
Master’s Thesis

HappyFace Meta-Monitoring für ATLAS im
Worldwide LHC Computing Grid

HappyFace Meta-Monitoring for ATLAS in
the Worldwide LHC Computing Grid

prepared by

Christian Georg Wehrberger
from Bloomington, Indiana (USA)

at the II. Institute of Physics
Georg-August-University Göttingen

Thesis number: II.Physik-UniGö-MSc-2013/07

Thesis period: 1st January 2013 until 13th December 2013

Supervisor: Prof. Dr. Arnulf Quadt

First referee: Prof. Dr. Arnulf Quadt

Second referee: Dr. Kevin Kröninger

Abstract
Um die bei den vier größten Experimenten ALICE, ATLAS, CMS und LHCb des Large
Hadron Collider (LHC) am CERN-Forschungszentrum anfallenden Daten speichern und
analysieren zu können, wurde das Worldwide LHC Computing Grid (WLCG) eingerichtet.
Der stabile Betrieb von Grid-Rechenzentren im WLCG spielt eine zentrale Rolle für die
beteiligten Experimente als grundlegende Infrastruktur. Bedingt durch Komplexität und
Ausdehnung stellt ihr Betrieb eine große Herausforderung dar und erfordert Administra-
tion und durchgängige Überwachung aller Hardware, Software und Grid-Dienste, die für
den Betrieb notwendig sind. Dazu wird von einer Vielzahl von Überwachungssoftware
Gebrauch gemacht. Das modulare Meta-Überwachungswerkzeug HappyFace bietet einen
einzigen Zugangspunkt zu gebündelten und bewerteten Überwachungsdaten. Diese Mas-
terarbeit beschäftigt sich mit der Einrichtung von HappyFace Version 3 im ATLAS Tier-2-
Zentrum GoeGrid an der Georg-August-Universität Göttingen und der Entwicklung von
HappyFace-Modulen zur Überwachung von ATLAS WLCG Rechenzentren. Weiterhin
behandelt diese Abschlussarbeit die Definition und Implementation zweier Webdienste
auf Basis von WSDL/SOAP bzw. REST, welche die von einer HappyFace-Instanz gesam-
melten und gespeicherten Daten verfügbar machen.

Stichwörter: Physik, WLCG, ATLAS, Grid Computing, GoeGrid, HappyFace, Meta-
Monitoring, Webdienst, WSDL, RESTful

In order to store and analyse all data gathered by the four main experiments ALICE,
ATLAS, CMS, and LHCb at the Large Hadron Collider (LHC) at CERN, a distributed
computing infrastructure, the Worldwide LHC Computing Grid (WLCG), was estab-
lished. The stable operation of grid computing centres in the WLCG plays a key role
in all experiments as a fundamental infrastructure. Due to their complexity and extent,
their operation represents a major challenge and requires administration and continuous
monitoring off all hardware, software, and grid services run. For this purpose, a large
variety of monitoring tools is used. The modular meta-monitoring framework HappyFace
provides a single point of access to summarised and assessed monitoring data. This Mas-
ter’s Thesis deals with the setup of HappyFace version 3 in the ATLAS Tier-2 Centre
GoeGrid at the Georg-August-University Göttingen and the development of HappyFace
modules for ATLAS WLCG resource centres. In addition to that, this thesis defines and
describes key aspects in the implementation of a WSDL/SOAP-based and a RESTful web
service for access to all data acquired and stored by a HappyFace instance.

Keywords: Physics, WLCG, ATLAS, Grid Computing, GoeGrid, HappyFace, Meta-
Monitoring, Web Service, WSDL, RESTful

iii

Contents

1. Introduction 1

2. GoeGrid - A WLCG ATLAS Tier-2 Centre 3
2.1. Hardware Setup at GoeGrid . 4
2.2. Software Setup at GoeGrid . 4
2.3. Grid Services at GoeGrid . 5
2.4. Monitoring at GoeGrid . 6

3. The HappyFace Meta-Monitoring Project 9
3.1. Monitoring . 9

3.1.1. The Grid . 9
3.1.2. Terminology . 10
3.1.3. The Monitoring Process . 10
3.1.4. Monitoring Requirements . 11
3.1.5. The Grid Monitoring Architecture 11
3.1.6. Categories of Monitoring Systems 12

3.2. Basic Principles of Meta-Monitoring . 13
3.3. The HappyFace Meta-Monitoring Project 14

3.3.1. HappyFace Version 3 . 15
3.3.2. Module Development . 23

4. Web Services 29
4.1. WSDL/SOAP-based Web Services . 31

4.1.1. Simple Object Access Protocol . 31
4.1.2. Web Service Description Language 31
4.1.3. Stub Generation . 34
4.1.4. WSDL/SOAP-based Web Services in Python 34

4.2. RESTful Web Services . 35
4.3. Web Services for Access to the HappyFace Database 36

4.3.1. Database Server vs. Web Service 36

v

Contents

4.3.2. A WSDL/SOAP-based Web Service for Access to the HappyFace
Database . 36

4.3.3. A RESTful Web Service for Access to the HappyFace Database . . 39
4.3.4. Response Time Comparison . 39

5. HappyFace Module Development for GoeGrid 41
5.1. HammerCloud Functional Tests . 41
5.2. Compute Node Information . 42
5.3. Analysis GANGA Jobs . 44
5.4. Nagios Monitoring . 44
5.5. Ganglia Monitoring . 46
5.6. PanDA Monitoring . 48
5.7. APEL Accounting . 50
5.8. DDM Dashboard Monitoring . 51
5.9. DDM Deletion . 52
5.10. Service Availability Monitoring (SAM) . 54
5.11. Web Service . 55

6. Conclusion and Outlook 57
6.1. Conclusion . 57
6.2. Outlook . 58

A. Appendix 61
A.1. Installation of HappyFace 3 on CentOS 6.3 61
A.2. Example Configuration for the HappyFace 3 Core 61
A.3. Example Apache Configuration for HappyFace 3 63
A.4. A WSDL/SOAP-based Web Service for Access to the HappyFace Database

in Python . 63
A.4.1. WSDL Document . 63
A.4.2. Server Implementation . 65
A.4.3. Client Implementation . 67

A.5. dCache Modules . 68

vi

List of Figures

2.1. Design resource share of the GoeGrid resource centre. 3

3.1. The Grid Monitoring Architecture. 12
3.2. Categories of monitoring systems. 13
3.3. Schematic workflow of HappyFace version 3. 16
3.4. HappyFace version 3 instance for the monitoring of the Tier-2 centre Goe-

Grid.
http://happyface-goegrid.gwdg.de/ (accessed 2013-12-11) 18

3.5. HappyFace database schema.
http://ekphappyface.physik.uni-karlsruhe.de/~happyface/docs/module_
dev.html (accessed 2013-08-15) . 22

4.1. WSDL-based web service architecture as defined by the W3C. 29
4.2. SOAP message as payload of an HTTP transfer. 30
4.3. Components and linkages of WSDL 1.1. 31
4.4. Stub generation from WSDL. 34
4.5. Client and server using the stubs generated from WSDL. 34
4.6. Response time comparison of the WSDL/SOAP-based and the RESTful

web service for access to the HappyFace database. 40

5.1. Architecture of the HammerCloud tests service [1]. 42
5.2. HTML output of the HammerCloud functional tests module. 43
5.3. View of the compute node information module in production for GoeGrid. 45
5.4. View of the analysis GANGA jobs monitoring module HTML output. . . . 46
5.5. View of the Nagios monitoring module HTML output. 47
5.6. Web output of the Ganglia monitoring module. 48
5.7. HTML output of the PanDA monitoring module. 49
5.8. Web output of the APEL accounting module. 50
5.9. ATLAS DDM dashboard web interface.

http://dashb-atlas-data.cern.ch/ddm2 (accessed 2013-08-01) 52

vii

http://happyface-goegrid.gwdg.de/
http://ekphappyface.physik.uni-karlsruhe.de/~happyface/docs/module_dev.html
http://ekphappyface.physik.uni-karlsruhe.de/~happyface/docs/module_dev.html
http://dashb-atlas-data.cern.ch/ddm2

List of Figures

5.10. View of the DDM dashboard module. 53
5.11. View of the DDM deletion module. 53
5.12. Reliability and availability of GoeGrid from 2013-06-04 until 2013-07-04

http://grid-monitoring.cern.ch/mywlcg/ (accessed 2013-07-05) 54
5.13. HTML output of the SAM tests module. 55
5.14. Web output of the web service module. 56

A.1. Web output of the dCache pool information module. 68
A.2. Web output of the dCache dataset restore monitoring module. 69

viii

http://grid-monitoring.cern.ch/mywlcg/

List of Tables

2.1. Current GoeGrid CPU computing resources. 4

3.1. HappyFace module rating schema. 21

4.1. Most notable HTTP request methods [2]. 35

ix

1. Introduction

The Worldwide LHC Computing Grid (WLCG) [3] provides a computing infrastructure
for the four main experiments ALICE [4], ATLAS [5], CMS [6], and LHCb [7] of the Large
Hadron Collider (LHC) [8], a proton-proton collider with a design centre-of-mass energy
of 14 TeV. As part of the WLCG, more than 150 computing centres are distributed in
35 countries. For the preservation and processing of huge amounts of experimental data,
computing resources and mass-storage are provided by each of these sites. The WLCG is
an open system for the more than 8, 000 physicists involved in the LHC collaborations.
Regardless of their physical location, all collaboration members have access to the dis-
tributed computing power.

The ATLAS Distributed Computing (ADC) infrastructure is part of the WLCG, organ-
ised in a so-called Tier [9] structure. Several central key services guarantee its functional-
ity, most important the ATLAS Production and Distributed Analysis System (PanDA) [10]
for job submission and distribution to the ADC sites. Alongside the production system,
the Distributed Data Management (DDM) [11] system is used. Both, the WLCG and the
ADC, have proven to be stable and robust systems. Since its active use for experimental
data taken at the LHC from 2008, these infrastructures have never experienced a general
failure or downtime. In the Tier-0 centre at CERN, the PanDA system and the central
DDM service are hosted. The Tier-0 centre is the head of the WLCG Tier structure and
hence stores raw experimental data, performs data calibration, and first data processing
steps. From the Tier-0 centre, data are further distributed to the subordinated Tier-1
sites. These computing centres form the second layer of the WLCG infrastructure. In
ADC Tier-1 centres, raw experimental and simulated data are stored. Furthermore, data
are reprocessed and bulk analysis jobs are executed. A share of the data stored in Tier-1
centres is passed to Tier-2 centres. These are dedicated to perform a number of central
tasks, such as Monte-Carlo simulation, analysis, and calibration of data. Apart from
their design tasks, Tier-2 centres also process on-demand user simulation and analysis
jobs. The lowest, though unofficial layer of the Tier infrastructure is constituted by the
Tier-3 centres. For these computing centres, there is no Memorandum of Understanding,

1

1. Introduction

as for Tier-1 and Tier-2 sites, which specifies its contribution to the WLCG and its du-
ties formally. Most commonly, user analysis tasks are performed and user data are stored.

