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Models of computation: Nondeterministic Turing
machines

A deterministic Turing machine (TM) with k tapes is a
four-tuple

M =< Q,Σ, δ, q0 >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → Q × Σk × {L,N ,R}k ;
q0 ∈ Q is the initial state.



Models of computation: Nondeterministic Turing
machines

A nondeterministic Turing machine (NTM) with k tapes is a
five-tuple

M =< Q; Σ, δ, q0,F >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → P(Q × Σk−1 × {L,N ,R}k);
q0 ∈ Q is the initial state;
F is the set of accepting final states.



Models of computation: Nondeterministic Turing
machines

An input w is accepted by a nondeterministic machine M if,
and only if, there exits a computation of M on w ending in an
accepting configuration.

Or alternatively, we define a bottom-up labeling of the
computation tree (or part of it) of M on w by the following
rules:

I the accepting leaves are labeled 1;
I any node is labeled 1 if at least one of its sons is labeled

1.
The machine accepts w if, and only if, the root is labeled 1.
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Models of computation: Alternating Turing
machines

A nondeterministic Turing machine (NTM) with k tapes is a
five-tuple

M =< Q; Σ, δ, q0,F >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,
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Models of computation: Alternating Turing
machines

A alternating Turing machine (ATM) with k tapes is a
five-tuple

M =< Q; Σ, δ, q0, g >

where
Q is a finite set of states;
Σ is the tape alphabet;
δ is the transition function,

δ : Q × Σk → P(Q × Σk−1 × {L,N ,R}k);
q0 ∈ Q is the initial state;
g : Q → {∨,∧, acc, rej}.



Models of computation: Alternating Turing
machines

Given a tree in which internal nodes are either existential (∨)
or universal (∧), we consider the following labeling procedure

I the accepting leaves are labeled 1;
I any existential node is labeled 1 if at least one of its sons

has been labeled 1;
I any universal node is labeled 1 if all its sons are labeled 1.

The machine accepts the input if and only if the root of the
computation tree is labeled 1



Implicit recursion-theoretic approach: FPspace

A function f (over W) is computable in polynomial space
if, and only if, f is bitwise computable by an alternating Turing
machine in polynomial time, and the length of the outputs of
f is polynomial in the length of the inputs.



FPtime and FPspace: models of computation

I Model of computation
I FPtime: Deterministic TM;
I FPspace: Alternating TM.

I Resource constraint: polynomial time.

DTM NTM and ATM
c0 cε

| ∧
c1 c0 c1
| ∧ ∧

c2 c00 c01 c10 c11... ... ... ... ...



Implicit recursion-theoretic approach
FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC, ? ]

SR (Input-sorted recursion over W):

f (ε, x̄ ; ȳ) = g(ε, x̄ ; ȳ)

f (z0, x̄ ; ȳ) = h(z0, x̄ ; ȳ , f (z , x̄ ; ȳ))

f (z1, x̄ ; ȳ) = h(z1, x̄ ; ȳ , f (z , x̄ ; ȳ))

Example: f (11) leads to h(11, h(1, g(ε)))

h
|
h
|
g

SR reproduces the sequential
structure of deterministic
computations.
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Implicit recursion-theoretic approach
FPtime = [SI; SC,SR ] (Bellantoni-Cook 1992)
FPspace = [SI; SC,STR ] (O. 2008)
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f (z1, x̄ ; ȳ) = h(z1, x̄ ; ȳ , f (z , x̄ ; ȳ))

STR is defined analogously to SR, but
I double the recursive call
I distinguish the recursive calls from each other via a

pointer p.
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Implicit recursion-theoretic approach
STR: f (ε, p, x̄ ; ȳ) = g(ε, p, x̄ ; ȳ)

f (z0, p, x̄ ; ȳ) = h(z0, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

f (z1, p, x̄ ; ȳ) = h(z1, p, x̄ ; ȳ , f (z , p0, x̄ ; ȳ), f (z , p1, x̄ ; ȳ))

Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

The mentioned input is the pointer, and it gives the address
from the root of the tree to the current node.
STR trivially extends SR.
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Implicit recursion-theoretic approach
Example:
f (11, ε) leads to h(ε, h(0, g(00), g(01)), h(1, g(10), g(11))).

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

Bottom-up labeling:
(assuming that non-terminating configurations have two
sucessor configurations)

g and h execute the computation determined by the pointer
and read the state of the last computed configuration:

I g returns 1 if it is an accepting state; 0 otherwise.
I h does ∨ or ∧ of its last two inputs, depending on the

read state.
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Class Model of Computation time bound
FPtime DTM poly

NP NTM poly
FPspace ATM poly

PP PTM poly
BPP PTM poly + bounded error
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