and CoG in the transverse plane in Figures A.2 and A.5 in
the Appendix.
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Figure 4.9.: Distributions of the total energy (a), the energy-weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the z-
direction. The original data is shown in blue and the data with generated
noise within (−10, 10) MIP in orange.
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As shown in Section 4.4, only about 7000 nodes out of in total approximately 20000 nodes
per event are generated randomly. To increase the number of randomly generated nodes,
the threshold can be increased. Hence, the noise was now generated with three different
Gaussian distributions. The first two distributions have the same parameters and are used
for the same intervals as before. The third generates nodes within (−20, −10]∪[10, 20) MIP
with a mean of 15 MIP and a standard deviation of 18 MIP. This time, the parameters for
the third Gaussian distribution were estimated using Figure 4.7 for the mean and from
Figure 4.10 for the standard deviation, which shows the standard deviations of all nodes
sorted from smallest to largest mean node value.
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Figure 4.10.: Standard deviations of the node distributions, sorted from smallest to
largest mean node value. Horizontal lines for orientation are shown for
20, 30, 50 and 70 MIP.

Figure 4.11 also shows the distributions of the total energy (Figure 4.11a), the energy
weighted shower radius (Figure 4.11b), the CoG in z-direction (Figure 4.11c), the variance
in z-direction (Figure 4.11d) as well as the skewness (Figure 4.11e) and the kurtosis (Figure
4.11f) for generated noise within (−20, 20) MIP. The overall shape seems to be conserved,
but this time the curves with generated nodes are shifted to the right for the total energy
and the shower radius as well as for all shower moments in z-direction. The CoG did not
shift, but the fluctuations increased in comparison to the plot for noise between −10 MIP
and 10 MIP in Figure 4.9c. Plots for the shower moments and the CoGs in the transverse
plane can be seen in Figures A.2 and A.6 in the Appendix.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11.: Distributions of the total energy (a), the energy weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the z-
direction. The original data is shown in blue and the data with generated
noise within (−20, 20) MIP in orange.
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4. Electromagnetic Shower Simulation with the Discrete Cosine Transformation

In order to investigate at which threshold the random node generation will not fit the
data anymore, one more set of plots was made using this method. This time, all nodes
within (−30, 30) MIP were considered to be noise. To do that, again the same Gaussian
distributions were used for the nodes within (−10, 10) MIP as previously. For the interval
(−30, −10] ∪ [10, 30) MIP the Gaussian distribution now used a mean of 18 MIP and a
standard deviation of 20 MIP. In Figure 4.12 the distributions of the kinematic variables
as well as the shower moments in z-direction are shown for data and for data with simu-
lated noise within (−30, 30) MIP.

This time, almost all distributions are shifted to the right to an amount such that data
and the curves with generated noise have only a small or almost none overlap. The shape
of the curves of data with generated noise differs more from the original data for the
total energy, the shower radius, the CoG and the variance. The two peaks from the mean
radius have become only one peak with a wider distribution. The distributions of the
total energy and the CoG in z-direction are wider and have a smaller peak than the orig-
inal data. In contrast, the distribution of the variance in z-direction has a higher peak
compared to the actual data. The shape of the skewness and the kurtosis in z-direction
seem to have improved from the plots with noise between −20 MIP and 20 MIP in Figure
4.11, although here the curves are clearly shifted as well. In general, it seems that the
limit up to which threshold nodes can be generated randomly and still show acceptable
results lies between 20 MIP and 30 MIP.
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Figure 4.12.: Distributions of the total energy (a), the energy weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the z-
direction. The original data is shown in blue and the data with generated
noise within (−30, 30) MIP in orange.
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4.6. Generating Odd Nodes randomly

Another way of choosing nodes for the random generation becomes apparent by inspect-
ing Figure 4.5a. It is noticeable that the nodes where x and y are both odd have a much
smaller mean value than those where one or especially both coordinates are even. Thus,
the next method is to generate all nodes where x and y are odd, henceforth referred to
as “odd nodes”, up to ±30 MIP. This was the threshold where the previous node gen-
eration method stopped to yield results that matched data distributions of the original
dataset. The parameters for the Gaussian distributions are chosen to be the same as for
the node generation between (−30, 30) MIP for even and odd nodes. This time the nodes
are not checked individually, though, whether their value lies within the required inter-
val. Instead, all nodes, identified by their x-, y- and z-value, whose mean absolute value
is within [0, 30) MIP will be generated randomly via appropriate Gaussian distributions.
This leaves the number of nodes that are generated randomly unchanged from event to
event, which was not the case previously. Furthermore, the constant number of randomly
generated nodes is also important because KDEs also require a constant number of input
values.

