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Zusammenfassung
Diese Bachelorarbeit studiert die gleichzeitige Messung von Top-Quark-Paar Ereignis-
sen mit einem Z/W -Boson in Regionen außerhalb der Massenschale. Diese Prozesse sind
schwer zu unterscheiden, da deren messbare Signale ähnlich sind. Es wird ausschließlich
der trileptonische Zerfallskanal untersucht, da dieser klarere Signaturen als hadronische
oder einzel-leptonische Zerfälle bietet. Für die Klassifizierung werden zwei verschiedene
Ansätze verwendet. Der erste Ansatz basiert auf Selektionen, die aus den Verteilungen
der verschiedenen Prozesse abgeleitet werden. Für den anderen Ansatz wird ein neurona-
les Netzwerk implementiert und trainiert, sodass dieses abstrakte Klassenwerte definiert,
welche zur Klassifizierung der Prozesse verwendet werden. Zusätzlich wird die EFT Sensi-
tivität analysiert, denn es wird erwartet, dass für die Regionen außerhalb der Massenschale
die SM-EFT Beiträge für höhere Energieskalen steigen.

Stichpunkte: Teilchenphysik, Bachelorarbeit, ATLAS, Massenschale, Z-/W-Boson, Neu-
ronale Netzwerke, SM-EFT

Abstract
This Bachelor’s thesis studies the simultaneous measurements of top quark pair events
with a Z/W -boson in off-shell regions. These processes are difficult to distinguish because
their measured signals are similar. The trileptonic channel is exclusively analysed since it
provides a cleaner event signature in comparison to hadronic or single leptonic channels.
For the classification, two separate approaches are used. One is based on cuts to several
variables which are derived from event distributions. For the other approach, a neural
network is implemented and trained to define abstract class scores which are used for
classification. Additionally, EFT sensitivity is analysed in these off-shell regions because
SM-EFT contributions are expected to increase for higher energy scales.

Keywords: Particle physics, Bachelor’s thesis, ATLAS, off-shell, Z-/W-boson, neural
networks, SM-EFT
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1 Introduction

As early as 400 BC, humankind was philosophising about the fundamental structure of
nature. The Greek philosopher Democritus is said to have formulated the idea, that
matter can not be infinitely divisible. Thus, there has to be a smallest, indivisible part
which would be called atom (from Greek atomos=’indivisible’). This idea was not ex-
perimentally tested but built purely on philosophical thoughts, however, it represents the
beginning of the search for a fundamental description of the universe.

Over 2000 years later, in 1808, the chemist John Dalton refined the idea of Democritus
by introducing the concept of elements. Each element represents a unique, indivisible
atom which differ by their mass and size. This refined model allowed Dalton to explain
the apparent conservation of mass.

In the late 19th century, the physicist Sir Joseph John Thomson developed an atomic
model. This model describes atoms as positive charged spheres which contain lighter
negative charged particles, so called electrons. The complete atom is electrically neutral.
The atom itself was no longer the smallest, most fundamental particle any more. The
model was based on his experiments using a hot, radiating cathode that emits electrons.
Hence, the Thomson-model explained the observed cathode electron beam.

In 1911, Ernest Rutherford conducted an experiment using an α-particle beam that
was focused onto a thin gold foil. The results of the experiments suggest that most of
the mass in an atom is contained in a very small volume which is the positively charged
nucleus. It is surrounded by negatively charged electrons that orbit and empty space that
makes up most of the atom.

Two years later, in 1913, Niels Bohr refined the model. The refinement describes the
motion of electrons around the nucleus like planets around the sun. He postulated that
electrons move on circular orbits without emitting radiation. Additionally, the radii of
those orbits can only be certain quantised values. This marks the beginning of quantum
mechanics.

Electrons are able to change their orbits by emitting or absorbing photons of quantised
energies. Therefore, the model made it possible to explain the photoelectric effect. In
1916, the Bohr-model was expanded by Arnold Sommerfeld who generalised the electron
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1 Introduction

orbits and allowed an elliptical shape. Thus, the Bohr-Sommerfeld-model explained, why
there are multiple spectral lines very close to each other.

In 1926, Werner Heisenberg and Erwin Schrödinger independently developed a math-
ematical description of quantum mechanics. Requiring that electrons fulfil the quantum
mechanical Schrödinger equation led to the atomic orbital model. The orbits are space
regions with high probability of containing electrons which obey specific selection rules.

While the concept of an atomic nucleus was first formulated by Rutherford, it was
first thought to only be made up of positively charged protons. However, this model was
expanded in 1932 by James Chadwick, who introduced neutral particles, neutrons, that
are also part of the nucleus.

Nowadays, the research of the fundamental structure of nature goes on and particle
physics has superseded nuclear physics. Modern particle physics’ task is to find a general
description of fundamental phenomena. It focuses on formulating and expanding an
underlying theory which is known as the Standard Model of particle physics.

This Bachelor’s thesis will cover the underlying basis of the Standard Model in Chap-
ter 2. Following the theoretical basis, Chapter 3 covers the experimental setup of the
Atlas-experiment. Two approaches for region definition are explained in Chapter 4 and
an introduction into neural networks as well as the used algorithms is given in Chapter 5.
Chapter 6 goes into more detail about the implemented uncertainties. The results of
the fitting process and the studies of possible EFT sensitivities are given in Chapter 7
and 8, respectively. Chapter 9 will conclude this thesis with an outlook for potential
improvements.
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2 The Standard Model of Particle
Physics

The Standard Model of particle physics (SM) is the most successful description of the
fundamental particles and their interactions to this day. It covers all known elementary
particles and their antiparticles as well as three of the four known fundamental forces:
the strong, weak and electromagnetic force. Gravity is not described by the SM.

The SM is a renormalisable quantum field theory which is defined by an internal
SU(3)⊗SU(2)⊗U(1) gauge symmetry. The SU(3) group symmetry describes the strong
interactions, originating from quantum chromodynamics (QCD) [1], and the SU(2)⊗U(1)
group symmetry corresponds to the electroweak interactions. The later being the uni-
fication of the electromagnetic force, originating from quantum electrodynamics (QED)
[2–4], and the weak force, originating from quantum flavour dynamics (QFD) [5].

In 1967, the Brout-Englert-Higgs mechanism was incorporated into the electroweak in-
teraction [6–8]. The mechanism adds a quantum Higgs-field that induces a spontaneous
symmetry breaking in the SU(2)⊗U(1) symmetry. Initially all bosons were massless, but
this symmetry breaking causes all bosons interacting with the Higgs-field to become mas-
sive. Fermions also obtain their masses by interacting with the Higgs-field. The massive
gauge bosons of the electroweak interaction are known as the Z/W -boson. Addition-
ally, one of the degrees of freedom introduced by the Higgs-field is not needed by the
Brout-Englert-Higgs mechanism, thus becoming the scalar Higgs-boson H [6].