High throughput and the stable performance of ADC in terms of the WLCG are the
result of efficient management, monitoring of the entire infrastructure, and proper action
taking on each level of the Tier structure. In this context, the concepts of monitoring
and meta-monitoring, as well as the meta-monitoring framework HappyFace [12] will be
described in the course of the next chapter, followed by a description of the WLCG AT-
LAS Tier-2 centre GoeGrid [13] at the Georg-August-University Göttingen. The use of the
meta-monitoring tool HappyFace at GoeGrid and the development of generic HappyFace
modules for ADC grid sites are the main foci of this thesis and therefore are covered in a
separate chapter.

The world wide web is designed for the interaction of applications with humans. For
the interaction of applications with each other via the internet, web services are used.
Two different concepts are widely used: lightweight, intuitively usable RESTful web ser-
vices and highly standardised WSDL/SOAP-based web services, which are a recognised
standard in the WLCG community. These concepts were made use of for the development
of web services for access to the data stored by HappyFace in order to make it available
for further analysis.

2

2. GoeGrid - A WLCG ATLAS
Tier-2 Centre

The departments and institutes of the Georg-August-University Göttingen represent var-
ious scientific communities. The demand from these communities on a grid computing
infrastructure lead to the joint project GoeGrid, a computing facility sharing its resources
amongst its contributors. GoeGrid is hosted at the Gesellschaft für Wissenschaftliche
Datenverarbeitung mbH Göttingen (GWDG) [14] computing centre, which supplies Goe-
Grid with electrical power, a central cooling infrastructure, and a high-bandwidth network
connection. Currently, the main consumers of GoeGrid computing resources are the high
energy physics community [15] and the department of physics1. Besides providing com-
puting resources to all above mentioned communities, GoeGrid is a WLCG Tier-2 centre
and part of the ADC infrastructure. In this chapter, detailed information on the GoeGrid
hardware, software setup, and the monitoring tools used and developed at GoeGrid will
be given. The current apportionment of GoeGrid computing resources is shown in figure
2.1.

1Institute of Theoretical Physics, Georg-August-University Göttingen

Figure 2.1.: Design resource share of the GoeGrid resource centre.

3

2. GoeGrid - A WLCG ATLAS Tier-2 Centre

CPU Clock [GHz] #CPUs #Cores
2 Intel Xeon X5355 2.66 105 840
2× 2 Intel Xeon E5440 2.83 95 760
2× 2 Intel Xeon E5530 2.4 16 128
2× 2 Intel Xeon X5650 2.66 56 672
2× 2 Intel Xeon E5-2660 2.2 16 256
2× 2 Intel Xeon E5-2665 2.4 16 256

Table 2.1.: Current GoeGrid CPU computing resources.

2.1. Hardware Setup at GoeGrid

A typical WLCG resource centre provides resources for computing and data storage.
The GoeGrid computing cluster hosts 2912 CPU-cores for all communities and about
1.1 PBytes of storage space for the ATLAS community only. The CPU-cores, each granted
a share of 3 − 4 GBytes of memory, are distributed among 305 worker nodes. Table 2.1
displays the CPU type and quantity of CPUs used for GoeGrid. 15 heterogeneous servers
manage the storage space, to each of which six RAID 6 hard drive pools are attached.

The compute nodes and the storage servers are interconnected via a 10 Gb/s network.
Only the storage servers have a fully qualified domain name and an internet connection.
Through a network bonding device, two of the network cards per server offer a failover
against the failure of one of them.

2.2. Software Setup at GoeGrid

For the operation of a WLCG ATLAS Tier-2 centre, a variety of software and services are
necessary. In this section, the GoeGrid software setup will be described, with an emphasis
on the part serving as a WLCG ATLAS Tier-2 centre.

GoeGrid is running a Red Hat Enterprise Linux [16] distribution as an operating system
for all its hardware: all hosts run the 64-bit Scientific Linux CERN (SLC) [17] version
6.4. For easy maintenance of routine tasks, as well as the maintenance and expansion of
the GoeGrid infrastructure, there is a number of services and software in use. In terms of
routine task management, like certificate distribution, firewall status checks, or spreading
changes in configuration files, CFEngine2 is used. It is installed on all GoeGrid hosts and

2An open-source configuration management tool [18].

4

2.3. Grid Services at GoeGrid

guarantees the robustness of the system. In conjunction with CFEngine, Rocks3 is used
for the registration of new hosts in the DNS4 and DHCP5 servers. Along with hardware
servers, the virtualisation technique KVM 6 is actively used at GoeGrid. Currently, four
hardware servers are combined to a single virtualisation cluster, which hosts 11 virtual
servers.

All above mentioned systems heavily use NFS7 and Autofs8. In combination with
NFS, Autofs is used to distribute certificates or configuration files by CFEngine. For
the virtualisation cluster, NFS provides a central repository for all virtual machine disk
images.

2.3. Grid Services at GoeGrid

GoeGrid is part of the WLCG structure as an ATLAS Tier-2 and Tier-3 computing cen-
tre. Thus, along with the above mentioned systems, it is running all required WLCG and
ADC services.

According to the WLCG central services, the GoeGrid key services can be identified.
In terms of data management, a Tier-2 centre provides interfaces for file transfers via
different services, such as dCap9, GridFTP10, GSIFTP11, GSIdCap12, and SRM 13. For
the data management at GoeGrid, the system dCache [27] is used, also widely used in the
German ADC cloud. The system dCache provides all protocols required by the central
Distributed Data Management (DDM) [11] system and the advantage to unify heteroge-
neous storage units to one centrally accessible storage system. As in many ADC Tier-2
centres, dCache is configured to split the GoeGrid storage space in several space tokens:
PRODDISK, SCRATCHDISK, LOCALGROUPDISK, and DATADISK, which are under
DDM management.

3An open-source cluster distribution system [19].
4Domain Name System
5Dynamic Host Configuration Protocol
6Kernel-based Virtual Machine [20]
7Network File System
8An automatic file system mounter [21].
9dCache Access Protocol [22]

10Grid File Transfer Protocol [23]
11Grid Security Infrastructure [24]
12Grid Security Infrastructure dCache Access Protocol [25]
13Storage Resource Manager protocol [26]

5

2. GoeGrid - A WLCG ATLAS Tier-2 Centre

In order to accept and execute analysis or Monte-Carlo simulation (production) jobs, it
is important to provide a front-end for the communication with the grid workload man-
agement system. In case of ADC, in general PanDA is used, possibly alongside other
systems. At GoeGrid, two Computing Elements14 constitute a grid jobs front-end to the
local batch system. These servers are also responsible for local user mapping and the
publishing of accounting information to the local APEL15 server. As a batch system,
Terascale Open-Source Resource and QUEue Manager (TORQUE) [31] is used. For more
advanced job scheduling, it is interfaced with the Maui [32] cluster scheduler. As the
GoeGrid computing centre resources are shared by several communities, a fair way for
the utilisation of these resources needed to be found. The Maui fairshare algorithm is
configured in a way that the time-integrated usage of GoeGrid resources should comply
with the level of investment and financial aid that the different user groups provide.

In addition to the services mentioned above, GoeGrid also hosts the BDII 16 and the
APEL server, designed for site configuration and the publishing of performance informa-
tion.

2.4. Monitoring at GoeGrid

Due to the extents of its infrastructure and the large number of systems and services, the
stable and efficient operation of GoeGrid is a major challenge. In order to address this
challenge, it is highly important to detect the failure of hardware or critical services in
time and identify its root cause. These are tasks of monitoring systems.

On the one hand, different monitoring tools are in use for the detection of hardware
or local service failures, e. g. Nagios [34], or the detection of a system degradation, e. g.
Ganglia [35]. On the other hand, the ADC services with respect to GoeGrid require
monitoring via their GUI 17. Besides that, the meta-monitoring software HappyFace is in
active use at GoeGrid. Providing a single point of access to various monitoring sources
via specific modules, it makes all critical information easily accessible. The module and
category rating schema allow for the detection of failures at first glance and the correlation
of problems. HappyFace monitors the GoeGrid hardware and site-related grid services,

14EMI (European Middleware Initiative) [28] CREAMCE (Computing Resource Execution And Manage-
ment Computing Element) [29]

15Accounting Processor for Event Logs [30]
16Berkeley Database Information Index [33]
17Graphical User Interface

6

2.4. Monitoring at GoeGrid

which makes it a key component in cluster management and maintenance.

7

3. The HappyFace Meta-Monitoring
Project

3.1. Monitoring

The act of performing computer surveillance of computing resources is called monitor-
ing. The analysis of monitoring data is responsible for the detection, comprehension,
and rectification of failures related to computing resources. This includes computing
hardware, computing infrastructures, software, and services. By monitoring, failures can
be detected before they become problems. Consequently, their root cause is identified
and rectified. Besides that, monitoring also serves for measuring the performance of
computing resources, using adequate metrics. For the description of monitoring (in grid
environments), the Global Grid Forum (GGF)1 defines a number of terms introduced in
the following.

3.1.1. The Grid

The concept of grid computing was initially designed by Ian Foster and Carl Kesselman
in 1998 [37]. They proposed a new computing infrastructure, designed for the coordina-
tion of distributed resources with regard to applications in astronomy, biology, medicine,
engineering, and high-energy physics. In order to distinguish the grid from other, related
terms, it is defined as follows [37]:

• Coordination of distributed resources: A grid integrates and coordinates distributed
resources. In that respect, it takes care of security, policies, memberships, and other
related issues.

• Use of standard, open, general-purpose protocols and interfaces: A grid is established
by the use of various protocols and interfaces. They address e. g. authentication,

1The GGF was merged with the Enterprise Grid Alliance in 2006 and is now the Open Grid Forum
(OGF) [36].

9

3. The HappyFace Meta-Monitoring Project

authorisation, resource discovery, and access.

• Delivery of non-trivial qualities of service: In coordination, the grid resources offer
various qualities of service. In that respect, the combined resources of a grid are
designed to be more useful than the sum of its individual parts.

A grid makes use of middleware in order to accomplish this. Middleware is a software,
which enables the application-neutral communication and data management. Therefore,
it hides the grid complexity by constituting a high-level service provider to arrange the
communication between all grid software and hardware components.

3.1.2. Terminology

The accurate description of monitoring in grid environments requires the definition of
terms and concepts. An entity is defined as a unique component integrated into the com-
puting infrastructure, such as processors, computer memory, storage mediums, network
links, applications, and processes. Events define a set of timestamped data with a specific
structure and are associated with entities. By sensors, events are generated in terms of
the monitoring of an entity. There are active sensors, conducting measurements them-
selves, and passive sensors, mostly providing information from operating systems. With
each event, also an event type is associated, which uniquely maps to an event structure;
an event schema defines the structure and semantics of events.

3.1.3. The Monitoring Process

In distributed systems, such as grids, the process of monitoring consists of four phases [38]:

1. Generation of events: Acquired from entities, monitoring data are encoded ac-
cording to predefined schemata.

2. Processing of generated events: Data are filtered and assessed using appropriate
metrics. This step can take place at any stage of the monitoring process.

