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Supporting Material

PLS algorithm as a regularization scheme

In contrast to PCA-based FMA, partial least squares is an iterative procedure and the
resulting PLS estimator is highly non-linear in f . In the literature there are several versions
of the PLS algorithm available, which are, in fact, equivalent, as shown in (1). To keep the
notation simple, in the following we assume that both X and f are centered. The idea of
the original algorithm of (2) (known as NIPALS) is to find k ≤ p orthogonal n-dimensional
components t1, . . . , tk, such that ti = Xwi for some p-dimensional weights wi, i = 1, . . . , k.
Thereby, weights wi are chosen to maximize the empirical covariance between the data f

and ti. We describe the construction of ti following (3). The first component t1 = Xw1 is
found solving

w1 = argmax
w

cov2(Xw,f)

wtw
= argmax

w

wtX tff tXw

wtw
, (1)

which gives (up to a scalar) w1 = X tf . Further components ti = Xwi are found from
Eq. 1, subject to mutual orthogonality of all tj, j = 1, . . . , i− 1. One possible way to do this
is to set

ti = Xwi = XX t
{
f − T i−1(T

t
i−1

T i−1)
−1T t

if
}
, (2)

for T i−1 = (t1, . . . , ti−1), i = 2, . . . , k. Hence, for W k = (w1, . . . ,wk) and T k = XW k, we
can write the partial least squares estimator of order k for f as

f̂
k

PLS = Xβ̂
k

PLS = XW kα̂k = T kα̂k = T k(T
t
kT k)

−1T kf . (3)

This iterative definition (that is, ti obtained from (t1, . . . , ti−1)) of the PLS algorithm gives
a good intuition how the method works: one is looking for mutual orthogonal predictors ti,
that have the maximal covariance with f .

The ewMCM is the collective mode that, estimated from the given structural ensemble,
has the highest probability to achieve a specific alteration of the order parameter. From the
presented PLS definition one can also easily verify why ewMCM weights are equivalent to
the scaled W 1. Simple algebra allows to rewrite the definition of the ewMCM weights given

in Eq. 12 of (4) as W kW
t
kX

tf v̂ar−1(f̂
k

PLS)/n, with v̂ar(f̂
k

PLS) as the sample variance of
fk

PLS. Note that the first basis vector W 1 is given by w1 = X tf , while subsequent vectors
are chosen so that they are mutually orthogonal. Thus, in vector W t

kX
tf the first element

equals f tXX tf , whereas the others are zero, so that ewMCM weights result in

W 1

f tXX tf

nv̂ar(f̂
k

PLS)
. (4)

Another – non-iterative – formulation of PLS algorithm makes obvious the connection of
partial least squares to the conjugate gradient method. It has been for a long time known,
see e.g., (5), that PLS is equivalent to the approximate solution of (X tX)−1β = X tf

by the conjugate gradient method with early stopping k. Denote H = X tX, s = X tf ,
Kk = (s,Hs, . . . ,Hk−1s). Then, (1) has shown that

f̂
k

PLS = Xβ̂
k

PLS = XKk(KkX
tXKk)

−1Kt
kX

tf . (5)
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Early stopping

To understand the excellent predictive power of the PLS method, it is pertinent to recall that
this algorithm has to be stopped at an early stage k, the dimension of the basis. Besides its
computational speed up this is necessary to avoid overfitting. In fact, from Eq. 5 it becomes

obvious that as the iteration k increases, β̂
k

PLS converges essentially to the unrestricted least
squares fit (X tX)−1X tf which overfits the data and hence yields insufficient predictive
power. Hence, the iteration depth k serves as a regularization parameter, which has to be
chosen properly to terminate the algorithm. This early stopping phenomenon is well-known
for a variety of other learning algorithms, such as iterative Tikhonov or boosting, see (6)
and (7), to mention a few. Recently, (8) could show that the PLS is able to obtain optimal
rates of reconstruction, if combined with an early stopping rule based on the discrepancy
principle. However, this rule merely is of theoretical interest and it can hardly be employed
in practice because it finally depends on the unknown true parameter β itself. Hence, for
practical purposes we suggest a cross-validation method to yield the optimal k.

