Recursion and complexity
(4th lecture)

Isabel Oitavem
CMA and DM, FCT-UNL

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
Models of computation: Nondeterministic Turing machines

A deterministic Turing machine (TM) with \(k \) tapes is a four-tuple

\[M = \langle Q, \Sigma, \delta, q_0 \rangle \]

where

- \(Q \) is a finite set of states;
- \(\Sigma \) is the tape alphabet;
- \(\delta \) is the transition function,
 \[\delta : Q \times \Sigma^k \rightarrow Q \times \Sigma^k \times \{L, N, R\}^k; \]
- \(q_0 \in Q \) is the initial state.
Models of computation: Nondeterministic Turing machines

A nondeterministic Turing machine (NTM) with k tapes is a five-tuple

$$M = \langle Q; \Sigma, \delta, q_0, F \rangle$$

where

- Q is a finite set of states;
- Σ is the tape alphabet;
- δ is the transition function,
 $$\delta : Q \times \Sigma^k \to \mathcal{P}(Q \times \Sigma^{k-1} \times \{L, N, R\}^k);$$
- $q_0 \in Q$ is the initial state;
- F is the set of accepting final states.
An input w is accepted by a nondeterministic machine M if, and only if, there exits a computation of M on w ending in an accepting configuration.
Models of computation: Nondeterministic Turing machines

An input w is accepted by a nondeterministic machine M if, and only if, there exits a computation of M on w ending in an accepting configuration.

Or alternatively, we define a bottom-up labeling of the computation tree (or part of it) of M on w by the following rules:

- the accepting leaves are labeled 1;
- any node is labeled 1 if at least one of its sons is labeled 1.

The machine accepts w if, and only if, the root is labeled 1.
Models of computation: Alternating Turing machines

A nondeterministic Turing machine (NTM) with \(k \) tapes is a five-tuple

\[
M = \langle Q; \Sigma, \delta, q_0, F \rangle
\]

where
- \(Q \) is a finite set of states;
- \(\Sigma \) is the tape alphabet;
- \(\delta \) is the transition function,
 \[
 \delta : Q \times \Sigma^k \rightarrow \mathcal{P}(Q \times \Sigma^{k-1} \times \{L, N, R\}^k);
 \]
- \(q_0 \in Q \) is the initial state;
- \(F \) is the set of accepting final states.
A alternating Turing machine (ATM) with k tapes is a five-tuple

\[M = \langle Q; \Sigma, \delta, q_0, \gamma \rangle \]

where

- Q is a finite set of states;
- Σ is the tape alphabet;
- δ is the transition function,
 \[\delta : Q \times \Sigma^k \rightarrow \mathcal{P}(Q \times \Sigma^{k-1} \times \{L, N, R\}^k); \]
- $q_0 \in Q$ is the initial state;
- $\gamma : Q \rightarrow \{\lor, \land, \text{acc}, \text{rej}\}$.
Models of computation: Alternating Turing machines

Given a tree in which internal nodes are either existential (∨) or universal (∧), we consider the following labeling procedure

- the accepting leaves are labeled 1;
- any existential node is labeled 1 if at least one of its sons has been labeled 1;
- any universal node is labeled 1 if all its sons are labeled 1.

The machine accepts the input if and only if the root of the computation tree is labeled 1.
Implicit recursion-theoretic approach: FPspace

A function f (over \mathbb{W}) is **computable in polynomial space** if, and only if, f is bitwise computable by an **alternating Turing machine** in polynomial time, and the length of the outputs of f is polynomial in the length of the inputs.
FPtime and FPspace: models of computation

- Model of computation
 - **FPtime**: Deterministic TM;
 - **FPspace**: Alternating TM.