Even though the SM can predict most observations with remarkable precision, there
are phenomena which cannot be explained using the SM. An example for this is neutrino
oscillations [9], which describes flavour changing neutrinos. This oscillation requires at
least two massive neutrinos, however, the SM predicts all neutrinos to be massless. Hence,
the SM cannot explain the neutrino oscillation. Another example is dark matter [10]. The
measured rotational velocity for large spiral galaxies requires a much larger mass than
the visible matter provides. These astronomical observation provide evidence of a stable
form of matter that does not interact electromagnetically, making it invisible to direct
optical observations. No particle in the SM can explain these measurements.
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2 The Standard Model of Particle Physics

2.1 Elementary Particles

The elementary particles are divided into fermions and bosons. Fermions have half-integer
spin and make up matter, while bosons have integer spin and are responsible for mediating
the strong, weak and electromagnetic force. All electrically charged particles also have an
antiparticle partner, which has the same mass but opposite electric charge.

Figure 2.1 shows the different SM-particles. Furthermore, it shows that fermions are
subdivided into quarks and leptons, which both are separated into three generations.
Particles corresponding to a higher generation have significantly increased masses.

The six quarks are split into three up-type (up, charm, top) and three down-type (down,
strange, bottom) quarks. The up-type quarks have an electric charge of +2

3 e and down-
type quarks of −1

3 e. All quarks also have a colour charge, thus participating in strong
interactions. Fermions also have a weak isospin T of which the third component T3 is
conserved in weak interactions [4].

Left-handed fermions, and quarks in particular, have a weak isospin of T = 1
2 and can

be grouped into doublets with T3 = ±1
2 . The positive sign corresponds to up-type quarks

and the negative sign to down-type quarks, respectively. Right-handed fermions form
singlets and the electroweak W -bosons do not interact with them.

Leptons on the other hand are split into electrically charged leptons (e, µ, τ) and their
corresponding neutrinos (νe, νµ, ντ ). The charged leptons all have an electric charge of
−1 e, while neutrinos are electrically neutral. Left-handed leptons can also be grouped
into doublets with T3 = ±1

2 , where neutrinos are the up-type and charged leptons the
down-type particles.

2.2 The Top Quark

The top (t) quark was discovered in 1995 at Fermilab by the experiments CDF [11]
and DØ [12]. It is assumed to be the partner of the bottom (b) quark with a mass
of mt = 172.76 ± 0.30, GeV [13], which makes it the heaviest of all known quarks and
has a very short lifetime of τt ≈ 5 · 10−25 s [13]. The top quark decays via the weak
interaction into a W -boson and a down-type quark before it hadronises. The probability
of decaying into a particular down-type quark is given by the respective CKM-matrix
element [14]. Due to the CKM-matrix having vanishing off-diagonal contributions, top
quarks predominantly decay into bottom quarks. The W -boson further decays either into
a charged lepton and neutrino, which results in one jet from the bottom quark and one
measurable lepton, or into a quark-antiquark-pair which results in three produced jets.
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2 The Standard Model of Particle Physics

Standard Model of Elementary Particles

Figure 2.1: The elementary particles of the Standard Model subdivided into fermions
(left) and bosons (right). The fermions are further split into quarks (top)
and leptons (bottom), which are each divided into three generations. The
bosons are divided into four vector bosons and one scalar boson.

Producing top quarks requires high energies due to the mass of the top quark. These
energies can be achieved in hadrons colliders. Figure 2.2 shows two example processes
for top quark production in tt̄-processes. Each of the two top quarks decays as described
before, therefore the measured signal depends on the W -boson decay mode.

2.3 tt̄ Production in Association with a Z/W -Boson

When producing tt̄ pairs, an additional Z/W -boson can be produced. Figure 2.2 shows
example processes for tt̄-production via gluon-gluon fusion and quark-antiquark annihi-
lation with an additional Z/W -boson. Since the Lhc is a proton-proton collider, the
gluon-gluon fusion process is dominating. A selection of possible signals from tt̄Z/tt̄W

events is summarised in Table 2.1.
The tt̄Z events are of interest as they allow studying the coupling of top quarks to

neutral currents of the weak interaction through final state radiation of a Z-boson in tt̄
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2 The Standard Model of Particle Physics

Figure 2.2: The Feynman diagrams for an example tt̄Z process by gluon-gluon fusion
(left) in which the produced tt̄ pair emits an additional Z-boson and a tt̄W
process by quark-antiquark annihilation (right) emitting the W -boson as
initial state radiation.

events. Therefore, tt̄Z events allow analysing the third component of the weak isospin of
top quarks.

The tt̄W events are not sensitive to the coupling of top quarks to charged currents of
the weak interaction, because, as seen in Fig 2.2, the W -bosons are only emitted as initial
state radiation. However, the tt̄W processes are sensitive to the initial parton distribution
functions (PDF) and thus measurements on these processes probe those PDFs.

Analysing tt̄Z/tt̄W events together at the same time is particularly interesting because
both can generate similar signals and thus are important background processes for each
other. Especially studying these events in off-shell regions gives rise to a high rate of
background from the respective other process. Some kinematic variables in tt̄Z/tt̄W off-
shell events like invariant mass and transverse momentum are also expected to be sensitive
to SM-EFT contributions. Furthermore, the sensitivity of these SM-EFT contributions is
expected to increase for higher boson masses [15].

2.4 Effective Field Theory

For the analysis of effects beyond the Standard Model, one can use an Effective Field The-
ory (EFT) approach such as the Standard-Model Effective Field Theory (SM-EFT) [16].
This theory assumes that the current SM is an effective low-energy approximation which
holds for interactions up to an energy scale Λ and can be expanded using higher dimen-
sional interactions [17]. The transition into the Standard Model happens via decoupling
of heavy particles at energies higher than Λ. Therefore, higher-dimensional operators Q,
which are suppressed by powers of Λ, are used in a perturbation expansion [17]

LSM-EFT = LSM + 1
Λ

∑
k

C
(5)
k Q

(5)
k + 1

Λ2

∑
k

C
(6)
k Q

(6)
k + O

( 1
Λ3

)
. (2.1)
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2 The Standard Model of Particle Physics

Table 2.1: Possible leptonic signals from tt̄Z/tt̄W events which provides a cleaner mea-
surement in comparison to the hadronic decays. At least one of the top quarks
or the Z/W -boson decays into leptons. The number in brackets shows the
number of not measurable neutrinos.