3. Distribution: Processed data are provided to interested parties.

4. Presentation/consumption: Acquired data are presented, e. g. via a GUI or in
a machine-readable format.

10

3.1. Monitoring

3.1.4. Monitoring Requirements

A number of general requirements is important for every monitoring system [38]. However,
their concrete realisation strongly depends on the individual use case.

• Scalability: A monitoring system should be configurable and adjustable to any
growth of a computing infrastructure. In that respect, the response time of a scalable
monitoring system should not increase significantly and reduce its performance, even
though the expansion of an infrastructure induces additional load on the monitoring
system.

• Extensibility: A monitoring system should be adjustable to new event schemata.
If changes are applied to an infrastructure or parts of it, it should be possible to
change the event preprocessing and presentation formats in the monitoring system
configuration.

• Data-delivery models: A monitoring system provides a constant stream of data,
that was aggregated from entities via push or pull models, which should both be
supported. In push models, the data transfer request is initiated by the publisher
of the data, in pull models, the receiver actively queries the data publisher.

• Portability: In particular, a monitoring system’s sensors should be able to aggre-
gate events independently from the environment or platform used.

• Security: Security services, such as access control, unilateral or mutual authentica-
tion, are scenarios of event collection, which need to be supported by a monitoring
system. In that context, time synchronisation is highly important (consistency of
data, expiration).

3.1.5. The Grid Monitoring Architecture

This section will provide an overview of the Grid Monitoring Architecture (GMA) [39],
as proposed by the GGF. Its aim is to describe monitoring architectures in grid envi-
ronments on the basis of common definitions. The GMA defines the roles in the process
of monitoring and describes their interactions. There are five roles: producer, consumer,
registry, republisher, and schema repository. The according actions between instances of
producer and consumer roles are publish/subscribe, query/response, and notify.

A producer constitutes a process that implements at least one Application Programming
Interface (API) in order to provide events. A consumer receives these events, providing

11

3. The HappyFace Meta-Monitoring Project

Figure 3.1.: The Grid Monitoring Architecture.

a consumer API. Producers can register event types at the registry, which consumers
query for obtaining information on available event types. The registry furthermore pro-
vides details regarding the communication, such as addresses, protocols, and security
requirements. Republishers are defined as components that feature producer and con-
sumer interfaces. They may filter, aggregate, summarise, broadcast, and cache events. A
schema repository is designed to hold event schemata for the collection of defined event
types. In figure 3.1, the GMA components and their connections are shown.

The registry enables producers and consumers to establish a direct communication.
Both producers and consumers provide their event types and event types interests, re-
spectively, to the registry. In the same vein, all communication details are stored at the
registry. Once producers and consumers have discovered each other, they communicate
directly, using the information on addresses, protocols, and security requirements they
have previously provided to the registry. The action publish/subscribe consists of three
phases, involving one producer and one consumer. Both involved parties can initiate this
action. Firstly, the consumer subscribes for a specific event type. Subsequently, the pro-
ducer generates a stream of events. Lastly, the subscription is terminated, either by the
consumer or the producer. While the action publish/subscribe is an action with indefinite
duration, the action query/response is a singular procedure initiated by the consumer. It
queries the producer of events and receives a response, which contains events for specified
event types. The action notify is a one-off interaction, which consists only of a single
notification sent from a producer to a consumer, or vice versa [38].

3.1.6. Categories of Monitoring Systems

Previously, the phases of monitoring and the components of monitoring systems were
defined and described. These GMA components can be mapped to the four phases of
monitoring: generation of events, processing, distribution, and presentation/consump-
tion. Sensors generate events and may pre-process the acquired data already. A producer

12

3.2. Basic Principles of Meta-Monitoring

Figure 3.2.: Categories of monitoring systems: self-contained systems (level 0),
producer-only systems (level 1), producer and republisher systems (level
2), and hierarchy of republishers system (level 3). The stack of republisher
symbols represents a hierarchy of republishers.

may implement its own sensors and therefore generate events and process them. Nev-
ertheless, its main purpose is the distribution of monitoring data. Republishers process
events, e. g. in terms of filtering and summary, and distribute them further. A chain
of at least two republishers constitutes a hierarchy of republishers. Besides a possible
processing, a consumer performs the presentation/consumption of events.

Based on this mapping, is it possible to categorise monitoring systems. According to
[38], there are four levels of monitoring systems, as shown in figure 3.2. The lowest level
(level 0) of monitoring systems consists of a sensor and a consumer only. Events are passed
from sensor to consumer either on-line, i. e. at the same time the events are generated,
or off-line, i. e. afterwards. On this level, typically no generic API is involved and the
information is presented via a web interface. Monitoring systems on this level are so-
called self-contained systems. Level 1 monitoring systems, producer-only systems, contain
a producer between a sensor and a consumer. In general, this consumer provides an API.
In producer and republisher systems (level 2), the producer publishes its information to a
republisher, which may undertake certain processing steps. Level 3 monitoring systems
(hierarchy of republishers systems) involve an arbitrary number of republishers arranged
hierarchically.

3.2. Basic Principles of Meta-Monitoring

For the monitoring of grid architectures, various monitoring systems of different levels of
the GMA are available. They allow the monitoring of local hardware, local software and
services, and the local infrastructure of a grid centre. In the WLCG, all involved grid

13

3. The HappyFace Meta-Monitoring Project

centres are part of a high level Tier structure. On all levels of this structure, services
provide information about single grid centres, such as GoeGrid. This variety of monitor-
ing sources generates a large number of data streams, which need to be analysed. These
streams are neither centrally accessible, nor are they accessible via similar producer APIs.
Therefore, it is one of the main goals of meta-monitoring to aggregate monitoring data,
and thereby reduce the amount of time spent by administrators for the checking of mon-
itoring sources. The previously stated general requirements for monitoring systems are
extended by certain properties that a meta-monitoring system preferably fulfils [12]:

• Single point of access: All relevant monitoring information is centrally accessible,
e. g. via a single web interface.

• Up-to-date monitoring information: Monitoring information is preferably pro-
vided in real-time.

• History functionality: A history functionality gives users the ability to review
monitoring results from the past and correlate it with recent information.

• Fast accessibility: Quick access to the monitoring information is required without
much overhead.

• Comfortable usage: Users should be provided easy access to the monitoring in-
formation.

• Simple warning system: A warning system should notify the responsible persons
and display status information simply and unmistakeably.

• Modular structure: A modular structure allows to include any type of monitoring
data from various levels of the computing infrastructure.

3.3. The HappyFace Meta-Monitoring Project

HappyFace is a meta-monitoring tool that satisfies the requirements precedingly stated for
monitoring tools in general and meta-monitoring tools specifically. The HappyFace project
is a joint project of Karlsruhe Institute of Technology (KIT) and Georg-August-University
Göttingen. In terms of monitoring categories as defined by the GMA, HappyFace is a
producer and republisher system (level 2), as its description will prove in the following.

The most recent version of HappyFace is HappyFace version 3, which was released in
early 2013 to replace its predecessor HappyFace version 2. The current core development

14

3.3. The HappyFace Meta-Monitoring Project

is a joint task of KIT and Georg-August-University Göttingen. The development of new
modules takes places at KIT, Georg-August-University Göttingen, and the University of
Aachen.

HappyFace is a meta-monitoring tool designed for the aggregation, processing, and
storing of monitoring data from arbitrary data sources. Thus, HappyFace is structured
in separate modules, which are embedded in a core framework. Each module is respon-
sible for the aggregation and processing of data from specific monitoring sources. The
HappyFace web page publishes the module output and provides a single point of access
to the monitoring information. The HappyFace core framework, the individual modules,
and the HappyFace web page are individually customisable to site-specific requirements.
In the following sections, the HappyFace (version 3) workflow, web page, configuration,
and, in more detail, the HappyFace module development will be described.

3.3.1. HappyFace Version 3

Different from its predecessor HappyFace version 2, the HappyFace version 3 framework is
written in Python2 only. The use of Python with embedded PHP3 in HappyFace version 2
constituted several disadvantages, as the inconvenient and error-prone development of the
core framework and its modules. Besides that, HappyFace version 2 exhibited structural
shortcomings. Due to a directory structure that mixed up code and configuration direc-
tories, the versioning management turned out to be a difficult task. Furthermore, several
functionalities, e. g. certificate authorisation, were not fully integrated in the HappyFace
core, since they were implemented later. The new version of HappyFace, HappyFace ver-
sion 3, addresses these issues and is written consistently in Python. It clearly separates
configuration and source code files. In addition to that, it provides an automatically
generated documentation.

The HappyFace Workflow

The HappyFace workflow describes the chronological sequence of actions in the Happy-
Face framework. In succession, two Python scripts need to be executed. The first script
acquire.py reads all HappyFace configuration files and executes the individual modules,
which aggregate, process, and store monitoring data. Subsequently, the script render.py
accesses the stored data and calls a specific function of each module in order to generate an

2An interactive, object-oriented, and extensible programming language [40].
3Hypertext Preprocessor (a recursive acronym abbreviated PHP) is a free server scripting language for
generating dynamic and interactive web pages.

15

3. The HappyFace Meta-Monitoring Project

render.py

[category1]
name =
 cat1
modules =
 mod1, mod2

acquire.py

mod2.py

mod1.py

[happyface]
categories =
 category1
[database]
url = sqlite:///
 HappyFace.db

HappyFace.db

mod2.html

mod1.html

Figure 3.3.: Schematic workflow of HappyFace version 3.

output for the HappyFace web page. render.py also takes care of rendering the web page
and makes it accessible via a web server. The HappyFace workflow is depicted in figure 3.3.

Typically, the Python script acquire.py is periodically executed every 15 minutes, e. g.
via a cron job4 on Linux/Unix operating systems. When a higher timeliness of data is re-
quired, a shorter time interval needs to be chosen. Initially, all configuration files are read
in. Locally defined configuration files are given preference to default configuration files.
Then, each module Python source code is executed. In separate sections of the module
source code, the module is initialised, provided its configuration parameters, downloads
are prepared, monitoring data are extracted, and the time-stamped data are stored to the
HappyFace database5 HappyFace.db.

The render.py Python script is responsible for the generation of a human-readable
output and its presentation. Each module implements a function that accesses the previ-
ously stored data in the HappyFace database. The render script executes this function of
each module and provides the extracted data to the module HTML6 template file. The
generated contents are then inserted into the HappyFace web page skeleton. Further-
more, render.py starts a local cherrypy7 web server. This can be integrated into other
web servers, such as the commonly used Apache8 web server.

4A time-based job scheduler in Linux/Unix operating systems.
5HappyFace uses SQLite [41] by default.
6HypertText Markup Language [42], the most commonly used markup language for creating web pages.
7A Python-based, object-oriented web framework [43].
8An open-source HTTP server [44].

16

3.3. The HappyFace Meta-Monitoring Project

The HappyFace Web Page

The HappyFace web page consists of a title bar and history navigation, a category naviga-
tion bar, a fast navigation bar, and the content of the individual modules. Categories are
loaded on separate pages, and module details are loaded only on demand with AJAX 9.
This allows for the fast accessibility of the HappyFace web page, especially on mobile
devices.