The distributions of the kinematic variables are shown in Figure 4.13. The plots for
the shower moments and the CoGs in the transverse plane are shown in the Appendix in
Figures A.8 and A.12.

The kinematic distributions of the data after the DCT are all shifted to the right-hand
side. For the total energy, the skewness and kurtosis in z-direction, the curves have smaller
maxima and are all wider than the original PDFs. The distribution of the variance in
z-direction is much wider than the curve from before the DCT. The shape of the mean
shower radius after the DCT differs a lot from the actual data, since it now only shows
one peak, which is also larger than the original ones. Therefore, the random generation
of only odd nodes does not seem to work better than the random generation for all nodes
within (−30, 30) MIP.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13.: Distributions of the total energy (a), the energy weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the z-
direction. The original data is shown in blue and the data with generated
noise within (−30, 30) MIP for nodes with odd x- and y-values in orange.
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Another method is to generate single rows or columns from Figure 4.5a randomly. To
start off, only nodes where (x = 21 ∧ y odd) or (x odd ∧ y = 21) are generated ran-
domly. This time though, only one Gaussian distribution is used for all nodes which
fulfil the given requirements. The mean and the standard deviation are chosen based on
Figures 4.14 and 4.15. The former shows the mean value of the absolute nodes where
(x = 21 ∧ y odd) or (x odd ∧ y = 21) sorted from lowest to highest. The latter depicts
values of the standard deviation plotted against the node number. Based on these plots,
30 MIP for the mean and 15 MIP for the standard deviation have been deemed as appro-
priate parameters for the Gaussian noise distribution.

The distributions of the kinematic variables for data before and after the DCT can be
seen in Figure 4.16. The plots for the shower moments and the CoG in the transverse
plane are shown in the Appendix in Figures A.9 and A.13.

The distribution of the CoG in z-direction after the DCT seems to match the origi-
nal data well. Only small fluctuations are visible. The distribution of the variance is only
slightly shifted to the right, whereas the shape of the curve has not changed significantly.
The other shower moments (skewness and kurtosis), feature a much smaller peak and a
wider distribution than the original data. Both curves are shifted even more. The total
energy after the DCT deviates, but not strongly, from data on the left-hand side of the
distribution, as the maximum peak is smaller than before the DCT. However, on the
right-hand side, a small but noticeable second peak has formed. The same description
fits the mean radius, where the additional peak is even more pronounced.
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Figure 4.14.: Mean absolute values of all nodes that satisfy (x = 21 ∧ y odd) or
(x odd ∧y = 21).
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Figure 4.15.: Standard deviations of all nodes that satisfy (x = 21 ∧ y odd) or
(x odd ∧y = 21).
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Figure 4.16.: Distributions of the total energy (a), the energy weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the z-
direction. The original data is shown in blue and the data with generated
noise (one Gaussian distribution) for nodes with (x = 21 ∧ y odd) or (x
odd ∧ y = 21) in orange.
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To obtain better results, in particular for the total energy and the energy-weighted mean
shower radius, noise was generated randomly for the same node configuration as previous,
but with three Gaussian distributions. Again, all nodes between −10 MIP and 10 MIP are
generated with Gaussian distributions with the same parameters as before. For all nodes
with a higher absolute value than 10 MIP, a mean of 30 MIP and a standard deviation
of 30 MIP have been chosen. The distributions of the kinematic variables can be seen
in Figure 4.17. The shower moments and CoGs in x- and y-direction are shown in the
Appendix in Figures A.11 and A.14.

The distributions after the DCT for the shower moments in z-direction have improved
compared to the distributions where only one Gaussian distribution has been used. The
shapes of the curves match the data and only differ in small fluctuations. The CoG in
z-direction still exhibits the same shape as the data, but the fluctuations seem to be a
little stronger than in the previous figure. The distributions of the total energy and the
energy-weighted mean shower radius did not change noticeably. The problem of the addi-
tional peaks in the distribution of the total energy and the energy-weighted mean shower
radius still remains.

