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1. Introduction

In this chapter we give an overview of optical detection of single molecules with respect to

possible application to high throughput screening of substance libraries.  We restrict ourselves to

single molecule detection (SMD) because the field of ultrasensitive detection is too broad to be

covered by a single chapter; thus we will concentrate on the ultimate detection limit.  In the future

SMD will be the method of choice because of the ultimate small amount of analyte needed in con-

nection with extremely high speed screening of vast libraries.  Besides the topic of high-speed

DNA sequencing (see below), the high sensitivity received attention also in the context of combi-

natorial chemistry (Eigen, 1984; Plückthun, 1991; Eigen, 1994; Xiang, 1995) and molecular com-

putation (Adleman, 1994; Lipton, 1995).  The basic idea of combinatorial chemistry is to synthe-

size large arrays of slightly different molecules, followed by screening and selection of molecules

with desired properties.  In the case of molecular computation, a random chemical synthesis is

used to find solutions of numerically difficult problems; again, a fast and ultrasensitive screening

method is needed to extract the result of the ‘computation’.

Within the domain of SMD, the emphasis will be on optical detection, i.e. laser induced fluo-

rescence (LIF) detection.  LIF is one of the most sensitive detection methods in existence today.

It is easy to implement, highly characteristic, and mostly non-invasive, which is important for the

detection (and possible separation) of biomolecules.  Moreover, based on the broad application of

LIF in many fields of analytical chemistry and biochemistry, established physical technologies and

a huge variety of fluorescence dyes are available for LIF.

With respect to SMD on surfaces and interfaces, we will discuss only SMD at room tempera-

ture.  High resolution spectroscopy of single molecules in and on solids at low temperatures is a

very broad field in itself, but probably of minor interest for applications in library screening.  Al-

though of fundamental interest for studying molecule-host interactions, the technological com-

plexity of low-temperature, high-resolution experiments will prevent their application in biolabs

and related facilities.  For a recent overview of SMD and high resolution spectroscopy at low

temperatures see e.g. (Orrit, 1996; Basché, 1997).  Finally, we note that the emphasis of this

chapter will be the physics of SMD for room temperature applications rather than its chemical as-

pects (e.g. design of fluorescence labels).
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An overview of all current optical SMD methods at room temperature, potentially applicable

to high-speed screening of biomolecular libraries, is presented in Table 1.  In the following sec-

tions, each of these methods will be discussed and referenced in more detail.

Table 1: SMD methods at room-temperature with potential use in biomolecular applications

in fluids laser induce fluorescence fluid flow

micro-capillary electrophoresis

fluorescence correlation spectroscopy

levitated micro-droplets

laser induced Raman scattering single molecules adsorbed on colloidal metal

particles in solution

on surfaces far-field methods confocal microscopy

wide-field fluorescence microscopy with low

noise CCD cameras

near-field methods near-field scanning microscopy

There exists a large variety of other non-optical SMD methods applicable to biomolecule rec-

ognition and screening, like conventional STM, see e.g. (Cricenti, 1991; Hansma, 1991; Heckl,

1991; Li, 1991; Youngquist, 1991; Heckl, 1992; Cooper, 1994; Guckenberger, 1993; Frisbie,

1994; Thimonier, 1994; Kasaya, 1995; Venkataraman, 1995; Zuccheri, 1995; Hinterdorfer, 1996;

Tanaka, 1996; Walba, 1996); STM with surface adsorbed water (Guckenberger, 1994; Heim,

1996); scanning force microscopy, see e.g. (Schaper, 1993; Radmacher, 1994a-c; Gunning, 1995;

Muzzalupo, 1995); electrochemical or ion-channel SMD (Fan, 1995; Bard, 1996; Fan, 1996;

Kasianowicz, 1996); and mass spectroscopy (Fenn, 1989; Jacobson, 1991).  However, none of

these methods combines high molecular specificity, relative technical simplicity and non-
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invasiveness in such a unique way as optical SMD based on laser induced fluorescence (or possi-

bly Raman scattering).

2. Single Molecule Detection in Fluids

Before the age of optical detection of single molecules in solution, the first SMD in liquids

was done indirectly by monitoring the enzymatic activity of single protein molecules (Rotman,

1961; Rotman, 1973).  This method is exploited successfully even today, see e.g. (Xue, 1995;

Craig, 1996).  The method relies on the amplification of sample by repetitive chemical transfor-

mations.