The history navigation bar is designed for accessing monitoring information that was
stored during previous data acquisition phases in the HappyFace database. The proposed
interval of 15 minutes for running acquire.py is also the default value for the time
interval in the history navigation. By the use of certificate authorisation, the access
to entire categories can be secured. In the category configuration file, the access to a
category can be set to open, permod, or restricted. The default value open allows full
access to any user. If permod is specified, the category can be accessed in general, but the
access to particular modules may be restricted. In case the option restricted is chosen,
only authorised users are granted access to the entire category. Mainly, the categories
contain the individual HTML output of modules. For fast access to specific modules and
an overview of the status of all modules, a fast navigation bar is integrated into each
category. In addition to that, all modules provide further information, e. g. on their float
status value and data sources.

HappyFace Prerequisites

Primarily, HappyFace is designed for the use on Linux/Unix operating systems. It was
tested for the deployment on the Linux operating systems Ubuntu 12.10 and CentOS 6.3.
HappyFace is developed in Python 2.6. Besides the correct Python version, it also requires
the cherrypy 3 Python web framework. For HMTL templates, the Python template library
mako [46] is necessary. In addition to that, HappyFace depends on the Python SQL10

toolkit sqlalchemy11 and a database library, such as SQLite12 or PostgreSQL13.

9Asynchronous JavaScript and XML [45]
10Structured Query Language
11A Python SQL toolkit and object relational mapper [47].
12A software library implementing an SQL database.
13An object-relational database management system [48].

17

3. The HappyFace Meta-Monitoring Project

Figure 3.4.: HappyFace version 3 instance for the monitoring of the Tier-2 centre Goe-
Grid: title bar and history navigation (1), category navigation bar (2), fast
navigation bar (3), and individual module content (4).

HappyFace Installation

In the WLCG Tier-2 centre GoeGrid, HappyFace version 3 is installed on CentOS 6.3
(64-bit), an operating system widely used in high energy physics communities. For the
fulfilment of the aforementioned prerequisites, the following software packages need to be
installed: python-cherrypy3, python-sqlalchemy, python-migrate, and python-mako.
When the use of the HappyFace plot generator is considered, the packages python-numpy
and python-matplotlib require installation. The possible integration into the Apache
web server makes use of the web server module mod-wsgi14. Finally, the HappyFace source
code can be downloaded from a subversion15 repository hosted by KIT or an RPM 16 pack-
age provided by the Georg-August-University Göttingen can be used. Similarly, a set of
modules can be installed. The easy installation of preconfigured modules for the ATLAS
community is facilitated by an according RPM package.

14A Python Web Server Gateway Interface (WSGI) adapter module for Apache [49].
15An open source version control and revision system [50].
16Red Hat Package Manager [51]

18

3.3. The HappyFace Meta-Monitoring Project

Further installation details are provided in the appendix, see appendix A.1.

HappyFace Configuration

The HappyFace configuration takes place in separate configuration directories. First of
all, the defaultconfig directory is accessed by the HappyFace framework, evaluating all
files with a .cfg suffix in alphabetical order. Whenever configuration parameters appear
twice in different files, the alphabetically latter configuration file is given preference.

When HappyFace is newly set up, there is a default core configuration file defaultcon-
fig/happyface.cfg, containing all possible configuration sections and options that Hap-
pyFace can handle. The section paths contains configuration parameters on paths for
various HappyFace directories, which can be customised. Most important is the configu-
ration key happyface_url, which has to be changed from the default value / to the path,
through which HappyFace is available on the Apache web server, if any changes were
applied to the default Apache configuration. In the happyface section of the core con-
figuration file, the order of displayed categories and the time interval for the safe-keeping
of temporary files can be altered; also the automatic reload interval of the HappyFace
web site can be changed. The access to certain kind of critical infrastructure information
is preferably restricted to authorised users only. That is why in the section auth, a file
containing authorised distinguished names and an authentication script can be specified.
The parameters in the section template allow for the customisation of the displayed logo,
the documentation, and the title of the HappyFace web page. In additional sections,
the HappyFace database, the download service, the plot generator, and the cherrypy web
server are configured. An example configuration for the HappyFace core can be found in
the appendix of this document, see appendix A.2.

The default configuration for the HappyFace core is separated from site-specific configu-
ration files. While the default configuration takes place in the directory defaultconfig/,
there is a config/ directory, which is designed to contain all site-specific configuration
files. In both directories, all files with a .cfg suffix are evaluated in alphabetical order,
first those from the default configuration directory. Configuration parameters specified
in files read in later will overwrite previously set values. The default configuration di-
rectory is under subversion version control. When updating HappyFace, changes in this
configuration will be overwritten. Since configuration files may also contain sensitive in-
formation, e. g. user names and password, the config/ directory is excluded from version
control. Thus, it is not uploaded when a certain grid site wants to share its developments

19

3. The HappyFace Meta-Monitoring Project

via subversion.

The HappyFace categories are configured independently from the HappyFace core. By
default, this takes place in config/categories-enabled/. Each category possesses a
dedicated file. When setting the category order in the core configuration, the according
category identifier has to match the section name in the category configuration file. Be-
sides the category name and description shown on the HappyFace web page, the category
rating and a rating algorithm are defined. Lastly, the modules to appear in this section
are listed in the order of appearance.

Configuration files for individual module instances are stored in the config/modules-
enabled/ directory. The same module can have several instances with different config-
uration files, allowing for the usability of a module for different monitoring sources or
scenarios. The name of the section in a module instance configuration needs to be the
same as in the category configuration file. There is a number of mandatory configuration
keys, such as the name of the module Python source code file, as well as a display name
and description. Additionally, instructions for the use of the module, a rating, and a
rating weight can be specified. Other configuration keys are determined by the module
Python source code: All configuration keys that are accessed need to be specified in the
configuration file, or an exception is risen and the module code execution is cancelled.

Besides the HappyFace core, module, and category configuration, the operating system
environment and the Apache web server require configuration, in order to make the Hap-
pyFace web page available. For security reasons, the user executing HappyFace should
not have super user privileges. That is why a dedicated HappyFace user is created. In
its home/ directory, the local instance of HappyFace is installed. An option of mod-
wsgi specifies a daemon process group, which can be executed by a specified user, in the
Apache configuration. In the VirtualHost17 section of the Apache configuration, the Hap-
pyFace script render.py is assigned to the daemon process group. An exemplary Apache
configuration is given in the appendix of this document, see appendix A.3.

The HappyFace Rating Schema

In order to provide a simple warning system, HappyFace implements a rating func-
tionality, both for modules and entire categories. During the processing of data, each
module i assesses the gathered information and assigns a value contained in the set
17An Apache configuration directive for running more than one web site on a single server.

20

3.3. The HappyFace Meta-Monitoring Project

Rating Rating value
ok si ∈ [0.66, 1]
warning si ∈ [0.33, 0.66)
critical si ∈ [0, 0.33)
module execution failure si = −1
data retrieval failure si = −2

Table 3.1.: HappyFace module rating schema.

si ∈ {−2,−1, [0, 1]}. The status value si = −2 refers to a failure during data retrieval,
si = −1 to an error that arose in the course of executing a module Python code. However,
these different statuses do not visually differ on the HappyFace web page. Whenever the
module functions properly, a float value from the interval [0, 1] is assigned. If the monitor-
ing data require no further investigation, a value from the sub-interval [0.66, 1] is allotted
(status happy/ok). In case of a failure indication, a value from the interval [0.33, 0.66)
is chosen (status warning). Provided that retrieved monitoring information suggests fail-
ures, a value from the interval [0, 0.33) is assigned (status unhappy/critical).

In case the module is defined to be unrated in its configuration, the assigned status
value is not considered. The overall category rating sc determines a category status from
the status of the modules it contains. In the according category configuration file, a
rating algorithm is defined. A category status may be calculated by one of the following
algorithms: unrated, worst, or average. In case a category is unrated, the modules statuses
are not taken into account. The algorithm worst calculates the category status as the
minimum over all module statuses.

sc = min
i

(si)

Thus, it reflects the status of the module with the lowest status value, i. e. the worst
rating. In case the algorithm average is used, the category status is set to the average
value of all modules it contains.

sc =
∑

i

(wi · si)/
∑

i

1

In that calculation, a weight wi defined in the module configuration file is considered for
each module i.

According to the rating assigned, a pictogram reflects the current status. There are

21

3. The HappyFace Meta-Monitoring Project

Figure 3.5.: HappyFace database schema.

several pictogram sets that can be chosen from, inter alia a set of smileys with different
emotional facial expressions, from which HappyFace derives its name.

The HappyFace Database

The HappyFace database HappyFace.db contains two general tables, module_instances
and hf_runs, not taking into account any module-specific database tables. The table
module_instances maps instances of modules to their according module source code and
HTML template file. This is important, because one module is allowed to have multiple
instances, configured in different ways. Each time the Python script acquire.py is exe-
cuted, a new table row in the table hf_runs is added. This row contains information on a
unique run id, a timestamp, and a boolean flag, which indicates the successful execution
or its failure.

A single module is related to at least one table, its module table. Each time the mod-
ule code is executed, a new row for each instance of the module is added to the module
table. It relates to a specific run via a run id which is identical with the run id entered
in hf_runs. Thus, the module run can be uniquely identified and is associated with a
timestamp. Via the module instance name table column, the module class of a specific
module instance can be identified via module_instances. Additionally, the module table
can contain information on data sources and summary information.

For storing more than single, fixed entries per run, HappyFace makes a subtable mech-
anism available. Each module may define an arbitrary number of subtables, containing
an arbitrary number of table rows per run. Each entry in a subtable is linked to an entry
in the module table. This way, each table row in a subtable can be uniquely identified
and is related to an entry in hf_runs.

In figure 3.5, the previously described database layout is shown schematically. In the

22

3.3. The HappyFace Meta-Monitoring Project

example given, only such database columns are mentioned that are common for all mod-
ules.

3.3.2. Module Development

There are four files that need to be created or edited for module development. Three
of them are specific to each module, the fourth is the category configuration file. Each
module needs its Python code, HTML template, and a module configuration file.

Python Source Code

This section describes how to implement a fully functional HappyFace module step-by-
step. The source code of a module is a Python script. All source codes of modules
are located under /path/to/happyface/instance/modules/. For the following para-
graphs it is assumed that the name of the module to develop is MyModule. Consequently,
the file that has to be created is MyModule.py. The base class skeleton defines a num-
ber of variables and functions that have to be implemented: prepareAcquisition() for
commissioning monitoring data downloads, extractData() for the extraction of relevant
information from the previously downloaded files, fillSubtables() for the insertion of
extracted data into module subtables, and getTemplateData() for creating variables that
are accessible from the HTML template.

In the Python source code, first of all the authorship and license should be defined.
It is proposed to use the Apache license, a free software license written by the Apache
Software Foundation [52].