The last method that has been investigated was to set all nodes with (x = 21 ∧ y odd)
or (x odd ∧ y = 21) to zero. The distributions of the kinematic variables for this method
are shown in Figure 4.18. The shower moments and the CoG in x- and y-direction can
be seen in the Appendix in Figures A.9 and A.15. The curves of the data after the DCT
did not change noticeably. Only the fluctuations of the shower variance and skewness in
z-direction seem to have decreased slightly. Moreover, replacing the random noise with
zeros did not improve the results and the additional peak in the total energy and the
mean shower radius PDFs still persists.

It turns out that the random noise generation yields better results for specific odd rows
or columns in Figure 4.5 than for all odd nodes up to a threshold of 30 MIP. Using three
Gaussian distributions for random noise generation also improves the results too, com-
pared to only one Gaussian function. Furthermore, setting the same nodes to zeros works
just as well. However, for the last three configurations, an additional peak became visible
in the distributions of the total energy and the mean shower radius, respectively. Hence,
if the origin of these peaks was to be investigated further, one could possibly improve the
method significantly for which nodes that satisfy (x = 21 ∧ y odd) or (x odd ∧ y = 21)
were either replaced by zero or a random value.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17.: Distributions of the total energy (a), the energy weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the z-
direction. The original data is shown in blue and the data with generated
noise (three Gaussian distributions) for nodes with (x = 21 ∧ y odd) or
(x odd ∧ y = 21) in orange.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18.: Distributions of the total energy (a), the energy weighted mean shower
radius (b), the CoG in z-direction (c), the variance (d), the skewness (e)
and the kurtosis (f). The shower moments describe the shower in the
z-direction. The original data is shown in blue and the data where all
nodes with (x = 21 ∧ y odd) or (x odd ∧ y = 21) were set to zero in
orange.
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4.7. Single event comparison

In order to analyse where the additional peaks in the total energy and the mean shower
radius distributions originate from, and to investigate how the DCT changes a single
event, a detailed comparison was made for a single event. For this, only one event was
transformed and transformed back with the DCT and compared with its original. For the
noise generation one Gaussian distribution was chosen which was also used in the random
node generation with one Gaussian function from the previous section. Again, all nodes
which fulfil the requirement (x = 21∧ y odd) or (x odd ∧ y = 21) were generated randomly.

For this comparison, two kinds of plots were made. The first one shows the difference
of the hit energies before and after the DCT as a two-dimensional histogram for each
tile in the x- and y- direction. One plot has been made for each layer in the z-direction,
where the colour bar range varies for each layer. This can be seen in Figures 4.19 and
4.20, where the hit energy differences for layers 6 and 7 are shown. Layer 6 and 7 are the
most likely positions of the CoG in z-direction. The hit energy differs around the CoG
in the transverse plane, which is in the centre of the plot, for layer 6. For layer 7 the
biggest differences are located more in the upper and left parts of the CoG, whereas the
differences all lie in the range of −0.1 MIP and 0.3 MIP.
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Figure 4.19.: Difference of the hit energies in layer 6 before and after the DCT, where
all nodes that satisfy (x = 21∧ y odd) or (x odd ∧ y = 21) were generated
randomly.
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Figure 4.20.: Difference of the hit energies in layer 7 before and after the DCT, where
all nodes that satisfy (x = 21∧y odd) or (x odd ∧y = 21) were generated
randomly.

The second kind is a two-dimensional histogram of the differences of the energy-weighted
hit radii, which are the distances of the hits to the CoG multiplied by the corresponding
hit energy. This plot is interesting, since the mean shower radius distributions in the
previous Section showed an additional peak as well. Again, one plot represents all radii
for all tiles in one layer, and the colour bar varies for each plot. In Figure 4.21 the hit
radius differences for layer 6 and in Figure 4.22 for layer 7 are shown. The distributions
of the radius differences look similar to the hit energy differences for both plots, whereas
the differences lie within the range of −15 MIP · mm and 45 MIP · mm.
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Figure 4.21.: Difference of the energy weighted hit radius in layer 6 before and after the
DCT, where all nodes that satisfy (x = 21 ∧ y odd) or (x odd ∧y = 21)
were generated randomly.
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Figure 4.22.: Difference of the energy weighted hit radius in layer 7 before and after the
DCT, where all nodes that satisfy (x = 21 ∧ y odd) or (x odd ∧y = 21)
were generated randomly.