Signal Reaction Jets Leptons

tt̄W -Monoleptonic tt̄W → (bqq̄′) (b̄qq̄′) (ℓν̄ℓ) 6 1(+1)

tt̄W -Dileptonic tt̄W → (bqq̄′) (b̄ℓν̄ℓ) (ℓν̄ℓ) 4 2(+2)

tt̄W -Trileptonic tt̄W → (bℓ̄νℓ) (b̄ℓν̄ℓ) (ℓν̄ℓ) 2 3(+3)

tt̄Z-Dileptonic tt̄Z → (bqq̄′) (b̄qq̄′) (ℓℓ̄) 6 2(+0)

tt̄Z-Trileptonic tt̄Z → (bqq̄′) (b̄ℓν̄ℓ) (ℓℓ̄) 4 3(+1)

tt̄Z-Tetraleptonic tt̄Z → (bℓ̄νℓ) (b̄ℓν̄ℓ) (ℓℓ̄) 2 4(+2)

In this perturbation expansion LSM describes the common SM-Lagrangian, Q
(n)
k the n-

dimensional interaction operators and C
(n)
k their corresponding Wilson coefficients.

For a better understanding of tt̄Z and tt̄W production, their relevant operators can be
analysed. Since the Z-boson is a combination of the W 0- and B-bosons originating the
Brout-Englert-Higgs mechanism, the operator QtZ for the tZ-coupling is given by [6]

QtZ = cos(ΘW )QtW − sin(ΘW )QtB . (2.2)

Hence, the operators for the tW - and the tB-coupling and their complex coefficients CtW

and CtB are of particular interest for this analysis [16]. To measure the sensitivity, the
separation power

S = 1
2

∑
Bins

(EFTi − SMi)2

EFTi + SMi

(2.3)

is used. The fraction inside the sum is calculated for each bin for a given normalised
distribution. SM stands for the Standard Model prediction and EFT includes a specific
variation on one or multiple Wilson coefficients as in Equation 2.1. Studies regarding the
sensitivity of several variables for these coefficients are summarised in Chapter 8.
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3 Experimental Setup

For collecting data of tt̄Z and tt̄W events, a high energy particle collider is needed.
Furthermore, a setup for the detection of signals as well as appropriate reconstruction
algorithms are necessary.

The 27 km long Large Hadron Collider (Lhc) is a proton-proton collider. The centre-
of-mass energy reached by the Lhc was around 7-8 TeV during Run I and 13 TeV during
Run II [18]. During Run III the centre-of-mass energy is expected to reach 13.6 TeV
[19]. Those high-energy collisions produce multiple particles like top quarks, which in
turn decay into more particles. Detecting events requires a calibrated detector system
which measures the properties of the particles such as charge, momentum and energy.
Furthermore, the event reconstruction from measured signals uses several algorithms to
reconstruct for example the particles trajectories and collision vertices.

The Atlas-detector [20] is a multi-purpose particle detector that consists of different
layers for detecting various particles. These layers are built in concentric cylinders around
the beam axis. Measurements of the tracks and deposited energies of the decay products
allow the reconstruction of the initial particles. Figure 3.1 shows a schematic view of
those detector layers. Each layer is described in the following.

The Inner Detector

The task of the Inner Detector is to precisely measure the tracks of various charged
particles. Because of the 2 T magnetic field, which is induced by a central solenoid,
the moving charged particles are deflected via the Lorentz force. Measurements of the
curvature allows precise measurements of their momentum and reconstructing the particle
track. Thus, the tracking system is crucial for b-tagging because it makes it possible
to identify secondary vertices, which are indications for b-jets [20]. Because of the high
density of particles in the detector close to the collision point, high-precision measurements
use Pixel-, Strip- and Transition Radiation Trackers.

The Pixel Tracker is the first point of detection and allows tracking near the collision
point using small Pixel-modules [20]. It is built from silicon to withstand strong radiation

8



3 Experimental Setup

Figure 3.1: Cross-section of the concentric layers inside the Atlas Detector (© Cern).

from the collision. The semiconductor Strip Tracker (SCT) consists of longer strips that
also contribute to the tracking by offering larger scale measurement.

The Transition Radiation Tracker (TRT) is built from thin and long polyimide straws
[20]. These straw tubes are filled with a gas mixture and while they offer a worse resolu-
tion, they allow for a relatively cheap way to cover a greater volume and hence, contribute
to a precise measurement. It is used to distinguish electrons e± and charged pions π±.

The Calorimeters

As seen in Figure 3.1, the calorimeters are built around the Inner Detector and the solenoid
magnet. In general, the calorimeters measure the energy of particles by stopping them.
The calorimeter system used in the Atlas-detector is subdivided into the electromagnetic
and the hadronic calorimeter. Both are sampling calorimeters that have an absorber ma-
terial, which induces particle showers and an active medium, which is used for measuring
the signals [21].

The electromagnetic calorimeter measures all particles that interact electromagnetically.
Those charged particles and photons each create an electromagnetic shower which can be
used to reconstruct the initial particles. It offers a precise measurement of the deposited
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3 Experimental Setup

energy and the location of the energy-deposition. It is built from Lead as the absorber
and liquid Argon as active medium [21].

The hadronic calorimeter absorbs particles that pass the electromagnetic calorimeter
and interact via the strong force. The hadronic showers created can produce additional
electromagnetic sub-showers which makes them more difficult to reconstruct and less
precise. It consist of steel as an absorber and plastic scintillating tiles [21].

The Muon Spectrometer

The Muon Spectrometer is the outermost layer and follows a similar approach as the Inner
Detector to measure the momentum of muons which usually pass the Inner Detector and
Calorimeter undetected. It consists of four different subsystems [20].

For the muon triggering, the Resistive Plate Chambers (RPC) and Thin Gap Cham-
bers (TGC) are used in different regions of the detector. Furthermore, they are used in
the coordinate measurement. The Cathode Strip Chambers (CSC) offer a more precise
coordinate measurements at the ends of the detector. Lastly, the Monitored Drift Tubes
(MDT) track the curved trajectories of the muons. The magnetic field responsible for
deflecting the muons is generated by outer toroidal magnets [20].
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4 Region Definition

This investigation of simultaneous measurements utilises the trileptonic decay channel
because of its cleaner event signature in comparison to hadronic or single leptonic decays.
Sensitive regions for tt̄Z and tt̄W are defined to be used in fitting process. Since the
trileptonic channel is used, non-prompt electrons (fakes) are also a dominant background.
Thus, ideally a signal region for tt̄Z and two separate control regions for tt̄W and fakes
are defined.

4.1 Preselection

The analysis only includes events with exactly three electrons or muons, three or more
jets of which at least one needs to be b-tagged and an off-shell Z-boson in the final state.
A Z-boson is labelled as off-shell if the reconstructed mass differs from the SM prediction
by at least 10 GeV. Because of the low statistics in the off-shell region, the 85% working
point for b-tagging is chosen. Additionally, these events need to have a lepton pair of
opposite sign and same flavour (OSSF) which is expected to originate from the Z-boson.
This OSSF-pair is required to have a reconstructed mass of at least 10 GeV to suppress
background contributions from low-mass resonances. All three leptons have to pass the
tight selection and need to satisfy pT,1 ≥ 27 GeV, pT,2 ≥ 20 GeV and pT,3 ≥ 15 GeV
respectively. These preselections are applied to all events before region definition. For the
binning of variables, the same algorithm as described in Section 5.3.1 of Reference [22] is
used and was tested for several numbers of bins of which 6 bins were found to be optimal.

