
Recursion and complexity
(4th lecture)

Isabel Oitavem
CMA and DM, FCT-UNL

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).



Models of computation: Nondeterministic Turing
machines

A deterministic Turing machine (TM) with k tapes is a
four-tuple

M =< Q,Σ, δ, q0 >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → Q × Σk × {L,N ,R}k ;
q0 ∈ Q is the initial state.



Models of computation: Nondeterministic Turing
machines

A nondeterministic Turing machine (NTM) with k tapes is a
five-tuple

M =< Q; Σ, δ, q0,F >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → P(Q × Σk−1 × {L,N ,R}k);
q0 ∈ Q is the initial state;
F is the set of accepting final states.



Models of computation: Nondeterministic Turing
machines

An input w is accepted by a nondeterministic machine M if,
and only if, there exits a computation of M on w ending in an
accepting configuration.

Or alternatively, we define a bottom-up labeling of the
computation tree (or part of it) of M on w by the following
rules:

I the accepting leaves are labeled 1;
I any node is labeled 1 if at least one of its sons is labeled

1.
The machine accepts w if, and only if, the root is labeled 1.



Models of computation: Nondeterministic Turing
machines

An input w is accepted by a nondeterministic machine M if,
and only if, there exits a computation of M on w ending in an
accepting configuration.

Or alternatively, we define a bottom-up labeling of the
computation tree (or part of it) of M on w by the following
rules:

I the accepting leaves are labeled 1;
I any node is labeled 1 if at least one of its sons is labeled

1.
The machine accepts w if, and only if, the root is labeled 1.



Models of computation: Alternating Turing
machines

A nondeterministic Turing machine (NTM) with k tapes is a
five-tuple

M =< Q; Σ, δ, q0,F >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → P(Q × Σk−1 × {L,N ,R}k);
q0 ∈ Q is the initial state;
F is the set of accepting final states.



Models of computation: Alternating Turing
machines

A alternating Turing machine (ATM) with k tapes is a
five-tuple

M =< Q; Σ, δ, q0, g >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → P(Q × Σk−1 × {L,N ,R}k);
q0 ∈ Q is the initial state;
g : Q → {∨,∧, acc, rej}.



Models of computation: Alternating Turing
machines

Given a tree in which internal nodes are either existential (∨)
or universal (∧), we consider the following labeling procedure

I the accepting leaves are labeled 1;
I any existential node is labeled 1 if at least one of its sons

has been labeled 1;
I any universal node is labeled 1 if all its sons are labeled 1.

The machine accepts the input if and only if the root of the
computation tree is labeled 1



Implicit recursion-theoretic approach: FPspace

A function f (over W) is computable in polynomial space
if, and only if, f is bitwise computable by an alternating Turing
machine in polynomial time, and the length of the outputs of
f is polynomial in the length of the inputs.



FPtime and FPspace: models of computation

I Model of computation
I FPtime: Deterministic TM;
I FPspace: Alternating TM.

I Resource constraint: polynomial time.

DTM NTM and ATM
c0 cε

| ∧
c1 c0 c1
| ∧ ∧

c2 c00 c01 c10 c11... ... ... ... ...



Implicit recursion-theoretic approach
FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC, ? ]

SR (Input-sorted recursion over W):

f (ε, x̄ ; ȳ) = g(ε, x̄ ; ȳ)

f (z0, x̄ ; ȳ) = h(z0, x̄ ; ȳ , f (z , x̄ ; ȳ))

f (z1, x̄ ; ȳ) = h(z1, x̄ ; ȳ , f (z , x̄ ; ȳ))

Example: f (11) leads to h(11, h(1, g(ε)))

h
|
h
|
g

SR reproduces the sequential
structure of deterministic
computations.



Implicit recursion-theoretic approach
FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC, ? ]

SR (Input-sorted recursion over W):

f (ε, x̄ ; ȳ) = g(ε, x̄ ; ȳ)

f (z0, x̄ ; ȳ) = h(z0, x̄ ; ȳ , f (z , x̄ ; ȳ))

f (z1, x̄ ; ȳ) = h(z1, x̄ ; ȳ , f (z , x̄ ; ȳ))

Example: f (11) leads to h(11, h(1, g(ε)))

h
|
h
|
g

SR reproduces the sequential
structure of deterministic
computations.