Since this comparison was only done for one event, the differences for the hit energy
and the hit radius cannot be used to state a conclusion for electron showers in general.
Moreover, since multithreading has been used for the computations of the transformations,
it is currently not possible to say how much the shown event does actually contribute to
the formation of the additional peaks. If it was possible to deduce which events in the
original dataset contribute to the additional peak after back transformation, a one-event
comparison for these specific events could be performed and the origin of the additional
peaks analysed. However, in order to do that, it would be necessary to track the events
during both transformations, which would require to rewrite programs such that they do
not use multithreading, but transform events one by one. This would, however, greatly
increase the computational time too. A further analysis of single events is thus outside
the scope of this thesis.
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Data reduction methods for a data-based fast particle shower simulation have been inves-
tigated in this thesis for electromagnetic showers. The investigation is based on a dataset
recorded by the AHCAL group of the CALICE Collaboration with their highly granular
technological detector prototype. For the data comparison the discrete cosine transforma-
tion has been utilised. The DCT is able to translate the shower shape into cosine nodes
of various contributions. By considering highly frequent nodes with small values as noise
and generating them randomly, following Gaussian distributions, the amount of data per
event could be reduced.

First off, nodes have been generated randomly if their values lie within (−10, 10) MIP
by using two Gaussian distributions, one for nodes within (−1, 1) MIP and the other for
(−10, −1] ∪ [1, 10) MIP. Distributions of kinematic shower variables with generated noise
featured good agreement with the original data. Differences only appeared as small fluc-
tuations. By increasing the threshold to a larger value and introducing a third Gaussian
distribution for the interval (−20, −10] ∪ [10, 20) MIP, the distributions with generated
noise started to show signs of disagreement while mostly keeping their original shape.
The next increase of the threshold to 30 MIP rendered the curves ultimately incompatible
with the original distributions. Here again, three Gaussian distributions for random noise
generation were used. Therefore, it can be concluded that the limit where less important
nodes can be generated randomly lies between 20 MIP and 30 MIP.

The second method focused on generating only odd nodes randomly, which originated from
the observation that these nodes tend to have smaller values than even nodes. The first
attempt tried to generate all odd nodes randomly whose values lie within (−30, 30) MIP,
which was the threshold where the random generation stopped to match the data. How-
ever, this method did not improve the distributions any further. Therefore, the following
idea was to generate all nodes that fulfil (x = 21 ∧ y odd) or (x odd ∧ y = 21) since
nodes with a higher node number tend to have smaller values. This was done with only
one Gaussian distribution, which still resulted in slightly shifted curves and also altered

53



5. Conclusion

shapes of distributions of the kinematic variables compared to the original data. The most
apparent differences were additional peaks in the distributions of the total energy and the
energy-weighted mean shower radius. Each showed one additional peak on the right-hand
side of the main distributions. In the next attempt, the same node configuration, but
with three Gaussian distributions, was generated randomly. This time, the curves only
differed in small fluctuations and matched the data well, except for the additional peaks
in the total energy and mean radius distribution, which did not vanish. Lastly, all nodes,
again with the same node configuration, were set to zero. The distributions of the kine-
matic variables showed slightly smaller fluctuations than the previous set of plots, but
the problem of the additional peaks in the total energy and the mean shower radius still
remained.

Furthermore, a single-event comparison of the data before and after applying the DCT
was made. However, since multithreading has been used for both transformations, it is
not possible to say to which part of the distributions the analysed event contributed. For
an investigation of specific events and their contributions to the previously mentioned dis-
tributions, such as the additional peaks in the total energy and the mean shower radius,
and how the DCT affects them, an implementation of the DCT without multithreading,
but with individual event transformations is required.

To conclude, it is possible to use the DCT to reduce the hit energy data while obtain-
ing good agreement with the original data, but only to a certain extent. All of this
does, however, not compress the data set enough to achieve significant improvement in
computing-time and computational resources of shower simulations. To achieve better
agreement with the data, while generating more nodes randomly, a more detailed analysis
of suitable Gaussian distributions or other possibly more fitting distributions could be
done.