4.2 Cut And Count Based Region Definition

To define sensitive regions, several cuts on kinematic variables are analysed. The choice
of variables is motivated by the underlying physical processes as described in Section 2.3.

The best performance was achieved by using the missing energy EMiss
T and the ∆R
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4 Region Definition

Table 4.1: The selections for the (top) cut and count based and (bottom) neural network
based region definition.

Region Selection
SR-ttZ-CC ∆ROSSF < 1.8
CR-ttW-CC ∆ROSSF ≥ 1.8; EMiss

T ≥ 78 GeV
CR-Fakes-CC ∆ROSSF ≥ 1.8; EMiss

T < 78 GeV
SR-ttZ-NN ttW score< 0.4, Fakes score< 0.4
CR-ttW-NN ttW score≥ 0.4
CR-Fakes-NN ttW score< 0.4, Fakes score≥ 0.4

variable which is defined as

∆R =
√

(∆ϕ)2 + (∆η)2 (4.1)

between two objects. ∆ROSSF between the OSSF-pair is of particular interest. The reason
for that is that the leptons from the Z-boson decay in tt̄Z events are expected to be more
bundled and hence closer in ∆R compared to other lepton combinations. Also, tt̄W should
have higher values for EMiss

T than tt̄Z, since tt̄W processes have three neutrinos in their
final state instead of only one for tt̄Z events. Furthermore, these two variables offer fine
region tuning, since they are continuously distributed unlike for example jet multiplicities.

The cuts are set by evaluating the separation plots in Figure 4.1 and choosing the initial
cut-off at the values for which the tt̄W background becomes larger than the tt̄Z signal.
Several configurations were tested by varying those cuts. A lower cut value for EMiss

T and
a higher value for ∆ROSSF were found to have the best performance. These can also be
seen in Figure 4.1. The cut and count (CC) based region definition is summarised in
Table 4.1 and the corresponding yields can be found in Table 4.2.

4.3 Neural Network Based Region Definition

To improve the quality of the defined regions, a neural network is implemented. Its task
is to define three classes, each corresponding to either tt̄Z, tt̄W or fakes events. The
class scores are based on several input variables which are expected to be sensitive to
these processes. The architecture of the neural network and the used input variables are
further explained in Section 5.2.

For the placement of the class score cuts, the 2D separation plots in Figure 4.2 are used.
These plots show the two dimensional projection of the event distribution in respect to
the three class scores. Since the neural network uses the Softmax activation for the output
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Figure 4.1: The separation plots for EMiss
T (left) and ∆ROSSF (right) used in the cut and

count based configuration. The dashed lines represent the point at which
the tt̄W background becomes higher than the tt̄Z signal. The solid line
shows the chosen cut for the best performance.

layer, the sum of all class scores are normalised to one. Thus, all events lie on a three
dimensional plane. Two linear cuts were chosen to separate tt̄W and fakes from the tt̄Z

events. Figure 4.2 also shows these cut placements.
The neural network (NN) based region definition is also summarised in Table 4.1 and

the corresponding yields are listed in Table 4.2.
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Figure 4.2: 2D projection plots of four selected samples showing the distribution of
events in respect to the defined class scores. All events lie on a three di-
mensional plane, thus, the tt̄Z score is perpendicular to both the tt̄W and
fakes score. The black lines represent the chosen cuts which are based on
these plots.

Table 4.2: The yields for the cut and count based (left) and the neural network based
(right) region definition.

SR-ttZ-CC CR-ttW-CC CR-Fakes-CC SR-ttZ-NN CR-ttW-NN CR-Fakes-NN
tt̄Z 121 ± 4 25 ± 2 31 ± 1 95 ± 19 48 ± 10 35 ± 7
tt̄W 26 ± 2 28 ± 2 19 ± 1 13 ± 6 46 ± 20 13 ± 6
tt̄H 46 ± 4 19 ± 2 16 ± 2 33 ± 4 26 ± 3 22 ± 2
WZ+jets 73 ± 19 10 ± 3 21 ± 6 36 ± 9 23 ± 6 45 ± 12
ZZ+jets 20 ± 6 1 ± 1 9 ± 3 8 ± 3 3 ± 2 18 ± 6
tZq 13 ± 4 3 ± 1 6 ± 2 6 ± 2 8 ± 2 8 ± 3
tWZ 8 ± 2 3 ± 1 3 ± 1 6 ± 2 5 ± 2 3 ± 1
Fakes e (HF) 30 ± 2 16 ± 1 20 ± 1 8 ± 1 8 ± 1 51 ± 7
Fakes e (Other) 46 ± 3 25 ± 1 30 ± 3 22 ± 3 33 ± 4 46 ± 6
Fakes µ (HF) 41 ± 3 23 ± 1 25 ± 1 11 ± 2 12 ± 2 65 ± 8
Fakes (Other) 19 ± 2 8 ± 1 11 ± 2 10 ± 2 10 ± 2 18 ± 3
Others 8 ± 1 8 ± 1 5 ± 1 6 ± 1 11 ± 1 3 ± 1
Total 450 ± 24 168 ± 6 193 ± 9 254 ± 14 230 ± 14 327 ± 17
tt̄Z/Total 0.27 ± 0.02 0.15 ± 0.02 0.16 ± 0.01 0.37 ± 0.08 0.21 ± 0.05 0.11 ± 0.03
tt̄W/Total 0.06 ± 0.01 0.17 ± 0.02 0.10 ± 0.01 0.05 ± 0.03 0.20 ± 0.09 0.04 ± 0.02
Fakes/Total 0.30 ± 0.02 0.43 ± 0.02 0.45 ± 0.03 0.20 ± 0.03 0.27 ± 0.03 0.55 ± 0.05
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5 Neural Networks and Fitting
Algorithm

The implementation of a machine learning approach such as a deep neural network is
expected to increase the quality of region definition. Unlike classical algorithms, neural
networks can be programmed to adapt to a given dataset. This adaptation simulates a
learning process and hence provides the possibility to train neural networks for certain
tasks. Machine learning approaches are widely used in several modern fields of studies
such as image recognition [23], identification of biological structures [24] and user-analysis
on social media [25].

5.1 Deep Neural Networks

In the mid 20th century, Warren S. McCulloch and Walter Pitts formulated the first
attempt to simulate an artificial network using logical structures similar to the structure
of human neurons in the brain [26]. In 1957, a machine called Mark 1 Perceptron
based on this idea was built by Frank Rosenblatt [27]. The machines’ network consists of
an input layer using an array of photocells and an output layer for the electrical signal.
The connections between those layers were weighted by electric potentiometers and could
be tweaked by electric motors to simulate a learning process. The performance of this
network was limited, since it was an analogue single-layered network.