1 # Copyright YEAR Institute - Institution
2 # Author : Your Name (your e-mail address)
3 #
4 # Licensed under the Apache License , Version 2.0 (the " License ");
5 # you may not use this file except in compliance with the License .
6 # You may obtain a copy of the License at
7 #
8 # http :// www. apache .org/ licenses /LICENSE -2.0
9 #

10 # Unless required by applicable law or agreed to in writing , software
11 # distributed under the License is distributed on an "AS IS" BASIS ,
12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
13 # See the License for the specific language governing permissions and
14 # limitations under the License .

In order to have access to HappyFace functionalities in the source code, the hf/ directory
needs to be imported, containing the HappyFace core.

16 import hf

23

3. The HappyFace Meta-Monitoring Project

For filling the related HappyFace database subtables, sqlalchemy18 has to be imported.
17 from sqlalchemy import *

Now, the class of the module MyModule is defined. It inherits from hf.module.Module
Base, an abstract skeleton class for all modules.

19 class ModuleName (hf. module . ModuleBase):

For the automatic generation of a configuration file for the developed module, the variable
config_keys has to be defined. It is a Python dictionary with keys corresponding to the
parameter names in the configuration file. Each key refers to a description and a default
value.

20 config_keys = {
21 ’key ’: (’ description ’, ’default value ’)
22 }

The variable config_hint is optional and defines a hint, which is added as a comment
to the configuration file when it is automatically generated.

24 config_hint = ’Give a config hint here.’

The columns of each module table in the database are defined as follows:
25 table_columns = [
26 Column (’ column_name ’, TEXT)
27], []

While the first element of this tuple describes the database columns, the second list gives
the names of columns in the corresponding module table, which point to files in the archive
directory. For storing data in a more structured way, subtables can be used. When using
subtables, the variable subtable_columns has to be defined. Each key of this dictionary
corresponds to one (sub-)table in the database, named sub_my_module_key. As for the
variable table_columns, the second list gives the names of columns in the according
subtable, which point to files in the archive directory.

28 subtable_columns = {
29 ’subtable_name ’: ([
30 Column (’ column_name ’, TEXT)
31], [])}

Each module class has to implement certain methods that are called when executing the
acquire.py Python script. The first method to be implemented is prepareAcquisition().

33 def prepareAcquisition (self):

In this method, downloads of monitoring data are queued (and then performed by the
HappyFace download service). In order to read a URL19 from the configuration file
(parameter key), the class variable config is accessed.
18A Python Structured Query Language (SQL) toolkit and object relational mapper [47].
19Uniform Resource Locator

24

3.3. The HappyFace Meta-Monitoring Project

34 url = self. config [’key ’]

For queuing the monitoring information download, the HappyFace download service is
called, which is a HappyFace core functionality.

35 self. source = hf. downloadService . addDownload (url)

The parameter url refers to the source of monitoring data that the module fetches infor-
mation from. It needs to be of the form local/global/both | wget-options | url.
The first part of this statement refers to the usage of local, global, or both local and
global wget20 parameters; in the second part, local options can be defined. The third
part specifies the download source itself. It is convenient to define the list of values to be
entered into subtables already at this point in the source code.

36 self. subtable_name_db_value_list = []

The second method to be implemented is extractData().
38 def extractData (self):

In this method, data are extracted from the already downloaded files, parsed, and stored
in a dictionary. The keys of this dictionary correspond to those of the module table or,
for subtables, to those in the already defined list.

39 data = {
40 ’column_name ’: self. config [’key ’]
41 }
42 content = open(self. source . getTmpPath ()).read ()
43 self. subtable_name_db_value_list = [{’ column_name ’:’entry ’}]
44 return data

When using subtables to store data, the method fillSubtables() has to be implemented,
executing an SQL command to insert all gathered data into the according subtable.

46 def fillSubtables (self , parent_id):
47 self. subtables [’ subtable_name ’]. insert (). execute ([dict(parent_id =parent_id ,

** row) for row in self. subtable_name_db_value_list])

In case subtables were defined in the source code so far, the implementation of the method
getTemplateData() is necessary in order to make the data accessible from the HTML
template.

49 def getTemplateData (self):
50 data = hf. module . ModuleBase . getTemplateData (self)
51 details = self. subtables [’ subtable_name ’]. select (). where (self. subtables [’

subtable_name ’].c. parent_id == self. dataset [’id ’]). execute (). fetchall ()
52 data[’details ’] = map(dict , details)
53 return data

20A free software package for retrieving files using HTTP, HTTPS, and FTP [53].

25

3. The HappyFace Meta-Monitoring Project

Using the above sequence of sqlalchemy commands, only relevant data can be selected
from the associated subtable. The dictionary derived from this method is accessible from
the HTML template.

HTML Template

On the HappyFace web page, the HTML output of all modules is displayed. For the con-
venient development of the HTML code, HappyFace uses mako templates. This template
requires certain elements and provides a number of functionalities, as described in the
following.

Initially, the HTML character encoding needs to be specified in the template file. In
the world wide web [54], UTF-8 21 is the most common encoding. That is why it also used
throughout HappyFace.

1 ## -*- coding : utf -8 -*-

Every HTML template inherits from a base file.
2 <% inherit file ="/ module_base .html" />

The section for the code in the template file is opened as follows:
3 <%def name =" content ()">

In mako templates, embedded Python code can be used. For accessing the information
from the module subtables, the key that this information was linked to is used.

4 % for detail in details :
5 <p>${ detail [’ column_name ’]} </p>
6 % endfor

In the process of executing the module Python code, all extracted data have been stored in
the HappyFace database. The data from the database table corresponding to the module
are stored in the variable module_table. Lines of embedded Python code are introduced
with %. In a line that is not embedded Python code, variables are accessed by using the
$ identifier, e. g. ${module.dataset[’column_name’]}.

7 Hello , this is a test ${ module . dataset [’ column_name ’]}.

Finally, the section for the code is closed.
8 </%def >

21A variable-width encoding for the representation of the Unicode [55] character set [56].

26

3.3. The HappyFace Meta-Monitoring Project

Module Configuration File

To each module belongs a configuration file, which allows for the site-specific adjustment
of various parameters. All these parameters for the configuration are given in the module
Python source code variable config_keys. That is why the generation of a configura-
tion is fairly easy. In this variable, all configuration keys are listed, described, and given
a default value. Alongside the HappyFace core, the HappyFace framework provides a
set of tools. The modconfig.py tool is designed for the automatic generation of mod-
ule configuration files from the module Python code. The command python tools.py
modconfig MyModule » config/modules-enables/mymodule.cfg calls the module con-
figuration generation tool and redirects its output to the according module configuration
file. Afterwards, the module instance needs to be named properly and a display name for
the HappyFace web page should be specified.

Category Configuration File

The HappyFace web page is structured in categories, which are individually configured.
For a module to appear on the HappyFace web page, it needs to be assigned to a category.
Any category configuration file in the folder modules/categories-enabled/ serves for
this purpose. In this file, the parameter key modules needs to be edited and the module
instance name added.

Wrap-up

Besides tables that are reserved to the HappyFace core, each module stores its own module
table and possibly an arbitrary number of subtables in the HappyFace database. When-
ever new modules are added to a HappyFace instance or changes to an existing module
were applied, the database schema has to be updated. Therefore, the HappyFace tool
dbupdate is called. When using the command yes | python tools.py dbupdate, all
changes to the database schema are confirmed automatically. When all previous steps
have been completed, the module is ready for use: python acquire.py and python
render.py can be issued.

27

4. Web Services

The world wide web was primarily designed for the interaction between humans and ap-
plications through hypertext documents via the internet. Three main technologies are
the basis of the world wide web: the Universal Document Identifier (UDI), also referred
to as URL and URI 1, HTML for publishing content, and HTTP2 for the transmission of
hypertext documents. For the displaying of hypertext documents, browsers are needed.
However, the world wide web as such does not support the interaction of applications
with each other.

The interaction of applications through the internet requires web services. These en-
able applications to expose their services to other applications. The W3C 3 defines a
WSDL/SOAP-based architecture for web services, as shown in figure 4.1. It involves
three parties: a service broker to expose and broker a web service, a service provider,
which implements and offers a particular web service, and a service requester, which
makes use of the provided web service. The service broker is a registry for web services.
Via UDDI 4, an XML-based5 description, web services are registered and located. The

1Uniform Resource Identifier
2HyperText Transfer Protocol [2]
3World Wide Web Consortium [57]
4Universal Description, Discovery and Integration
5Extensible Markup Language

Figure 4.1.: WSDL-based web service architecture as defined by the W3C.

29

4. Web Services

Figure 4.2.: SOAP message as payload of an HTTP transfer.

description of web services are held in the WSDL6 format, which a service provider has
offered and a service requester receives. It is also XML-based and specifies a machine-
readable description of the location of a web service, the operations it exposes, the data
structures involved in communication, and the protocols used for data transmission. For
the exchange of information in a structured way, typically SOAP7 is used, which relies
on the internet protocol application layer procotol HTTP. Both WSDL and SOAP will
be explained in more detail in the following.

Besides WSDL/SOAP-based web services, there are REST -based8 web services. In the
architecture of RESTful web services, clients specify requests via URLs. In addition to
that, HTTP specifies a set of request methods to manipulate data, e. g. GET, POST,
PUT, and DELETE. A server replies to these requests by returning appropriate answers.
Important in the concept of REST is the statelessness of communication: The server
does not store any state information between two requests, i. e. a request contains all
information necessary to service it.

6Web Service Description Language
7Simple Object Access Protocol
8Representation State Transfer

30

4.1. WSDL/SOAP-based Web Services

4.1. WSDL/SOAP-based Web Services

4.1.1. Simple Object Access Protocol

Figure 4.3.: Components and linkages
of WSDL 1.1.

SOAP (Simple Object Access Protocol) is a
lightweight protocol for the exchange of mes-
sages and access to distributed services via a
network. Typically, SOAP uses the widely
used internet protocol application layer proto-
col HTTP for the transmission of messages in
XML format. A SOAP message consists of a
message envelope, the root element of the XML
document. This envelope optionally contains a
header to describe the processing of the mes-
sage. The message body is mandatory and con-
tains the actual payload of the SOAP message.

4.1.2. Web Service
Description Language

Web services heavily depend on the use of
service definitions. Service definitions de-
scribe a contract between a service provider
and service requesters. WSDL version
1.1 is the most widely used web ser-
vice description and constitutes a well-
defined and recognised standard. In the
WCLG community, WSDL web services
are widely present, e. g. in dCache and
gLite [58].

WSDL describes the location and syntax of
web services using XML. The single XML file
that describes the web service is the same for both, the service provider and the service
requester. It contains a definitions root element, which defines the components types,
message, portType, binding, and service. In addition, a document component can be
used for documentation purposes. By the use of the import component, the web service

31

4. Web Services

description can be distributed over multiple documents. While the components types,
message, and portType define the service interface in an abstract way, the components
binding and service describe a concrete implementation. Figure 4.3 shows the WSDL
components and their connections.

The WSDL Document Structure

Since WSDL is an XML format, each WSDL document is desired to start with an XML
declaration. For interoperability reasons, WSDL documents must use XML version 1.0.
Furthermore, the definition of WSDL requires the use of either the UTF-8 or UTF-16
character encoding.

