Random Euclidean coverage and connectivity problems

Mathew Penrose (University of Bath, UK)

Lectures 1-2, Göttingen, 7 July 2023

Consider sample of n uniform random points in a bounded region A in \mathbb{R}^d , $d \geq 2$, having a smooth boundary. The coverage threshold T_n is the smallest r such that the union Z of Euclidean balls of radius r centred on the sample points covers A. The connectivity threshold K_n is twice the smallest r required for Z to be connected. The two-sample coverage threshold $S_{n,m}$ is the smallest r such that Z covers all the points of a second independent sample of m points in A. These thresholds are random variables determined by the sample, and are of interest, for example, in wireless communications, set estimation, and topological data analysis.

We discuss new/recent results on the large-*n* limiting distributions of T_n , and K_n and $S_{n,m}$ (taking $m = m(n) \sim \tau n$ for some constant τ). When *A* has unit volume, with *v* denoting the volume of the unit ball in R^d and |dA|the perimeter of *A*, these take the form of weak convergence of $nvT_n^d - (2 - 2/d) \log n - a_d \log(\log n)$ to a Gumbel-type random variable with cumulative distribution function

$$F(x) = \exp(-b_d e^{-x} - c_d | dA| e^{-x/2}),$$

for suitable constants a_d , c_d with $b_2 = 1$, $b_d = 0$ for d > 2. The corresponding result for K_n takes the same form with different constants a_d , c_d .

If time permits, we may also discuss extensions and related results concerning (i) taking A to be a polytope rather than having a smooth boundary; (ii) taking A to be a d-dimensional manifold with boundary embedded in a higher-dimensional Euclidean space; (iii) strong laws of large numbers for T_n and K_n for non-uniform random samples of points.

Some of the work described here is joint work with Xiaochuan Yang.

[1] Penrose, M.D. (2023) Random Euclidean coverage from within. *Probab. Theory Rel. Fields* **185**, 747–814.