Modern neural networks are algorithms which simulate multi-layered deep neural net-
works (DNN) with several hidden layers between the input and output layer. Figure 5.1
shows a so-called feedforward neural network with one hidden layer. In a feedforward
DNN each node of a layer receives a weighted input from every node of the previous layer
and emits an output, which will be used in the next layer [28]. The output of the hidden
layers are usually not stored and thus invisible.

This idea can be described mathematically using a vector v⃗ for input and u⃗ for output.
The length of these vectors correspond to the number of nodes in the first and last layer
[28]. The number of hidden layers and their respective multiplicity of nodes are determined
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5 Neural Networks and Fitting Algorithm

Figure 5.1: A schematic visualisation of a feedforward DNN (left) using one hidden
layer. Each node can be represented (right) with multiple weighted inputs
and an activation function f .

by the neural network architecture. Each node has n inputs xi, corresponding weights wi

and an offset b which are all used to calculate the raw activation

z =
n∑
i

wixi + b . (5.1)

The raw activation z is used in a chosen activation function f to produce an output a

[28]. This process per node is shown in Figure 5.1. Common choices for the activation
function f(z) are tanh, Sigmoid, ReLU and Softmax [29].

To train a DNN, the given dataset is usually divided into a training and a validation
set. The first set is used in the training process to teach the neural network. Each step,
a certain batch of samples are used for training the DNN. After the whole training set is
used, an epoch is completed and the performance of the neural network is tested on the
statistically independent validation set. The improvement for a given epoch is determined
by the loss which needs to be minimised [30]. If the neural network trains for too many
epochs on a given training dataset, it begins to overfit. This means, the DNN improves
its performance on the training set, but worsens on validations sets [30]. Overfitting can
be prevented by including some regularisation technique such as early stopping.

5.2 Neural Network Architecture

For the analysis, a multi-class approach is used. As mentioned before, the task of the
DNN will be to define three class scores that are sensitive to the tt̄Z, tt̄W and fakes
respectively. The fakes score includes all fake samples with no further subdivision. These
scores are used for region definition as described in Section 4.3.
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5 Neural Networks and Fitting Algorithm

The framework used for the neural network is based on Keras [31], Tensorflow
[32] and scikit-learn [33]. To adjust the neural network, several DNN parameters were
individually varied and optimised.

The number of hidden layers and their respective multiplicity of nodes can be chosen
to provide enough degrees of freedom to the network [34]. For this analysis, 4 layers with
20, 25, 20 and 20 nodes, respectively, were chosen. Additionally, the activation function
for the nodes of each layer [29] must be chosen depending on the desired output. The
hidden layers use the ReLU activation and the output layer uses Softmax activation since
it normalises the class scores and thus allows for an easier cut placement. In order to
achieve a learning process, the neural network must be trained for a given number of
epochs [34]. Each epoch, the neural network trains on the training set using the results
from previous epochs. The maximum number of epochs is set to 300, however, this value
is not reached, since early stopping is implemented and occurs at around 150 epochs. For
training, the optimiser Nadam [35] is implemented.

The relative size of the validation set must be selected sufficiently large to be rep-
resentative, however, a smaller validation set allows for a bigger training set. Thus a
compromise between those two is chosen carefully and is set to 20%. To better utilise the
given dataset, k-fold cross validation [36] is implemented with 2 folds. Furthermore, the
batch size [34] as well as the learning rate [28] are optimised in dedicated studies resulting
in a batch size of 128 events per batch and a learning rate of 0.0005.

As input for the DNN, several kinematic variables were tested. The chosen variables are
expected to be sensitive to either of the three processes and thus the choice is motivated
by the underlying physics processes. The DNN uses jet and b-jet multiplicity, the missing
energy EMiss

T , ∆R of the OSSF-pair and the three highest pT of jets and leptons as input.
The choice to implement jet multiplicity is motivated by the expected signals as ex-

plained in Section 2.3 and the reasons for choosing EMiss
T and ∆ROSSF are discussed in

Section 4.2. Including the transverse momentum pT for both jets and leptons is motivated
by the fakes background, which is expected to be sensitive to the low regions of the third
lepton’s pT in particular. The additional pT variables were tested and found to improve
the DNN performance.

Moreover, implementing the sum of lepton charges is also expected to improve the DNN
performance, because, as explained in Section 2.3, the tt̄W processes happen as initial
state radiation. Thus, an asymmetry in the sum of lepton charges is expected for the
tt̄W events but not for tt̄Z or fakes processes. However, this variable is not included in
the analysis, since the used DNN-framework does not support sums of variables as input.
Further inputs were tested and found to be non-beneficial for the DNN performance.
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Figure 5.2: Histograms showing the impact of input variables for the tt̄Z (left), tt̄W
(centre) and fakes (right) class. The variables are sorted by their impact
for each classifier.

The impact of the input variable is analysed for each region and the results are sum-
marised in Figure 5.2. As expected, ∆ROSSF has the most significant impact for the tt̄Z

score. Similarly, for the fake classification, the third lepton’s pT is found to have the high-
est impact. Both of these variables also provide approximately equally high separation
performance for the tt̄W classifier. The missing energy has a lower impact than expected.
Nevertheless, the EMiss

T impact is highest for the tt̄W classifier.
To further evaluate the performance of the DNN, confusion matrices for each of the

three classifiers are plotted as shown in Figure 5.3. Each confusion matrix shows the
classification of events per sample. The tt̄Z classifier shows that high fractions of around
70% of tt̄Z events have a tt̄Z score of less than 0.5. Additionally, these plots show that
the separation performance between tt̄W and the Others sample is relatively low. This
is expected, since one of the processes included in the Others sample is tt̄WW which has
a similar event signature. Since the Others sample has low yields in comparison to tt̄W ,
as seen in Table 4.2, this will not have a significant impact on the DNN performance.
The fake classifier works best on the heavy flavour (HF) fake samples. For the other two
fake samples around ∼ 60% of events score lower than 0.5 for the fake classifier. Also,
the WZ/ZZ+jets events achieved relatively high fake class scores. These results are
supported by the observed yields for the neural network based configuration in Table 4.2.

The overall performance for the defined DNN can be assessed using ROC curves [37].
The area under the curve (AUC) is calculated for each of the folds and is a measure of the
DNN performance. The computed integral can be in the range of [0, 1], values close to 0.5
indicate a bad performance that is comparable to guessing. Very performant DNN would
achieve values close to one or zero [37]. The calculated ROC curves are summarised in
Figure 5.4 and show, that the tt̄W classifier achieves the best performance.
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Figure 5.3: The confusion matrices showing the distribution of outputs separated into
each sample for the tt̄Z (top), tt̄W (bottom left) and fakes (bottom right)
classifier.