The first successful optical detection of a single molecule (with multiple fluorescent labels) in

a liquid was reported by Hirschfeld (Hirschfeld, 1976).  By contrast, this method relies on repeti-

tive emission of photons by a single molecule.  In subsequent years, large progress was made in

the refinement of the methodology (Dovichi, 1983; Dovichi, 1984; Mathies, 1986; Nguyen,

1987a-b; Peck, 1989; Mathies, 1990; Rigler, 1990; Shera, 1990), making single molecule detec-

tion (SMD) of single fluorescence labels in fluids a nearly routine procedure today (Hahn, 1991;

Soper, 1991a; Rigler, 1992; Soper, 1992; Castro, 1993; Goodwin, 1993a; Soper, 1993; Wilker-

son, 1993; Lee, 1994; Mets, 1994; Nie, 1994; Tellinghuisen, 1994; Li, 1995; Funatsu, 1995;

Mertz, 1995; Soper 1995a; Berland, 1996; Chiu, 1996; Edman, 1996; Sauer, 1996; Wu, 1996;

Zander, 1996).  Comprehensive overviews of SMD in fluids can be found in (Barnes, 1995;

Goodwin, 1996a,c; Keller, 1996).

The standard fluid-flow SMD system is similar to common flow cytometry systems.  A sample

stream containing the analyte molecules is injected into a surrounding sheath flow, providing hy-

drodynamic focusing (Kachel, 1990) of the sample stream.  The sample stream is transported to

the detection region, where a tightly focused laser beam excites the molecules (picoliter detection

volume).  Fluorescence is monitored by highly efficient collection optics and a single photon sen-

sitive detector.  Single fluorophores can emit ca. 108 photons/sec; the main problem in SMD is

not so much the detection of the molecule’s fluorescence but the efficient rejection of the back-

ground signal.  The two main sources of background are fluorescence from contaminants, and

Rayleigh/Raman scattering of the exciting laser beam by the solvent.  The use of ultrasmall vol-
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umes and efficient optical filters is effective in reducing the background.  In addition to the small

volume and optical filters, other methods of background rejection have been applied.  One of the

most common methods is the application of pulsed laser excitation together with a time gate in

the detection channel that is used to reject prompt scatter, see e.g. (Harris, 1983; Shera, 1990).

In (Guenard, 1996), the use of a highly efficient narrow band metal vapor filter for blocking the

laser light and its applicability in SMD was investigated.  For reducing impurity fluorescence of

the sheath flow, in-line photobleaching before the detection region was found to be effective

(Affleck, 1996).  Another approach is the exploitation of two-photon excitation (Mertz, 1995;

Berland, 1996; Overway, 1996), which was found to be useful for the reduction of background.

Soper et al. are promoting the application of near-infrared dyes (Soper, 1995a-b), since there is a

strong decrease of light scattering intensity and impurity fluorescence at longer wavelengths.

Besides the already mentioned suppression of scattered laser light by time-gating, the detec-

tion of the fluorescence decay characteristics of single molecules provides a convenient tool for

distinguishing between different molecules.  Recently, the application of the time-resolved single-

photon counting (TCSPC), see (O'Connor, 1984), for lifetime measurements in SMD has received

considerable interest.  The first successful life-time measurements at the single molecule level

were reported in (Soper, 1992; Wilkerson, 1993; Tellinghuisen, 1994).  In (Enderlein, 1995b-c;

Erdmann, 1995), new TCSPC-electronics, allowing for the continuous detection of TCSPC

curves in millisecond intervals, was described and its application for SMD discussed.  In (Müller,

1996), a continuous TCSPC technique was successfully applied to distinguish between molecules

with different fluorescence decay times at the single molecule level.  In (Seidel, 1996), nucleobase

specific quenching of fluorescent dyes was studied, which could be important for the application

of TCSPC-SMD to DNA sequencing (see below).  Finally, (Sauer, 1996) reported the use of a

diode laser as a light source in SMD, which will be of great importance for future broad biological

and chemical applications of SMD, requiring simple, low cost, and compact operation.

A number of recent papers are dedicated to the theoretical study of SMD, mainly its statistics,

maximum possible efficiency, and the usefulness of TCSPC in SMD (Stevenson, 1992a-b; Whit-

ten, 1992; Köllner, 1992; Köllner, 1993; Tellinghuisen, 1993; Enderlein, 1995a), see also

(Köllner, 1996) for a comparison between theory and preliminary experiments.
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An already realized application of SMD in fluid flow is DNA fragment sizing (Ambrose, 1993;

Castro, 1993; Goodwin, 1993b; Johnson, 1993; Petty, 1995; Huang, 1996).  DNA sizing at the

single molecule level became especially feasible after the introduction of an new class of interca-

lating dyes (Rye, 1992; Rye, 1993), which show extremely low fluorescence in their unbound

state.  In (Huang, 1996), fluid flow SMD was applied for the first time to the sizing of human

DNA (bacterial artificial chromosome clones).