The root element of each WSDL document is the element definitions9. In the definitions
element, the name of the WSDL document is set and the XML namespaces10 used are
declared. Furthermore, in the definitions element, the elements types, message, portType,
binding, and service are defined. The definition of the elements import and documentation
is optional.

By the types element of the WSDL definition, the types section is comprised. In form
of a schema element, it is a container for user-defined data types that are different from
the XML schema built-in types. By the use of built-in types, order indicators, occurrence
indicators, and group indicators, arbitrary data structures can be composed. A complex
type, which contains an ordered sequence of several built-in data types, is described by
the following XML code:

1 <element name =" monitoring_data ">
2 <complexType >
3 <sequence >
4 <element name =" grid_site " minOccurs ="1" maxOccurs =" unbounded " type =" xsd: string "/>
5 <element name =" node_id " type =" xsd: string "/>
6 <element name =" node_status " type =" xsd: boolean "/>
7 <element name =" node_cpu " type =" xsd: decimal "/>
8 <element name =" node_hdd " type =" xsd: decimal "/>
9 </sequence >

10 </ complexType >
11 </element >

message elements describe the payload of messages by the use of data elements from
the types definition. As there can be more than one message, all message elements are
uniquely named by the use of the name attribute. Each message contains one or more part

9The entire WSDL XML schema is given by [59].
10By the use of namespaces, different XML vocabularies can be used and name conflicts are avoided.

32

4.1. WSDL/SOAP-based Web Services

elements, which can be compared to the parameters of a function call in a conventional
programming language.

1 <message name =" RequestMonitoringData ">
2 <part name =" grid_site " type =" xsd: string "/>
3 <part name =" node_id " type =" xsd: string "/>
4 </message >
5 <message name =" ReturnMonitoringData ">
6 <part name =" data" type =" tns: monitoring_data "/>
7 </message >

A portType defines an abstract interface for a web service and relates the input and output
of operation elements to message elements. There can be more than one portType element.
The use of multiple portType elements allows for a grouping of related operations. Each
portType can contain an arbitrary number of operation elements.

1 <portType name =" MonitoringPort ">
2 <operation name =" GetMonitoringData ">
3 <input name =" RequestMonitoringData " message =" RequestMonitoringData "/>
4 <output name =" ReturnMonitoringData " message =" ReturnMonitoringData "/>
5 </operation >
6 </portType >

No concrete transmission protocol and encoding style has been defined in the elements
types, message, and portType. The binding element specifies the details of data trans-
mission by substantiating the abstract definitions. Each (named) binding elements binds
portType and operation elements to a specific protocol, e. g. SOAP. For a SOAP bind-
ing, the elements soap:binding, soap:operation, and soap:body are used. The soap:binding
element defines a service as a SOAP service, the element soap:body indicates that the
message data are sent in the SOAP message body. The element soap:operation is optional
and used to identify SOAP requests that invoke the specified operation via the attribute
soapAction.

1 <binding name =" MonitoringPortBinding " type =" MonitoringPort ">
2 <soap: binding style =" document " transport =" http :// schemas . xmlsoap .org/soap/http "/>
3 <operation name =" GetMonitoringData ">
4 <soap: operation soapAction =" urn: monitoring .wsdl# GetMonitoringData "/>
5 <input >
6 <soap:body use =" literal "/>
7 </input >
8 <output >
9 <soap:body use =" literal "/>

10 </output >
11 </operation >
12 </binding >

Each service element is a group of port elements and associates a binding element with an
access address. Thus, each service element constitutes a web service. Different ports can
be used to access different logically grouped parts of a web service. In the port element,

33

4. Web Services

Figure 4.4.: Stub generation from WSDL.

Figure 4.5.: Client and server using the stubs generated from WSDL.

the access address is provided by the soap:address extension element when the protocol
used is SOAP.

1 <service name =" MonitoringService ">
2 <port name =" MonitoringServerPort " binding =" MonitoringPortBinding ">
3 <soap: address location =" http :// example .com/ monitoringdata "/>
4 </port >
5 </service >

4.1.3. Stub Generation

A WSDL document specifies the public interface to a web service. Nevertheless, it does
not define what the service requester and service provider actually do. Service requesters
and providers are free in their implementation, as long as their messages conform to
the service definition. There are libraries for all common programming languages, which
allow for the generation of service requester (client) and service provider (server) stubs
fromWSDL documents, as shown in figure 4.4. Stubs are abstract adapters for data types,
methods and interfaces to the web service. These automatically created documents are
then used both by the client and the server implementation, see figure 4.5.

4.1.4. WSDL/SOAP-based Web Services in Python

The Python ZSI 11 web services toolkit is designed for the implementation of web services
in Python and supports the WSDL/SOAP-based web service architecture. By the use of
the tool wsdl2py, client and server stubs are generated from aWSDL document. It creates
Python bindings for the services and data structures and provides a server skeleton for
11Zolera SOAP Infrastructure [60]

34

4.2. RESTful Web Services

HTTP Method Description
GET Resource retrieval via the specification of a URI. In the URI,

arguments can be passed to the server.
POST Resource creation via the specification of a URI. Transmission

of data either as part of the URI or in the body of the HTTP
message.

PUT Upload of a resource by specification of a target URI.
DELETE Deletion of a specified resource.

Table 4.1.: Most notable HTTP request methods [2].

the service dispatch. In order to create a running web service server from this, an HTTP
server and a request handler need to be implemented. On client side, the appropriate web
service needs to be located, the services bound, and the request data structures need to
be populated. After an operation was called, the returned data structures are read.

4.2. RESTful Web Services

A simple alternative to WSDL/SOAP-based web services are RESTful web services. Since
these web services are easy-to-consume and need less overhead, they are widely used.
RESTful web services are non-standardised, do not provide a description of their func-
tionalities, and there is no registry for the advertisement of their existence. There are
several main principles that RESTful web services are required to abide to. Most impor-
tantly, RESTful web services are stateless. This simplifies the server-side implementation
and leaves the client implementation the responsibility for the maintenance of state in-
formation. Furthermore, RESTful web services make use of HTTP methods. Table 4.1
contains a description of the most notable HTTP request methods in terms of web ser-
vices. Another principle is the use of directory structure-like URIs. These URIs are
hierarchical, splitting up in sub-branches from a root branch. This ensures the intuitive
usability of the web service, especially for the use of exposed resources. Finally, RESTful
web services should be able to transfer resources in XML or JSON12 format. By the
use of MIME-types13 and the HTTP accept message header, a mechanism called content
negotiation [61] can be used in order to determine the desired data format.

12JavaScript Object Notation
13Multipurpose Internet Mail Extensions

35

4. Web Services

4.3. Web Services for Access to the HappyFace
Database

All data present on the HappyFace web page are stored in the HappyFace database. By
using the history functionality of HappyFace, data for previous points in time can be
displayed on the HappyFace web page. However, the HappyFace data are not designed
for access by applications over a network. For HappyFace, data retrieval is only possible
via direct database access on the machine where the HappyFace framework is located.

4.3.1. Database Server vs. Web Service

In principle, the HappyFace database could be made available via a database server.
A database server provides local databases to remote applications via a computer net-
work. Most database servers also offer database management functionalities and have a
high functional range. Typically, data base servers also handle authentication, caching,
and tuning mechanisms for databases. There is a large number of commercial and non-
commercial database server systems, each using a different interface for data queries and
data retrieval. Even though some of these interfaces are accessible by applications, there
is no established standard for the connection to a database, the submission of queries, and
the retrieval of data. Furthermore, the retrieved data structures are not well-defined and
access is not restricted to specific operations only, since database servers are designed for
general access to databases. By the use of a W3C-compliant web service, the connection to
the provided interface, the data structures, and the permitted operations are well-defined
and allow for a much more precise and focused data access. As defined in the WSDL
document, which fully describes the web service, only relevant data retrieval operations
are permitted and prevent high load on this critical part of the HappyFace framework.
Most important, the use of a web service for database access does not require the full
understanding of the underlying data(base) schema. Regardless of HappyFace-specific
structures, data can be obtained in a machine-readable format for further processing.

4.3.2. A WSDL/SOAP-based Web Service for Access to the
HappyFace Database

The W3C standard for WSDL/SOAP-based web services allows for the access to the
HappyFace data regardless of HappyFace-specific data structures. Tools for the automatic

36

4.3. Web Services for Access to the HappyFace Database

stub generation facilitate the easy implementation of client and server applications, fully
independent of the platform that client and server are run on.

Python WSDL Generator

A WSDL file is a static document. However, the manual adaptation of the WSDL docu-
ment to changes in the HappyFace database, e. g. new tables, new table columns, or table
alterations, is not desirable. Therefore, a WSDL generator was implemented. It reads the
HappyFace database structures and generates a WSDL file, not requiring human inter-
vention. The execution of the WSDL generator requires access to the WSDL database.
Via sqlalchemy, an object-relational mapping is performed. Thereby, all database tables
and their columns are mapped to Python objects, which provide member functions for
data retrieval, manipulation, etc. By the use of these Python objects, the WSDL file is
generated.

WSDL Document Layout

The WSDL document contains the required root element definitions and its sub-elements
types, message, portType, binding, and service. For the specification of the time interval
the data are requested from, a data type is assembled from the xsd:datetime type. Each
table in the database requires two data types in the WSDL types definition. A data type
for the request of information from a specific table is a sequence of xsd:boolean variables.
There is one boolean variable for each table column, which specifies whether a column is
requested or not. As the occurrence of these boolean variables is optional, a client request
only needs to specify the columns it wants to retrieve. The data type for the response is
a sequence of variables, each of which is a list. It is supposed to contain all table entries
from the specified time range for a specific table column.

The WSDL message element can occur multiple times in a WSDL document. For each
table from the HappyFace database, there are two messages. The first message contains
the request data structure and consists of three parts: a data structure for the module
instance name, a time interval data structure, and the list of boolean variables defined
for the request. The second method transmits the response data structure and uses the
according data type defined beforehand for the response.

There is one portType element for each database table. It defines the operation for
the request and retrieval of data. Its input is the request message element, its output
the response message element. By defining one portType element per table, the data are

37

4. Web Services

well-separated in the WSDL definition.

When a portType element was defined, it needs to be bound to a transmission proto-
col. For all portType elements, the SOAP transmission method is chosen, as provided by
the W3C standard definition. There is one WSDL binding element for each database table.

The service element finally defines a web service. It assembles binding elements and
defines concrete access ports for the different binding elements. For access to the web
service via SOAP, soap:address elements are defined.

In the appendix A.4 of this document, a simplified excerpt from the WSDL document
described is given.

Client and Server Implementation

Using the tool wsdl2py, which comes with the Python ZSI toolkit, the WSDL document
is used to generate the stubs for server and client. A Python client and server implemen-
tation use the stubs and grant access to all HappyFace data.