- Resource constraint: polynomial time.

```
DTM       NTM and ATM

<table>
<thead>
<tr>
<th>c0</th>
<th>cε</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∧</td>
</tr>
<tr>
<td>c1</td>
<td>c0</td>
</tr>
<tr>
<td></td>
<td>∧</td>
</tr>
<tr>
<td>c2</td>
<td>c00</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Implicit recursion-theoretic approach

$\text{FPtime} = [SI; SC, SR]$ \hspace{1cm} (Bellantoni-Cook 1992)

$\text{FPspace} = [SI; SC, ?]$

SR (Input-sorted recursion over \mathbb{W}):

\[
\begin{align*}
 f(\epsilon, \bar{x}; \bar{y}) &= g(\epsilon, \bar{x}; \bar{y}) \\
 f(z_0, \bar{x}; \bar{y}) &= h(z_0, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y})) \\
 f(z_1, \bar{x}; \bar{y}) &= h(z_1, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y}))
\end{align*}
\]

Example: $f(11)$ leads to $h(11, h(1, g(\epsilon)))$
Implicit recursion-theoretic approach

\[\text{FPtime} = [SI; SC, SR] \quad (\text{Bellantoni-Cook 1992}) \]
\[\text{FPspace} = [SI; SC, ?] \]

SR (Input-sorted recursion over \(\mathbb{W} \)):

\[
\begin{align*}
 f(\epsilon, \bar{x}; \bar{y}) &= g(\epsilon, \bar{x}; \bar{y}) \\
 f(z0, \bar{x}; \bar{y}) &= h(z0, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y})) \\
 f(z1, \bar{x}; \bar{y}) &= h(z1, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y}))
\end{align*}
\]

Example: \(f(11) \) leads to \(h(11, h(1, g(\epsilon))) \)

\[
\begin{array}{c}
 h \\
 \downarrow \\
 h \\
 \downarrow \\
 g \\
\end{array}
\]

SR reproduces the **sequential structure** of deterministic computations.
Implicit recursion-theoretic approach

\[
\text{FPtime} = [SI; SC, SR] \quad \text{(Bellantoni-Cook 1992)}
\]
\[
\text{FPspace} = [SI; SC, STR] \quad \text{(O. 2008)}
\]

\textbf{SR} (Input-sorted recursion over } \mathbb{W}:\n
\[
f(\epsilon, \bar{x}; \bar{y}) = g(\epsilon, \bar{x}; \bar{y})
\]
\[
f(z_0, \bar{x}; \bar{y}) = h(z_0, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y}))
\]
\[
f(z_1, \bar{x}; \bar{y}) = h(z_1, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y}))
\]

\textbf{STR} is defined analogously to \textbf{SR}, but

\begin{itemize}
 \item double the recursive call
 \item distinguish the recursive calls from each other via a pointer } p. \end{itemize}
Implicit recursion-theoretic approach

FPtime = $[SI; SC, SR]$
FPspace = $[SI; SC, STR]$
(Bellantoni-Cook 1992)
(O. 2008)

SR (Input-sorted recursion over \mathbb{W}):

$$f(\epsilon, \bar{x}; \bar{y}) = g(\epsilon, \bar{x}; \bar{y})$$

$$f(z0, \bar{x}; \bar{y}) = h(z0, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y}))$$

$$f(z1, \bar{x}; \bar{y}) = h(z1, \bar{x}; \bar{y}, f(z, \bar{x}; \bar{y}))$$

STR:

$$f(\epsilon, p, \bar{x}; \bar{y}) = g(\epsilon, p, \bar{x}; \bar{y})$$

$$f(z0, p, \bar{x}; \bar{y}) = h(z0, p, \bar{x}; \bar{y}, f(z, p0, \bar{x}; \bar{y}), f(z, p1, \bar{x}; \bar{y}))$$

$$f(z1, p, \bar{x}; \bar{y}) = h(z1, p, \bar{x}; \bar{y}, f(z, p0, \bar{x}; \bar{y}), f(z, p1, \bar{x}; \bar{y}))$$
Implicit recursion-theoretic approach

STR: $f(\epsilon, p, \bar{x}; \bar{y}) = g(\epsilon, p, \bar{x}; \bar{y})$

\[f(z_0, p, \bar{x}; \bar{y}) = h(z_0, p, \bar{x}; \bar{y}, f(z, p_0, \bar{x}; \bar{y}), f(z, p_1, \bar{x}; \bar{y})) \]

\[f(z_1, p, \bar{x}; \bar{y}) = h(z_1, p, \bar{x}; \bar{y}, f(z, p_0, \bar{x}; \bar{y}), f(z, p_1, \bar{x}; \bar{y})) \]

Example:

$f(11, \epsilon)$ leads to $h(\epsilon, h(0, g(00), g(01)), h(1, g(10), g(11))).$
Implicit recursion-theoretic approach

STR: \(f(\epsilon, p, \bar{x}; \bar{y}) = g(\epsilon, p, \bar{x}; \bar{y}) \)

\[
f(z_0, p, \bar{x}; \bar{y}) = h(z_0, p, \bar{x}; \bar{y}, f(z, p_0, \bar{x}; \bar{y}), f(z, p_1, \bar{x}; \bar{y}))
\]

\[
f(z_1, p, \bar{x}; \bar{y}) = h(z_1, p, \bar{x}; \bar{y}, f(z, p_0, \bar{x}; \bar{y}), f(z, p_1, \bar{x}; \bar{y}))
\]

Example:
\(f(11, \epsilon) \) leads to \(h(\epsilon, h(0, g(00), g(01)), h(1, g(10), g(11))) \).

\[
\begin{array}{c}
h\epsilon \\
\land \\
\h0 \land h1 \\
\land \\
g00 \land g01 \land g10 \land g11
\end{array}
\]

The mentioned input is the **pointer**, and it gives the **address from the root of the tree to the current node**.

STR trivially extends **SR**.
Implicit recursion-theoretic approach

Example:
\[f(11, \epsilon) \text{ leads to } h(\epsilon, h(0, g(00), g(01)), h(1, g(10), g(11))). \]

\[
\begin{array}{c}
h_{\epsilon} \\
\land \\
\land \\
\land \\
g_{00} \quad g_{01} \\
\quad \land \\
g_{10} \quad g_{11}
\end{array}
\]

Bottom-up labeling:
(assuming that non-terminating configurations have two successor configurations)
Implicit recursion-theoretic approach

Example:
$f(11, \epsilon)$ leads to $h(\epsilon, h(0, g(00), g(01)), h(1, g(10), g(11)))$.

Bottom-up labeling:
(assuming that non-terminating configurations have two successor configurations)
g and h execute the computation determined by the pointer and read the state of the last computed configuration:
Implicit recursion-theoretic approach

Example:
\(f(11, \epsilon) \) leads to \(h(\epsilon, h(0, g(00), g(01)), h(1, g(10), g(11))) \).

\[
\begin{aligned}
\hskip 0.5 in h \epsilon \\
\wedge \\
\hskip 0.5 in h 0 \quad h 1 \\
\wedge \\
\hskip 0.5 in g 00 \quad g 01 \quad g 10 \quad g 11
\end{aligned}
\]

Bottom-up labeling:
(assuming that non-terminating configurations have two successor configurations)

\(g \) and \(h \) execute the computation determined by the pointer and read the state of the last computed configuration:

- \(g \) returns 1 if it is an accepting state; 0 otherwise.
Implicit recursion-theoretic approach

Example:

\[f(11, \epsilon) \text{ leads to } h(\epsilon, h(0, g(00), g(01)), h(1, g(10), g(11))). \]

\[
\begin{array}{c}
h_\epsilon \\
\land \\
\end{array}
\]

Bottom-up labeling:

(assuming that non-terminating configurations have two successor configurations)

\textit{g} and \textit{h} execute the computation determined by the pointer and read the state of the last computed configuration:

\begin{itemize}
 \item \textit{g} returns 1 if it is an accepting state; 0 otherwise.
 \item \textit{h} does \lor or \land of its last two inputs, depending on the read state.
\end{itemize}
\[\text{FPtime} = [SI; SC, SR] \]
\[\text{FPspace} = [SI; SC, STR] \]

(Bellantoni-Cook 1992)

(O. 2008)
$$\text{FPtime} = [SI; SC, SR]$$
$$\text{FPspace} = [SI; SC, STR]$$

(Bellantoni-Cook 1992)
(O. 2008)

<table>
<thead>
<tr>
<th>Class</th>
<th>Model of Computation</th>
<th>time bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPtime</td>
<td>DTM</td>
<td>poly</td>
</tr>
<tr>
<td>NP</td>
<td>NTM</td>
<td>poly</td>
</tr>
<tr>
<td>FPspace</td>
<td>ATM</td>
<td>poly</td>
</tr>
<tr>
<td>PP</td>
<td>PTM</td>
<td>poly</td>
</tr>
<tr>
<td>BPP</td>
<td>PTM</td>
<td>poly + bounded error</td>
</tr>
</tbody>
</table>