One of the most exciting potential applications of SMD in fluid flow is DNA sequencing (Jett,

1989; Davis, 1991; Soper, 1991b; Harding, 1992; Ambrose, 1993; Goodwin, 1993c; Eigen 1994;

Goodwin, 1995; Goodwin, 1996b).  Although much progress has been made in recent years to

achieve this goal, no group has yet reported the successful sequencing of a single DNA molecule.

Nonetheless, SMD promises to be a high speed method for reading long (> 10 kbase) DNA se-

quences.

In addition to SMD in fluid flow, a number of groups have reported SMD in gel electrophore-

sis experiments (Guo, 1992; Castro, 1995a-b; Haab, 1995; Soper 1995b; Chen, 1996).  Guo,

Castro and Haab applied the method to DNA sizing.  Chen studied the limitations of quantitative

analysis at the single molecule level.

A completely different method of SMD was applied by Ramsey and coworkers.  They used

levitated diluted microdroplets for SMD (Whitten, 1991; Kin, 1992; Ng, 1992; Barnes, 1993;

Barnes, 1996; Hell, 1996). An advantage of the method is the low background level due to the

small volume of illuminated liquid.  The main applications of their technique is ultrasensitive

chemical analysis, and investigations of quantum confinement effects.

Related to SMD in fluid flows is SMD in fluorescence correlation spectroscopy (FCS).  The

main setup of FCS is similar to SMD in fluid flows, but without hydrodynamic flow.  The mole-

cules move in and out of the detection region by diffusion.  For a comprehensive review of FCS

see e.g. (Thompson, 1991).  One advantage of FCS is the use of a much smaller laser focus (of

the order of 0.5 µm) and thus detection volume of femtoliters, reducing significantly the back-

ground signal.  This is in contrast to fluid flow SMD where the laser focus is set large enough to

detect all molecules in the sample stream.  The disadvantage of FCS is its intrinsically ‘non-

sequential’ character - one has to wait until a specific molecule diffuses into the detection region.
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Nonetheless, FCS was applied successfully to kinetic studies at a single molecule level, such as

probe-target binding and triplet state kinetics (Rigler, 1992; Rigler, 1993; Mets, 1994; Widengren,

1994; Edman, 1995; Kinjo, 1995; Rigler, 1995; Widengren, 1995; Edman, 1996), see also (Nie,

1994; Nie, 1995).

At the end of this section, we mention a new technique of optical SMD in fluids: the excita-

tion and detection of surface-enhanced Raman signals from single molecules adsorbed on colloidal

metal particles diffusing through a focused laser beam.  First experimental studies approaching

this technique were reported in (Kneipp, 1994; Kneipp, 1995a-d).  Because of the adsorption of

the molecules on metal particles, this method can be considered as a hybrid between SMD on

surfaces (which is discussed below) and SMD in fluids.

3. Single Molecule Detection on Surfaces

As mentioned in the Introduction, we will consider SMD at room temperature only.  The two

main methods for optically detecting single molecules on surfaces are far-field and near-field

microscopy.

3.1. Far-Field Microscopy

In far-field microscopy, two different approaches have been used for SMD: confocal micros-

copy and conventional wide-field microscopy.  In confocal microscopy, the sample is illuminated

by a tightly focused laser beam that is scanned over the surface for recording a complete image.

For recent reviews of confocal optical microscopy see (Inoue, 1995; Webb, 1996).  The first suc-

cessful detection of single Rhodamine-6G molecules by a confocal scanning system was reported

in (Dapprich, 1995). (Ambrose, 1996) and (Macklin, 1996) used this technique to measure time-

resolved fluorescence of single molecules.  The advantage of the technique is the relatively low

background due to the small illuminated area combined with spatial filtering, and the possibility to

obtain time-resolved fluorescence data.  This is not possible in conventional wide field microscopy

due to the current absence of commercially available single-photon sensitive cameras with sub-
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nanosecond time-resolution, but see (Ho, 1993), and (Köllner, 1994; Kalusche, 1995) for plans of

a construction of such a camera for SMD applications.

Many groups are using conventional wide field microscopy together with high-sensitivity low-

noise optical cameras.  The first report of disodium fluorescein detection on a silicon single-

crystal wafer with such a system was (Ishikawa, 1994).  In  (Schmidt, 1995; Schmidt, 1996a-b),

this technique was applied to the detection and tracking (on a millisecond time scale) of single

molecules at an air-liquid interface.  Fluorescence collection by a conventional wide field micro-

scope objective was also the basis of a 3-dimensional monitoring of single molecules in a gel layer

(Dickson, 1996), where fluorescence excitation was achieved by the evanescent field of total in-

ternal reflection.  Ueda reported the monitoring of single DNA molecule phase transitions (Ueda,

1996).