A WSDL documents does not define the concrete implementation of client and server.
First of all, the server assesses the received request. If not all mandatory variables are
defined, it returns an error code and terminates the connection to the querying client. If
the query matches the WSDL definition, the server implementation retrieves requested
data by querying the HappyFace database. In that respect, an object-relational mapping
is performed. The data structures defined in the WSDL file are not a one-to-one repre-
sentation of the data structures in the HappyFace database. Each table in the database is
mapped to a response data structure, which also contains information to uniquely identify
a dataset. This information is only available in the general table hf_runs and requires
the following SQL query structure:

1 SELECT hf_runs .time , hf_runs .id , table1 .col1 FROM hf_runs INNER JOIN table1 on hf_runs .
id = table1 .id WHERE [timestamp_from] < hf_runs .time AND [timestamp_to] > hf_runs .
time;

Please refer to chapter 3.3.1 for details on the HappyFace database.

For the use of a ZSI web server, the server implementation needs to provide a Python
class for each service port, which inherits from a base class defined in the stub files. Each
service port class defines a method for the chosen SOAP binding and operation. This

38

4.3. Web Services for Access to the HappyFace Database

method returns, amongst others, a response object that contains member variables for
simple data types and Python class instances for all complex data types defined in the
WSDL file.

The implementation of a Python client was performed for testing purposes and to
provide a working code to interested parties. A client request is required to match the
WSDL definition. In the Python ZSI framework, a request object needs to contain class
instances of all complex element classes. There is a class for the specification of the time
interval and a class for the specification of the requested database table columns. The
returned response data structure contains a list for each column queried. These iterable
objects allow for easy further processing of the data.

4.3.3. A RESTful Web Service for Access to the HappyFace
Database

A RESTful web service for access to the HappyFace database requires the knowledge of
the available database table columns. Via the call of a composed URL, arbitrary module
tables and subtables can be queried. The result of any query is returned in JSON format.
This web service is also platform-independent.

Python CGI Script

The Python script implementing the RESTful web service is a CGI14 script and expects
the specification of its input parameters via a composed URL as follows:

1 http :// path/to/ script .py? table_name = table1 & instance = instance_name & columns =col1 ,col2&
table_name = table2 & columns =col3 ,col4& timestamp_from =YYYY -MM -DD HH:mm& timestamp_to =YYYY
-MM -DD HH:mm

Missing or faulty parameters are detected automatically and the user is notified. In case
of a correctly composed request, the HappyFace database is queried. The result of this
query is translated into JSON format and returned to the service requester.

4.3.4. Response Time Comparison

A key benchmark for web services is their total response time. For the comparison of
the average response time of the WSDL/SOAP-based and the RESTful web service for
access to the HappyFace database, queries of different numbers of return values are sent
14Common Gateway Interface

39

4. Web Services

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

R
es
po

ns
e
tim

e
[a
.u
.]

Data size [a. u.]

WSDL/SOAP-based web service
RESTful web service

Linear fit (WSDL/SOAP)
Linear fit (RESTful)

Figure 4.6.: Response time comparison of WSDL/SOAP-based and RESTful web ser-
vice for access to the HappyFace database. Both web services exhibit a
linear behaviour.

to both web services. In order to guarantee comparability, both client and server are run
on the same computer for both web services. Finally, an averaging over multiple, identical
requests provides higher statistical certainty. In figure 4.6, the average response time is
plotted versus the number of database entries returned.

In the region considered, both web services exhibit linear behaviour. This satisfies the
expectation, as all main steps – the extraction of data from the database, the encapsula-
tion of data in packages, and the transfer of data – are operations, whose complexity is
approximately linear. In both cases, the ordinate intercept is negligible for high numbers
of return values. The difference in ordinate intercepts probably results from the different
web servers used for providing the web service.

Both, the WSDL/SOAP-based and the RESTful web service, perform well for their
expected use cases. While the WSDL web service provides a fully standardised access
to the HappyFace database but is slower in the provisioning of responses, the RESTful
web service shows fast responses but its usage requires a better knowledge of the queried
data. Both web services extend the range HappyFace functionalities and make HappyFace
monitoring data easily available.

40

5. HappyFace Module Development
for GoeGrid

The HappyFace framework strictly separates its core part from the individual modules.
Each module is designed to retrieve data from one source or a set of associated resources,
analyse, assess, and present this information. In the course of decommissioning Happy-
Face version 2 and putting HappyFace version 3 into production at the WLCG ATLAS
Tier-2 centre GoeGrid and other sites using HappyFace, all relevant modules required
redevelopment. Due to the fact that some of the old modules have not proven useful,
these modules were decommissioned completely. All modules that have been in active use
were redeveloped and experienced improvements in terms of flexibility and configurability.
In the instance of HappyFace 2, several pieces of critical information were not assessed.
This required the development of completely new modules, which cover these monitoring
sources and allow for an easier prevention and better understanding of GoeGrid failures.
All modules developed are designed to be generic and are adaptable to any ATLAS grid
site in the WLCG just by the adaptation of the according module configuration file.

Besides the HappyFace modules described in this chapter, several dCache modules
were adapted to the dCache version run in GoeGrid. For these modules, please refer to
appendix A.5.

5.1. HammerCloud Functional Tests

The HammerCloud tests are a distributed analysis testing service. Their goal is to measure
site performance using real jobs. In the first instance, HammerCloud tests were designed
as stress tests, heavily involved in the commissioning of new sites. HammerCloud were
also used for site infrastructure and software changes evaluation and the comparison of site
performances. Since the WLCG has reached a steady state of operation, the main focus
of the HammerCloud tests has shifted towards continuous validation testing. Functional
tests perform site validation with continuous streams of real jobs. Three Virtual Organi-

41

5. HappyFace Module Development for GoeGrid

Figure 5.1.: Architecture of the HammerCloud tests service [1]. The Django-based
front-end publishes test results in human- and machine-readable format.

sations (VOs) use the HammerCloud functional tests: ATLAS, CMS, and LHCb. For the
VO ATLAS, there are functional tests for user analysis and Monte Carlo simulation. In
case a certain number of these tests fails, a PanDA queue is automatically excluded for
further job submission. Nevertheless, HammerCloud tests are launched and allow the site
to be available for submission when the test performance has improved again. In figure
5.1, the HammerCloud architecture is shown. Via a web front-end, the test results can
be accessed and obtained in JSON format for further processing.

For each queue specified in the module configuration file, a status value is obtained
from the HammerCloud web front-end. The status, indicating the success rate of the
HammerCloud tests, is only rated ok when all test jobs were successful. By default, all
monitored queues that were rated ok, are hidden and can be expanded. When specified in
the module configuration file, particular queues can be set visible permanently, regardless
of their status. In figure 5.2, the module output is displayed.

5.2. Compute Node Information

Each involved grid site provides computing resources to the WLCG infrastructure. Be-
sides storage resources, a grid site also contributes to WLCG operations by the allocation
of compute nodes. On these Linux machines, user analysis and Monte Carlo simulation
jobs are executed. During the process of execution, a job is assigned several states by
PanDA. The regular sequence of states is the following [62]: pending → defined → wait-
ing → assigned → activated → sent → starting → running → holding → transferring →
finished/failed/cancelled. On the PanDA monitoring web page, this information is pub-
lished. For each compute node, the number of jobs in a specific state is given.

42

5.2. Compute Node Information

Figure 5.2.: HTML output of the HammerCloud functional tests module. At GoeGrid,
the analysis queue ANALY_GOEGRID and the production queueGoeGrid
are monitored. The status of the analysis queue is rated critical due to the
insufficient success rate of the HammerCloud tests.

In order to evaluate the functionality of a compute node, especially information about
the share of failed jobs is important. A high failure rate may indicate a problem and
require the exclusion or restart of a worker node. The compute node information module
identifies the compute nodes with the highest failure rate and displays them on first sight.
A list containing all compute nodes can be expanded. For fast visual identification of such
compute nodes that exhibit an abnormally high failure rate, all compute nodes that show
job failures are presented in a bar graph. A mouse-over text serves for the identification
of the compute node name and the exact number of failures. When the total number of
transferring jobs is large, this may induce a high load on the storage management and
can be the cause of failures. By the identification of worker nodes that run a high number
of transferring jobs, problems can be foreseen. In an HTML table, this module shows the
compute nodes with the largest number of transferring jobs. A part of the HTML output
of this module is shown in figure 5.3.

This module also serves the purpose of identifying black hole worker nodes. Black
holes are empirically defined as worker nodes that are able to accept jobs but cause the
immediate failure of the accepted jobs. This may be due to the failure of a critical ser-
vice or operating system component while the PBS client is still functional and accepts
jobs. For the PBS server, this worker node looks perfectly functional and is even a pre-
ferred node for the processing of new jobs due to its low load. As a result of this, a high
number of jobs fails. Therefore, black hole worker nodes need to be identified immediately.

43

5. HappyFace Module Development for GoeGrid

Typically, one site provides more than one PanDA queue. In the configuration of this
module, multiple queue names can be specified. Furthermore, thresholds for a warning
and critical status can be set with regard to the job failure and transferring rate.

5.3. Analysis GANGA Jobs

GANGA1 is a user front-end for job submission to the WLCG. It is a collaborative de-
velopment of ATLAS and LHCb and covers all phases of a job: creation, configuration,
splitting, reassembly, script generation, file transfer, submission, run-time setups, mon-
itoring, and reporting. Via GANGA, HammerCloud test jobs are sent using a special
certificate. The PanDA monitoring web page provides details on these jobs. For an AT-
LAS WLCG site, the sequential failure of three out of four tests jobs leads to the exclusion
of a queue and must therefore be monitored.

In the Python source code of this module, the Panda HTML web page is parsed and
information on GANGA robot jobs is extracted. By the relative number of failed jobs, the
gathered information is assessed. According to predefined thresholds, a certain share of
failed GANGA robot jobs leads to a warning or a critical status of this module, indicated
by a colouring schema. In the configuration of this module, queues can be specified that
are always visible in the HTML result table. Otherwise, all queues not rated as warning
or critical are hidden and can be expanded. In figure 5.4, the module web output is
displayed.

5.4. Nagios Monitoring

Nagios is a generic, open-source monitoring system, supporting system monitoring, net-
work monitoring, and infrastructure monitoring. Designed for generic monitoring, Nagios
is used to monitor servers on which WLCG services are run. Of specific interest for each
service are certain monitoring parameters that are captured by Nagios. All these pa-
rameters are collocated on a status web page. In most setups of Nagios, authentication
is required in order to access this summary web page. For the sake of convenience and
simplicity, Nagios applies a configurable rating to each parameter. In terms of real-time
monitoring, it can send alerts in case critical infrastructure fails.

1Gaudi/Athena and Grid Alliance [63]

44

5.4. Nagios Monitoring

Figure 5.3.: View of the compute node information module in production for GoeGrid.
The module contains two tables and one bar graph for each PanDA queue
specified in the module configuration file.

45

5. HappyFace Module Development for GoeGrid

Figure 5.4.: View of the analysis GANGA jobs monitoring module HTML output. Yel-
low table rows indicates a warning status, a critical status is indicated by a
red colouring. For monitoring at GoeGrid, the queue ANALY_GOEGRID
is always visible.