5.3 Fitting Algorithm

For the fitting process, a binned profiled likelihood fit [38] is performed. In a likelihood
fit, a probability density function L(µ, θ) that depends on parameters of interest (PoI)
µ and nuisance parameters (NP) θ is optimised to describe the observed events as the
most likely. The profiled likelihood fit reduces the number of dimensions by expressing
the nuisance parameters through the PoI. For the fitting process, a dataset in which the
model parameters are set to their expected value is generated and used instead of the
data set. The value of the PoI used in the fit is set to one.

Furthermore, for each NP with a Gaussian distribution of mean µ and width σ, the
pull

g = x − µ

σ

can be defined and will be distributed as a standard Gaussian. A deviation of the pulls’
mean from zero, is an indicator for possible forms of bias. Uncertainties different to ±1
represent constraints for a given NP [39].

This analysis fits the signal strength µttZ and two normalisation factors NttW, NFakes as
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Figure 5.4: The ROC curves showing the performance for the tt̄Z (top), tt̄W (bottom
left) and fakes (bottom right) class. The training and testing number refers
to the k-fold.

PoI simultaneously. The included uncertainties described in Chapter 6 are implemented
as NP. The results of the fitting process are given in Chapter 7.

20



6 Experimental and Theoretical
Systematic Uncertainties

The study includes several uncertainties on the used event samples to consider possible
deviations from the predicted values. The included uncertainties can be subdivided into
experimental uncertainties, which cover the identification and reconstruction of objects
inside the detector, and theoretical uncertainties, which cover modelling and estimation
variability. In the fitting process, these uncertainties are implemented as nuisance param-
eters. Up-to-date recommendations of several performance groups are used to determine
the uncertainty size.

6.1 Experimental Uncertainties

The uncertainty on the luminosity of 139 fb−1 for the combined Run II dataset is measured
to be 1.7% by the official luminosity working group using the LUCID-2 detector [40]
and scans for x-y beam-separation by following a method similar to that described in
Reference [41]. This nuisance parameter is applied to all MC samples.

Uncertainties related to pile up in the detector [42] are implemented to match the data
and MC distributions by rescaling the pile-up correction factors during the reweighting.
This nuisance parameter is symmetrised using the average of two variations for the upper
and lower uncertainty. The total impact of these effects is around 0.2%-1.0% per sample.

For the lepton selection, NP for several efficiencies such as trigger, reconstruction, iden-
tification and signal isolation as well as momentum scale and resolution are implemented
[43, 44]. These uncertainties are all symmetrised using two variations and are subdivided
into NP for electrons and muons. Each uncertainty individually is below 1%. Overall
there are 51 separate uncertainties for electrons and 37 for muons.

For the missing energy, two symmetric NP for the resolution and one NP for the scaling
are applied [45]. Also, three more NP are used for the electron-photon identification and
isolation [43]. Each of these six uncertainties has an impact less than 1%.

Analogous to the leptons, jet uncertainties are implemented for the energy scale (JES),
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6 Experimental and Theoretical Systematic Uncertainties

energy resolution (JER) and the vertex tagging (JVT) [46]. These were derived from
test-beam and collision data, as well as MC simulations. In total, 46 uncertainties are
applied, each less than 2%.

Further uncertainties are applied for the flavour tagging uncertainties. These are sep-
arated for b-tagging [47], c-tagging [48] and light quark tagging [49]. Measurements for
those are done using control samples in data and MC to calculate correction factors to
correct the rates of flavour tagging in the simulations. In total, 85 uncertainties each less
than 2% are applied for flavour tagging. Each of them is also symmetrised by averaging
an up- and down-variation.

6.2 Theoretical Uncertainties

For the theoretical prediction of the tt̄Z events, several uncertainties are implemented.
The evaluation of the renormalisation scale µr and factorisation scale µf uncertainty is
done by varying Pythia 8 samples. This nuisance parameter is not symmetric. Another
uncertainty is added for the A14 tune of Pythia 8 [50] and has an impact of ∼2%. Two
additional uncertainties from the choice of PDF are set according to the PDF4LHC
recommendation [51], each having an impact less than 0.5%. The systematic uncertainty
for the modelling of the parton shower and the hadronisation is evaluated using alternative
samples generated with AMC@NLO [52] which is interfaced to Herwig 7 [53] instead
of Pythia 8. The impact from the shower uncertainty is up to 6.3% and is symmetrised
using one variation.

Most theoretical NP cover the diboson WZ+jets and ZZ+jets processes. These un-
certainties are taken from the most recent tt̄Z publication [54] in which the uncertainties
were determined by comparing data to MC for Zb/Zc events and taking heavy flavour jet
fraction between Z+jets and ZZ/WZ+jets into account. Therefore, a flat cross-section
uncertainty of 30% is applied to the ZZc, WZc and WZl events. For ZZl an uncertainty
of 15% is used and for ZZb as well as WZb an uncertainty of 50% is used. Further
uncertainties for these processes related to the renormalisation and factorisation scale as
well as the PDF choice are derived using the same methods as for the signal tt̄Z process.
Analogously to tt̄Z, neither nuisance parameters on PDF scale, nor the renormalisation
and factorisation are symmetrised.

For the tWZ background, in addition to the diboson NP, an uncertainty for the in-
terference between tt̄Z and tWZ processes is implemented, which is calculated using the
DR2 model compared to the DR1 model as described in Reference [55]. It is evaluated
by calculating their modelling difference of uncertainties in the signal regions. This un-
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certainty is applied symmetrically to the tWZ events. Moreover, a flat normalisation
uncertainty of 10% is applied.

Following the results of the measurements in Reference [56], a flat 14% normalisation
uncertainty is applied for the tZq cross-section. PDF and factorisation related uncertain-
ties are again obtained as in the previous samples. Additional uncertainties for the tZq

showering and radiation are motivated by the measurements in Reference [57] and [58].
For tt̄H events, a flat asymmetric uncertainty of +6.8% and −9.9% is applied. The

implementation of this nuisance parameter covers the uncertainties from QCD scale and
PDF choice [59].

For additional negligible processes like tt̄tt̄ or tt̄WW a single flat normalisation uncer-
tainty is applied. These minor processes contribute less than 1% to the total yield as seen
in 4.2 and thus, a 50% flat uncertainty is assumed to be sufficient.
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7 Measurements of the Inclusive
Cross-Section

As explained before, to evaluate the simultaneous measurements of tt̄Z and tt̄W , the signal
strength µttZ and two normalisation factors NttW and NFakes for the respective samples are
fitted. The normalisation factor NFakes does not separate the four fakes samples but treats
them as one group. The fitting process uses a binned profile likelihood fit as described in
Section 5.3 and is done for both region definitions which are summarised in Chapter 4.

