Random Euclidean coverage and connectivity problems

Mathew Penrose (University of Bath, UK)
Lectures 1-2, Göttingen, 7 July 2023
Consider sample of n uniform random points in a bounded region A in $R^{d}, d \geq 2$, having a smooth boundary. The coverage threshold T_{n} is the smallest r such that the union Z of Euclidean balls of radius r centred on the sample points covers A. The connectivity threshold K_{n} is twice the smallest r required for Z to be connected. The two-sample coverage threshold $S_{n, m}$ is the smallest r such that Z covers all the points of a second independent sample of m points in A. These thresholds are random variables determined by the sample, and are of interest, for example, in wireless communications, set estimation, and topological data analysis.

We discuss new/recent results on the large- n limiting distributions of T_{n}, and K_{n} and $S_{n, m}$ (taking $m=m(n) \sim \tau n$ for some constant τ). When A has unit volume, with v denoting the volume of the unit ball in R^{d} and $|d A|$ the perimeter of A, these take the form of weak convergence of $n v T_{n}^{d}-(2-$ $2 / d) \log n-a_{d} \log (\log n)$ to a Gumbel-type random variable with cumulative distribution function

$$
F(x)=\exp \left(-b_{d} e^{-x}-c_{d}|d A| e^{-x / 2}\right)
$$

for suitable constants a_{d}, c_{d} with $b_{2}=1, b_{d}=0$ for $d>2$. The corresponding result for K_{n} takes the same form with different constants a_{d}, c_{d}.

If time permits, we may also discuss extensions and related results concerning (i) taking A to be a polytope rather than having a smooth boundary; (ii) taking A to be a d-dimensional manifold with boundary embedded in a higher-dimensional Euclidean space; (iii) strong laws of large numbers for T_{n} and K_{n} for non-uniform random samples of points.

Some of the work described here is joint work with Xiaochuan Yang.
[1] Penrose, M.D. (2023) Random Euclidean coverage from within. Probab. Theory Rel. Fields 185, 747-814.