Calorimetry and thus particle shower simulations are, and will be, a crucial part of modern
particle physics. Therefore, the search for possibilities to improve such simulations goes
on, which will also contribute significantly to experiments at future particle accelerators
such as the International Linear Collider, which will open many possibilities for the search
for evidence for theories beyond the Standard Model.
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A. Additional Plots

A.1. Centre-of-Gravity Distributions

(a) (b)

(c) (d)

Figure A.1.: Centre of Gravity in the transverse plane for electromagnetic showers ini-
tiated by electrons with beam energies of 20 GeV (a), 30 GeV (b), 40 GeV
(c) and 60 GeV (d).
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A. Additional Plots

A.2. Generating DCT Nodes Randomly and
Kinematic Shower Variables

(a) (b)

(c) (d)

(e) (f)

Figure A.2.: Distributions of the shower moments in x- (left) and in y-direction (right),
for the variance (a), (b), the skewness (c), (d) and the kurtosis (e), (f). The
original data is shown in blue and the data with generated noise within
(−10, 10) MIP in orange.
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A.2. Generating DCT Nodes Randomly and Kinematic Shower Variables

(a) (b)

(c) (d)

(e) (f)

Figure A.3.: Distributions of the shower moments in x- (left) and the CoG in y-direction
(right), for the variance (a), (b), the skewness (c), (d) and the kurtosis
(e), (f). The original data is shown in blue and the data with generated
noise within (−20, 20) MIP in orange.
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A. Additional Plots

(a) (b)

(c) (d)

(e) (f)

Figure A.4.: Distributions of the shower moments in x- (left) and in y-direction (right),
for the variance (a), (b), the skewness (c), (d) and the kurtosis (e), (f). The
original data is shown in blue and the data with generated noise within
(−30, 30) MIP in orange.
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A.2. Generating DCT Nodes Randomly and Kinematic Shower Variables
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Figure A.5.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data with generated noise between (−10, 10) MIP (orange).

(a) (b)

Figure A.6.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data with generated noise between (−20, 20) MIP (orange).
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A. Additional Plots

(a) (b)

Figure A.7.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data with generated noise between (−20, 20) MIP (orange).
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A.3. Generating odd Nodes randomly

A.3. Generating odd Nodes randomly

(a) (b)

(c) (d)

(e) (f)

Figure A.8.: Distributions of the shower moments in x- (left) and in y-direction (right),
for the variance (a), (b), the skewness (c), (d) and the kurtosis (e), (f).
The original data is shown in blue and the data with generated noise for
all odd nodes within (−30, 30) MIP in orange.
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A. Additional Plots
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Figure A.9.: Distributions of the shower moments in x- (left) and in y-direction (right),
for the variance (a), (b), the skewness (c), (d) and the kurtosis (e), (f).
The original data is shown in blue and the data with generated noise (one
Gaussian distribution) for nodes with (x = 21∧y odd) or (x odd ∧y = 21)
in orange.

62



A.3. Generating odd Nodes randomly

(a) (b)

(c) (d)

(e) (f)

Figure A.10.: Distributions of the shower moments in x- (left) and in y-direction (right),
for the variance (a), (b), the skewness (c), (d) and the kurtosis (e), (f).
The original data is shown in blue and the data with generated noise
(three Gaussian distributions) for nodes with (x = 21 ∧ y odd) or (x odd
∧y = 21) in orange.
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A. Additional Plots

(a) (b)

(c) (d)

(e) (f)

Figure A.11.: Distributions of the shower moments in x- (left) and in y-direction (right),
for the variance (a), (b), the skewness (c), (d) and the kurtosis (e), (f).
The original data is shown in blue and the data where all nodes with
(x = 21 ∧ y odd) or (x odd ∧y = 21) were set to zero in orange
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A.3. Generating odd Nodes randomly

(a) (b)

Figure A.12.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data with generated noise for all odd nodes between (−30, 30) (or-
ange).

(a) (b)

Figure A.13.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data with generated noise (one Gaussian distribution) for nodes with
(x = 21 ∧ y odd) or (x odd ∧y = 21 (orange).

65



A. Additional Plots

(a) (b)

Figure A.14.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data with generated noise (three Gaussian distributions) for nodes
with (x = 21 ∧ y odd) or (x odd ∧y = 21) (orange).

(a) (b)

Figure A.15.: Distribution of the CoG in the transverse plane for electromagnetic show-
ers initiated by electrons with a beam energy of 50 GeV for data (blue)
and data where all nodes with (x = 21 ∧ y odd) or (x odd ∧y = 21) were
set to zero (orange).
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