Cut and Count Based Configuration

Figure 7.1 shows the post-fit distributions for each region of the cut and count based
configuration. As mentioned in Section 4.1, the binning is automatically done by an
algorithm. The underflow and overflow are included in the first and last bin, respectively.
None of the discrepancies between MC data is greater than 3σ. The fitting results for the
parameters of interest are

µtt̄Z = 1.00 ± 0.22 = 1.00 ± 0.19(stat.) ± 0.12(syst.) (7.1)
Ntt̄W = 1.00 ± 0.81 = 1.00 ± 0.71(stat.) ± 0.39(syst.) (7.2)

NFakes = 1.00 ± 0.20 = 1.00 ± 0.18(stat.) ± 0.09(syst.) (7.3)

whereby the systematic uncertainty is calculated from the statistical and total uncertainty.
The ranking plots, which list the most important nuisance parameters, are shown in
Figure 7.2. Many of the diboson uncertainties are impactful, since the WZ/ZZ events
have yields comparable to tt̄W , as seen in Table 4.2. Since the analysed channel has
low number of events, the luminosity and JET pile up NP are significant for the µtt̄Z

uncertainty. For the Ntt̄W uncertainties, two of the JER related nuisance parameters have
an significant impact. The missing energy is crucial for neutrino reconstruction and thus
is important for the tt̄W events, resulting in the significant impact. The ranking for NFakes

shows that one of the jet tagging uncertainties has the second highest impact. The correct
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7 Measurements of the Inclusive Cross-Section

Figure 7.1: The post-fit distributions for the SR-ttZ-CC (left), CR-ttW-CC (centre),
CR-Fakes-CC (right) region of the cut and count based configuration.

Figure 7.2: The ranking plots for µtt̄Z (left), Ntt̄W (centre) and NFakes (right) using the
cut and count based regions.

identification for light jets is important for fakes because these non-prompt leptons have
relatively low energies and thus can be misidentified as light jets. All nuisance parameters
are also analysed using pull plots in Figure 7.5 and are found to have no significant pull
or constrain.

Neural Network Based Configuration

Analogous to the cut and count based configuration, Figure 7.3 shows the post-fit dis-
tributions for the neural network based configuration. Again, the discrepancies between
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7 Measurements of the Inclusive Cross-Section

Figure 7.3: The post-fit distributions for the SR-ttZ-NN (left), CR-ttW-NN (centre),
CR-Fakes-NN (right) region of the neural network based configuration.

MC and data are less than 3σ for all bins. The fitting results are given by

µtt̄Z = 1.00 ± 0.24 = 1.00 ± 0.18(stat.) ± 0.15(syst.) (7.4)
Ntt̄W = 1.00 ± 0.44 = 1.00 ± 0.42(stat.) ± 0.14(syst.) (7.5)

NFakes = 1.00 ± 0.14 = 1.00 ± 0.12(stat.) ± 0.07(syst.) . (7.6)

The ranking plots in Figure 7.4 show similar results to the ranking plots from the cut
and count based configuration. Most NP are diboson uncertainties for the same reasons
as mentioned before. Surprisingly, the jet tagging uncertainty, which is also important
for NFakes, is the third most impactful NP for µtt̄Z . This is most likely caused by some
neural network classification that is sensitive to this nuisance parameter. These plots also
show, that many of the NP, which are impactful on µtt̄Z , are also impactful on Ntt̄W .
This is expected since these two processes have similar event signatures and are difficult
to separate. Moreover, Figure 7.5 shows the pull plots for the neural network based
configuration. As before, no significant constrains or pulls are observed.

Comparison

Comparing the yields for both configurations in Table 4.2 shows that the neural network
based configuration has cleaner regions. The relative number of tt̄Z events in the sig-
nal region has increased by 10%, while the relative number of tt̄W and fake events has
decreased by 1% and 10%, respectively. Similar results can be observed for the control
regions with the exception, that the neural network based tt̄W control region has 6%
more tt̄Z events compared to the cut and count based one.
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7 Measurements of the Inclusive Cross-Section

Figure 7.4: The ranking plots for µtt̄Z (left), Ntt̄W (centre) and NFakes (right) using the
neural network based regions.

The uncertainty on the PoI for normalisation has decreased by 37% for tt̄W and 6% for
fakes. Both the statistical and systematic uncertainty is halved for Ntt̄W using the neural
network based configuration. For NFakes, the improvements are mostly for statistical
uncertainties. The uncertainty of µtt̄Z , however, is increased by 2%. This increase is most
likely caused by the low statistics in the neural network based signal region. Comparing
the total values in Table 4.2 shows, that the SR-ttZ-NN has 44% less events compared to
SR-ttZ-CC.

Although the neural network has refined the region definition, the limited statistics
for analysed channel restrict the improvements on the signal strength µtt̄Z in the fitting
processes. Hence, if only the signal strength µtt̄Z is analysed, the cut and count based
configuration should be used. However, for a simultaneous analysis, it is recommended to
use the neural network based configuration because of its overall performance.

To reduce the uncertainties due to low statistics, more events need to be measured.
The High-Luminosity Lhc upgrade after Run III is planned to provide an integrated
luminosity of 250 fb−1 per year [60]. This could also improve the DNN training since a
greater dataset for training can be used.
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7 Measurements of the Inclusive Cross-Section

Figure 7.5: Pull plots for the cut and count based (left) and neural network based (right)
configuration showing all uncertainties and possible pulls or constraints.
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8 EFT Sensitivity

As explained in Section 2.3, effects from SM-EFT contributions can be investigated by
studying off-shell tt̄Z events. For that, the cross-section ratio and separation power of
MC simulations using variations on Wilson coefficients compared to the SM predictions
is calculated. Since the operator of interest QtZ is a linear combination of QtB and QtW,
as formulated in Equation 2.2, cross-section ratios and separation power are calculated
for the Wilson coefficients CtB and CtW.

8.1 Cross-Section Ratio

For the calculation of the cross-section ratio, several distributions for different kinematic
variables are used. The set of analysed variables for the Z-boson consists of the cosine of
the deflection angle cos (θ∗

Z), the reconstructed mass mZ and the transverse momentum
pT,Z. For mZ and pT,Z there is an alternative method of reconstruction, which is based on
∆ROSSF and is indicated by the subscript ∆R.

The plotted distributions in Figure 8.1 show the analysed variations on CtB and CtW

in the SR-ttZ-NN region for cos (θ∗
Z). These studies are continued for the all mentioned

variables and also for the other regions of the neural network based configuration, resulting
in the averaged cross-section ratios which are summarised in Table 8.1.