3.2. Near-field Microscopy

Another form of optical microscopy that has been used widely for SMD is near-field micros-

copy.  The idea is to illuminate the sample with a light source of sub-wavelength spatial extent,

thus circumventing the Abbe limit of spatial resolution in conventional microscopy.  This ap-

proach was first described in papers by Synge (Synge, 1928; Synge, 1932).  Today, there are sev-

eral different techniques for near-field microscopy.  The most frequently used in SMD is the

transmission near-field scanning optical microscope (NSOM or SNOM).  In NSOM, the sample is

illuminated using a tapered metal coated optical fiber.  A small aperture in the metal coating at the

apex provides a light source of approximately 100 nanometers across.  In transmission NSOM,

the excited fluorescence of the sample is monitored by a conventional microscope through the

optically transparent support of the sample.  By scanning the exciting fiber over the sample sur-

face, a spatially resolved image of the sample is generated.  For recent reviews of the NSOM

technique see (Harris, 1994; Kopelman, 1994; Paesler, 1996; Trautman, 1997).  With this

method, the detection of single molecules has been widely investigated (Betzig, 1993; Ambrose,

1994a-b; Betzig, 1994; Dunn, 1994; Trautman, 1994; Xie, 1994; Ambrose, 1995; Bian, 1995;

Dunn, 1995; Meixner, 1995; Bopp, 1996; Lu, 1997).  A recent review can be found in (Xie,

1996).  Again, as in far-field confocal microscopy, the point probe character of the NSOM allows
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for time-resolved detection of the molecules fluorescence (Ambrose, 1994b; Dunn, 1994; Traut-

man, 1996).  Ha et al. used this technique for monitoring the fluorescence polarization of single

molecules, and energy transfer between two different single molecules (Ha, 1996a-b).

At present, SMD with NSOM has been reported only for apertures ≥ 100 nm in diameter.

Quenching of fluorescence by the metal coating at smaller diameters and a larger relative back-

ground (Trautman, 1997) may prevent further size reduction for SMD.  A possible improvement

in future generation NSOMs could be the introduction of new optical probes, like the tetrahedral

tip of (Koglin, 1996a-b), using surface plasmons for generating a sub-wavelength light source, or

the exploitation of micro-photodiodes (Davis, 1995; Akamine, 1996).

Besides the NSOM technique, the so called apertured photon scanning tunneling microscope

(apertured PSTM) was used for detecting Rhodamine-6G molecule aggregates (Tsai, 1995).  In

this technique, the sample surface is illuminated by the evanescent field of a totally reflected light

wave, which is incident from beneath the transparent sample support.  The fluorescence is then

collected by a metal coated tapered fiber, which is equivalent to the excitation probe in an NSOM.

The low collection efficiency of this setup may prevent its application to real single fluorophore

detection.

There are two promising alternatives to the NSOM and PSTM technique, which are worthy of

mention in the context of SMD.  The first class of new techniques can be called near-field distur-

bance methods.  The idea is to use a small (nanometer-range) metallic probe disturbing a near-

field configuration (and thus generating extremely confined electromagnetic fields), and to meas-

ure the interaction of disturbance with the sample (Pedarnig, 1992; Specht, 1992; Pedarnig, 1993;

Bachelot, 1994; Inoyue, 1994; Zenhausern, 1994; Bachelot, 1995a-b; Zenhausern, 1995; Wick-

ramasinghe, 1996).  The advantage of this methods is the potential very high spatial resolution,

which can be better than a nanometer.  It remains to be seen whether it has the sensitivity to de-

tect single molecules.

The second class of techniques uses the emission of photons in an scanning tunneling micro-

scope (STM) (Gimzewski, 1989; Berndt, 1993; Berndt, 1994; Berndt, 1995).  One expects that

this emission will depend critically on the close environment of the STM metal probe, including
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single molecules.  Again, the achievable spatial resolution could be in the sub-nanometer range

comparable to standard STM.

4. Conclusion

In the present chapter, we presented an overview of techniques for SMD at room

temperature, potentially applicable to high-speed and high-throughput screening of large

molecular libraries.  The detection speed and throughput of fluid flow SMD, FCS, and wide-field

microscopy have the greatest potential for such applications.  Already, fluid flow SMD is

successfully applied to DNA fragment sizing.  A promising application of SMD is DNA

sequencing, which could lead to a method of rapid sequencing of long DNA fragments.  In

addition, imaging techniques with single molecule sensitivity have the possibility for interrogating

large libraries of molecules.
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