Trp-cage unfolding

The Trp-cage is a 20 amino acid miniprotein designed by Neidigh et al. (9) with a very short
folding time of 4 µs. Here we applied FMA to identify unfolding pathways. Therefore, as
the functional property f we chose the hydrophobic solvent accessible surface (hSAS) that
increases during unfolding. Protein atoms excluding hydrogens were used to perform the
PLS- and PCA-based FMA analysis. This represents a particularly challenging case, firstly
because the hSAS is a highly non-linear function of the coordinates and secondly because
we only use trajectory parts of the folded peptide for training the PLS- and PCA-based
FMA models, and assess the predictive power by cross-validating against initial unfolding
trajectories (4). The input trajectory was constructed such that the training part consists
of a concatenation of folded trajectories of 100 ns combined length, and the cross-validation
part consists of a combination of initial unfolding trajectories (100−180 ns).

Fig. S2, A and B show that the Rm converges to around 0.8 for PLS and to approx.
0.7 for PCA-based FMA. PLS Rc converges to a vaue of around 0.6 after 20 components,
suggesting that a linear model can only partly describe the hSAS, whereas atomic fluctuations
that are not captured by the MCM substantially contribute to the hSAS. For PCA-based
FMA a maximum Rc is reached at about 40 EVs, whereas for PLS-based FMA a basis of
dimensionality six yields the highest correlation in cross validation. Fig. S2, C and D show
the data and model for both the training and cross-validation parts. 6 components and 40
PCA eigenvectors were used for the PLS- and PCA-based FMA analysis, respectively. The
corresponding ewMCM are displayed in Figs. S2, E and F. Concerning the backbone, the
ewMCM of PLS- and PCA-based FMA show a similar opening motion, with a scalar product
of 0.985 between the two ewMCMs.
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Figure Legends

Figure S1.

Experimental ensemble prediction and fitting structure effect on PLS-based FMA method for
Glu11-Asp20 distance (dED) of T4 Lysozyme (T4L). (A) Scatter plot and linear regression of
the experimental vs. predicted dED for 38 T4L x-ray structures. The PLS-based FMA model
was built as in Fig.1 B using 10 components. (B) Pearson correlation coefficients between
data and model for PLS-based FMA as function of the number of components calculated
for the model training subset (black, Rm, 38 T4L x-ray structures) and the cross-validation
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subset (red, Rc, 4601 T4L MD frames). (C ) Cartoon representation of 3 T4L structures
(with 0.76, 1.01 and 1.24 nm of dED) used to test the effect of the fitting structure on the
PLS-based FMA. (D) Pearson correlation coefficients between data and model for PLS-based
FMA as function of the number of PLS components calculated for the model training (Rm)
and the cross-validation subsets (Rc). The correlation coefficients were calcuted using the
reference structures of B. In the inset it is possible to observe the subtle differences for Rc

among these PLS-based FMA models.

Figure S2.

Comparison of PLS- and PCA-based FMA for hydrophobic solvent accessible surface (hSAS)
applied to Trp-cage folded trajectories. (A/B) Pearson correlation coefficients between data
and model for PLS/PCA based FMA as function of the number of PLS components/PCA
vectors calculated for the model training subset (black, Rm, folded trajectories) and the
cross-validation subset (red, Rc, initial unfolding trajectories). (C/D) Overlay of data and
model for the hSAS as function of time. The black lines correspond to the MD data, the
green to the model training subset and red to the cross-validation subset. The models were
calculated using 6 components for PLS-based (C ) and 40 PCA vectors for PCA-based FMA
(D). (E/F ) Cartoon and stick representation of the ewMCM contributing to the change in
the hSAS. The color-scale (red-white-blue) represents the interpolation between the extreme
projections along the ewMCMs. The PLS- and PCA-based FMA models used to plot the
molecular representations have the same number of components or PCA vectors as the models
used in panels C and D.

Figure S3.

Comparison of the PLS-based FMA and partial PCA analysis (10) of the helices 4, 5, 6
and loop D of yeast Aquaporin (Aqy1). (A) Backbone representations and overlay of the
modes along the first PCA eigenvector (red) and the PLS-based FMA ewMCM (blue). (B)
Comparison of the modes in A in terms of root mean-square fluctuation. The color-scale
(blue-green-red) and the line thickness represents the RMSF along the modes.

Figure S4.

Distribution of the E148 Ψ angle for doubly occupied CLC-ec1 monomers at Scen and Sint.
The simulations corresponded to: Sint and Scen restrained; Sint restrained and Scen free, and
free Sint and Scen. They show different proportions of the three Ψ peaks.
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