The results show that the highest sensitivity is seen by analysing the variables cos (θ∗
Z)

and mZ. For CtB, the alternative ∆ROSSF based variables show no significant difference
to the non-∆ROSSF based ones. However, the results for CtW show noticeable differences
between mZ and mZ,∆R. Furthermore, the change in cross-section is higher in variations
for the imaginary parts of the Wilson coefficients. This sensitivity to the imaginary part
can introduce a non-flat offset, which can be seen in Figure 8.1. It should be noted, that
the variations on the real part of CtW also seem to introduce a non-flat offset. Since the
distribution of the Wilson coefficient variation has non-flat offsets in comparison to the
SM prediction, a non-zero separation is expected [61].
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8 EFT Sensitivity

Table 8.1: The cross-section ratios calculated for several variations on the Wilson coef-
ficient CtB (top) and CtW (bottom), separated into real and imaginary part.
All values are averaged over all three regions defined by the neural network
based configuration. The highest sensitivities are marked.

cos (θ∗
Z) mZ mZ,∆R pT,Z pT,Z,∆R

ctBRe +0.3 1.00 ± 0.00 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
ctBRe −0.3 1.01 ± 0.00 1.01 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
ctBRe +0.9 1.03 ± 0.01 1.02 ± 0.01 1.02 ± 0.01 1.02 ± 0.01 1.01 ± 0.01
ctBRe −0.9 1.04 ± 0.01 1.04 ± 0.01 1.04 ± 0.01 1.03 ± 0.01 1.02 ± 0.01
ctBIm +0.6 1.03 ± 0.01 1.03 ± 0.01 1.03 ± 0.01 1.02 ± 0.01 1.02 ± 0.01
ctBIm −0.6 1.02 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.01 ± 0.01 1.01 ± 0.01
ctBIm +1.8 1.17 ± 0.01 1.14 ± 0.01 1.14 ± 0.01 1.10 ± 0.01 1.09 ± 0.01
ctBIm −1.8 1.17 ± 0.01 1.14 ± 0.01 1.14 ± 0.01 1.10 ± 0.01 1.09 ± 0.01

cos (θ∗
Z) mZ mZ,∆R pT,Z pT,Z,∆R

ctWRe +0.7 1.03 ± 0.01 1.02 ± 0.01 1.02 ± 0.01 1.02 ± 0.01 1.01 ± 0.01
ctWRe −0.7 1.03 ± 0.01 1.03 ± 0.01 1.03 ± 0.01 1.02 ± 0.01 1.02 ± 0.01
ctWRe +1.1 1.07 ± 0.01 1.04 ± 0.01 1.05 ± 0.01 1.04 ± 0.01 1.04 ± 0.01
ctWRe −1.1 1.07 ± 0.01 1.07 ± 0.01 1.06 ± 0.01 1.04 ± 0.01 1.04 ± 0.01
ctWIm +0.6 1.02 ± 0.01 1.02 ± 0.01 1.00 ± 0.01 1.01 ± 0.01 1.01 ± 0.01
ctWIm −0.8 1.04 ± 0.01 1.03 ± 0.01 0.99 ± 0.01 1.03 ± 0.01 1.03 ± 0.01
ctWIm +1.2 1.10 ± 0.01 1.08 ± 0.01 0.99 ± 0.01 1.06 ± 0.01 1.06 ± 0.01
ctWIm −1.4 1.13 ± 0.01 1.10 ± 0.01 0.99 ± 0.01 1.08 ± 0.01 1.08 ± 0.01

8.2 Separation Power

The separation power is analysed for both Wilson coefficients, subdivided into the real
and imaginary part analogous to the cross-section ratio. The same set of variables is
analysed. Using Equation 2.3 and Gaussian error propagation, the separation power is
calculated individually for each region of the neural network based configuration. The
averaged separation power for the summed distributions CtB are in the order of magnitude
of 10−4–10−7 and for CtW in the order of 10−2–10−6. Both having dominating errors in
the order of magnitude of 10−1–10−2.

However, certain regions such as for cos (θ∗
Z) are expected to have a significant separation

introduced by the non-flat offset. This prediction can not be supported, since these regions
also have high uncertainties due to the low statistics. To further study the separation
in these regions, higher statistics are needed. As mentioned in Chapter 7, the High-
Luminosity upgrade will provide significantly more data and thus will be useful to this
analysis.
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Figure 8.1: The distribution plots showing several variations on the CtB (top) and CtW
(bottom) Wilson coefficient plotted against the cos (θ∗

Z) variable in the SR-
ttZ-NN region. These are further separated into the real (left) and imagi-
nary (right) part.
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9 Conclusion

To conclude this thesis, a brief summary and possible improvements for future studies are
presented.

This study analysed the simultaneous measurements of tt̄Z and tt̄W events in off-shell
regions. This was done by defining sensitive regions, which were then used in the fitting
process of the inclusive cross-section. Additionally, this study further separated the fakes
background, which is dominating in the trileptonic decay channel.

The region definition used two different approaches, as described in Chapter 4, to
define a signal region for tt̄Z and two control regions for tt̄W and fakes. The cut and
count based configuration is based on manually set cuts on EMiss

T and ∆ROSSF, which were
studied and optimised. For the neural network based configuration a DNN was trained
to identify tt̄Z, tt̄W and fakes events by using several variables as inputs. This DNN
defined class scores for each process, which were then used to define the three regions.
The comparison of both approaches showed that the DNN based regions are cleaner in
comparison to the cut and count based regions. However, the number of events in the NN
based signal region decreased by 44%, which is problematic for the analysis, because the
off-shell region provides low statistics. These results were reflected in the fitting process.

A binned likelihood fit was conducted including one PoI for the signal strength µtt̄Z and
two PoI for the normalisation of tt̄W and fakes as well as several NP for the uncertainties.
As expected from the region definition, the uncertainties for the normalisation factors
decreased using the NN based configuration. For Ntt̄W the uncertainties decreased by
37%, for NFakes by 6%, whereby the uncertainties on µtt̄Z increased by 2%.

Thus, for studies in the off-shell region, where tt̄Z or tt̄W events are analysed, it is
recommended to use a neural network based region definition, as it improves the overall
results and especially the of the different processes. The improvements in the normalisa-
tion are expected to outweigh the increased uncertainty of the signal strength.

As discussed before, in Chapter 7, the most impactful improvement is expected to be the
usage of a greater dataset, since the statistical uncertainty is higher than the systematic
uncertainty for all PoI. Further improvements could be achieved by modifying the used
DNN framework to allow the sum of variables to be used as input. By studying the chosen
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cuts for the NN based configuration in more detail, including non-linear cuts, additional
improvements could be realised.

Furthermore, the SM-EFT sensitivity was analysed in Chapter 8 by comparing the
SM-prediction to several samples which include variations on Wilson coefficients. For the
comparison, the cross-section ratios and the separation power was calculated for several
variables. The results of the cross-section ratio showed that the studied variables have
higher sensitivity to the imaginary parts of the analysed variations. The separation power
provided no further information because of the dominating uncertainties due to the low
amount of events.

As for the fitting results, a greater dataset is expected to reduce the uncertainties and
allow for more precise calculations. Furthermore, to increase the sensitivity to possible
EFT contributions further, a separation into high-Z-mass and low-Z-mass regions could
be useful. This, as mentioned in Section 2.3, is due to the SM-EFT contributions increase
for higher boson masses.
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