Implicit recursion-theoretic approach
FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC,STR ] (O. 2008)

SR (Input-sorted recursion over W):

f (ε, x̄ ; ȳ) = g(ε, x̄ ; ȳ)

f (z0, x̄ ; ȳ) = h(z0, x̄ ; ȳ , f (z , x̄ ; ȳ))

f (z1, x̄ ; ȳ) = h(z1, x̄ ; ȳ , f (z , x̄ ; ȳ))

STR is defined analogously to SR, but
I double the recursive call
I distinguish the recursive calls from each other via a

pointer p.



Implicit recursion-theoretic approach
FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC,STR ] (O. 2008)

SR (Input-sorted recursion over W):

f (ε, x̄ ; ȳ) = g(ε, x̄ ; ȳ)

f (z0, x̄ ; ȳ) = h(z0, x̄ ; ȳ , f (z , x̄ ; ȳ))

f (z1, x̄ ; ȳ) = h(z1, x̄ ; ȳ , f (z , x̄ ; ȳ))

STR:

f (ε, p, x̄ ; ȳ) = g(ε, p, x̄ ; ȳ)

f (z0, p, x̄ ; ȳ) = h(z0, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

f (z1, p, x̄ ; ȳ) = h(z1, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))



Implicit recursion-theoretic approach
STR: f (ε, p, x̄ ; ȳ) = g(ε, p, x̄ ; ȳ)

f (z0, p, x̄ ; ȳ) = h(z0, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

f (z1, p, x̄ ; ȳ) = h(z1, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

The mentioned input is the pointer, and it gives the address
from the root of the tree to the current node.
STR trivially extends SR.



Implicit recursion-theoretic approach
STR: f (ε, p, x̄ ; ȳ) = g(ε, p, x̄ ; ȳ)

f (z0, p, x̄ ; ȳ) = h(z0, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

f (z1, p, x̄ ; ȳ) = h(z1, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

The mentioned input is the pointer, and it gives the address
from the root of the tree to the current node.
STR trivially extends SR.



Implicit recursion-theoretic approach
Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

Bottom-up labeling:
(assuming that non-terminating configurations have two
sucessor configurations)

g and h execute the computation determined by the pointer
and read the state of the last computed configuration:

I g returns 1 if it is an accepting state; 0 otherwise.
I h does ∨ or ∧ of its last two inputs, depending on the

read state.



Implicit recursion-theoretic approach
Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

Bottom-up labeling:
(assuming that non-terminating configurations have two
sucessor configurations)
g and h execute the computation determined by the pointer
and read the state of the last computed configuration:

I g returns 1 if it is an accepting state; 0 otherwise.
I h does ∨ or ∧ of its last two inputs, depending on the

read state.



Implicit recursion-theoretic approach
Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

Bottom-up labeling:
(assuming that non-terminating configurations have two
sucessor configurations)
g and h execute the computation determined by the pointer
and read the state of the last computed configuration:

I g returns 1 if it is an accepting state; 0 otherwise.

I h does ∨ or ∧ of its last two inputs, depending on the
read state.



Implicit recursion-theoretic approach
Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

Bottom-up labeling:
(assuming that non-terminating configurations have two
sucessor configurations)
g and h execute the computation determined by the pointer
and read the state of the last computed configuration:

I g returns 1 if it is an accepting state; 0 otherwise.
I h does ∨ or ∧ of its last two inputs, depending on the

read state.



FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC,STR ] (O. 2008)

Class Model of Computation time bound
FPtime DTM poly

NP NTM poly
FPspace ATM poly

PP PTM poly
BPP PTM poly + bounded error



FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC,STR ] (O. 2008)

Class Model of Computation time bound
FPtime DTM poly

NP NTM poly
FPspace ATM poly

PP PTM poly
BPP PTM poly + bounded error