As the location of Nagios is most likely different for each grid site, it needs to be
configurable in the module configuration file. Besides that, it is proposed to create an
additional Nagios user. For obvious security reasons, this user should be equipped with no
more than read rights in the Nagios system. This is due to the fact that both user name
and password have to be specified in the unencrypted HappyFace module configuration
file. The Nagios status web page displays the information in an HTML table, which is
downloaded and parsed by the HappyFace module. In a next step, relevant data are
extracted and stored in the HappyFace database. From this database, the content is
read and displayed in a table format. HappyFace is designed to detect problems on
first sight. Due to that, only such services and parameters are displayed, which require
further investigation, such as warnings and failures. By clicking one button, this view
can be extended to show all other parameters, too. Being generically designed and easily
configurable, this module might be the subject of interest for any WLCG site using Nagios
and deploying or planning to deploy HappyFace.

5.5. Ganglia Monitoring

Ganglia monitors cluster hardware and software and is in wide use in various high-
performance computing centres. The scalable and distributed system provides real-time
monitoring, e. g. of CPU loads, memory usage, and network traffic. On each monitored
node, a Ganglia daemon needs to be installed. A web front-end compiles the acquired
information. Besides this human-readable interface, Ganglia provides all acquired infor-
mation in an XML format for further automated processing.

All GoeGrid servers, such as storage servers, the rocks server, the Nagios server, the
CREAMCE server, the BDII server, and the servers hosting virtual machines, are mon-
itored by Ganglia. It records parameters such as the load of these servers, the memory

46

5.5. Ganglia Monitoring

Figure 5.5.: View of the Nagios monitoring module HTML output. Yellow table rows
indicates a warning status, a critical status is indicated by a red colouring.
For testing purposes, the machine-readable table column is displayed. At
the time of this screenshot, the by default hidden table showing all good
services is expanded.

47

5. HappyFace Module Development for GoeGrid

Figure 5.6.: Web output of the Ganglia monitoring module. All monitored servers
specified in the module configuration file are listed separately, all presented
data are expanded on-click.

and swap usage, the available disk space, and its network activities. Via its XML output,
HappyFace acquires this information and stores it to the HappyFace database. When dis-
playing the information, grouped by host and presented in expandable tables, no rating
takes place by default. This is due to the fact that the criticality of parameters does not
only depend on its present value but on its development and all other parameters as well.

The module is designed for generic use and can be adapted by other sites by the change
of the module configuration file only. In figure 5.6, its HTML output is shown.

5.6. PanDA Monitoring

The most important component of the ADC infrastructure is the PanDA production sys-
tem. It constitutes the management role for the execution of all ATLAS production and

48

5.6. PanDA Monitoring

Figure 5.7.: HTML output of the PanDAmonitoring module. As this module only relies
on external monitoring sources, it is fully independent of local resources.

a significant share of the user and group analysis jobs. PanDA is also a core component
of the dataset replication system and plays a key role in the definition of production tasks
as well. Nowadays, PanDA is a unified production system for ATLAS across the Open
Science Grid (OSG) [64], EGI, and Nordic DataGrid Facility (NDGF) [65]. In the PanDA
system, two types of virtual queues exist. They are defined according to the types of jobs
running on a site. If an ADC site is able to accept and process user and group analysis,
as well as ATLAS Monte-Carlo simulation jobs, it has both an analysis and a production
queue, managed automatically. Depending on the efficiency of the submitted jobs and
whether the site is in a scheduled or unscheduled downtime, an online, offline, or test
mode state is assigned to the queues. If no downtime is declared and the queue efficiency
drops below a certain level, a queue is switched to test mode. From that moment on,
only test jobs are submitted to the queue, and the reliability and availability of this queue
are negatively affected. As soon as the efficiency reaches a certain level again, the site is
switched online. Only during downtimes, queues are in offline mode. Taking these facts
into account, it is extremely important to keep an eye on the queue efficiency and the
PanDA queue status of a site.

Except for the data processing at the CERN Tier-0 computing centre, the PanDA
production system is used ATLAS-wide for simulation, reprocessing, and production of
physics data. In order to determine whether a site has available resources, pilot jobs are
sent to all grid sites. Furthermore, they guarantee the availability of resources for real
user jobs. In order to determine a site’s availability and reliability, test jobs are sent.
These tests also contribute to the determination of the overall queue status.

In HappyFace version 2, two modules were developed to show all relevant information
from the PanDA system. One of them displays all activated, assigned, running, trans-
ferring, holding, finished, and failed jobs. A second module shows the overall status of

49

5. HappyFace Module Development for GoeGrid

Figure 5.8.: Web output of the APEL accounting module. This module only relies on
external monitoring sources and therefore is fully functional independent
of the system it is deployed on, as long as it is connected to the world wide
web.

all GoeGrid queues. For this new module, the monitoring information is retrieved from
two types of sources. In order to obtain the number of jobs running on GoeGrid and
their status, an HTML table is analysed and relevant data are extracted using regular
expressions. The information on the queue status is available in JSON format. In the
module configuration file, user defined-thresholds are set, according to which the queue
status is rated and a colouring schema is applied.

The newly developed module merges these information into one table and allows for
a simplified check of the PanDA queues. Furthermore, it combines and clearly arranges
queues that belong to the same grid site.

5.7. APEL Accounting

APEL is responsible for publishing the accounting data of a grid site, registering the
amount of resources spent on grid jobs to the central accounting server. For some period

50

5.8. DDM Dashboard Monitoring

of time, APEL accounting information happened not to be published properly, due to mis-
configuration in GoeGrid and problems of the central APEL accounting server. This lead
to wrong numbers in the WLCG accounting reports. Therefore, the periodic publishing
of accounting information needs to be monitored, in order to avoid failures in up-to-date
accounting information publishing.

The results of the APEL synchronisation tests are available via a web interface, format-
ted as an HTML table. This table is read in and the latest accounting information entries
are extracted. The most recent entries are displayed on the HappyFace web page in an
HTML table. During the processing of information, the age of these entries is compared
to thresholds defined in the module configuration file. Based on this, the module status
is determined and a colouring schema is applied to the rows of the generated table. The
web output of this module is shown in figure 5.8.

5.8. DDM Dashboard Monitoring

The ATLAS DDM, alongside the PanDA system, plays a key role in the ATLAS comput-
ing model. It organises more than 90 PBytes of physics data distributed over more than
a hundred grid sites. Every day, about 5 million files [66] are transferred through the
DDM system. DDM is not a stand-alone component of the distributed computing infras-
tructure. Due to the ATLAS computing model, failures in the DDM will cause PanDA
jobs to fail and hence lead to a dramatic waste of computing power. In order to avoid
massive failures, it is important to detect a decreasing data distribution efficiency in time.
That is what the DDM dashboard [67] was designed for. As shown in figure 5.9, each site
serves both as a source and as a destination for the experimental, processed, or simulated
data. Therefore, it is important to gather the data transfer efficiency information for both
theses roles separately.

In order to monitor the site performance in terms of DDM, the DDM Dashboard can be
made use of, where information regarding grid jobs and transfers from different sources and
locations is displayed. Besides a web interface, the DDM Dashboard provides monitoring
data in a number of formats. Most suitable for parsing is the JSON format, due to its
Python dictionary-like structure. Information about all space tokens of a specified site
is extracted and displayed in an HTML table. The problems that may occur during
data access are manifold. In general, errors may occur due to site-related problems,
which serves both a source and destination role for file transfers. These errors have to be

51

5. HappyFace Module Development for GoeGrid

Figure 5.9.: ATLAS DDM dashboard web interface. Source and destination sites for
data transfers are distinguished.

carefully distinguished and are displayed in separate tables. Finally, thresholds defined
in the module configuration file determine the table row background colour and overall
module status. The web output of this module is shown in figure 5.10.

5.9. DDM Deletion

The deletion of files in DDM is essential to clear disk space in grid sites of files no longer
needed. This cleaning process is either initiated by a single user or centrally managed and
executed by the individual grid sites. Due to inconsistencies between the central DDM
database and the local storage management system, DDM deletion errors can occur. Be-
cause disk space is an expensive resource, these errors have to be monitored in order to
ensure the cleaning process does not fail.

For the monitoring of the DDM deletion process, DDM provides a central web interface
to all deletion process information, which can be queried for an output in JSON format.
The obtained JSON file is downloaded and parsed. In an HTML table, the extracted data
are separately displayed for datasets, files, and the overall volume. By the relative number
of deletion errors, the data are assessed for the determination of the module status. All
according thresholds are set in the module configuration file. In figure 5.11, the module
HTML output is shown.

52

5.9. DDM Deletion

Figure 5.10.: View of the DDM dashboard module. There are two separate tables for
transfers with GoeGrid as destination and source of the transferred data.

Figure 5.11.: View of the DDM deletion module. The extracted data are separately
displayed for datasets, files, and the overall volume.

53

5. HappyFace Module Development for GoeGrid

Figure 5.12.: Reliability and availability of GoeGrid from 2013-06-04 until 2013-07-04.
The colour coding is defined by the MyWLCG SAM portal.

5.10. Service Availability Monitoring (SAM)

The grid sites from six VOs build the WLCG infrastructure, according to which resources
are allocated. One of these organisations is ATLAS, providing computing resources for
the ATLAS experiment. In order to ensure transparency in terms of grid job submission,
all ATLAS sites also need to be a member of all according VOs, including OPS and NGI-
DE. SAM monitors resources for the EGI, using certificates authorised by different VOs.
The SAM tests monitor all kind of services that each site has to provide. Besides that, the
site availability and reliability are determined. In figure 5.12, reliability and availability
of GoeGrid from 2013-06-04 until 2013-07-04 are shown.

The SAM web page publishes the monitoring information in different formats, amongst
others the JSON format. This module enables the simultaneous monitoring of SAM
test results for multiple VOs, which can be specified in the module configuration file.
A blacklist allows for the exclusion of certain services from monitoring. Furthermore,
warning and critical thresholds are customisable. The extracted monitoring information
is visualised in tables, one for each specified VO. For clarity and simplicity, only test
results rated with a warning or critical status are displayed on the first glance. All other
test results can be expanded. The web output of this module is shown in figure 5.13.

54

5.11. Web Service

Figure 5.13.: HTML output of the SAM tests module. For the two VOs ATLAS and
OPS, all monitored services are checked for their status. In the screenshot
shown, two services exhibit a warning status and needed to be further
investigated by the site administrators.

5.11. Web Service

The web service module is a rather atypical HappyFace module. It neither acquires any
monitoring nor does it assess and present any monitoring data but is a user interface for
the selection and retrieval of monitoring data previously acquired and stored by all other
modules. Please note that being a GUI, the HappyFace web service module is not a web
service.

The module Python source code passes the HappyFace database schema to the HTML
template, which makes use of JavaScript to generate checkboxes for all modules in one
column. Once a module is selected, its module table and all its subtables appear as
checkboxes in a second column. When selecting one of the tables, all its table columns
are visible in a third column and can be selected. Furthermore, a time interval for the
requested monitoring data can be specified. By clicking the Query! button at the bot-
tom of the module, the precedingly described RESTful web service is queried via a URL
composed by the HappyFace module. Once the prepared file is ready for download, a
download link to the query result becomes visible. In the downloadable file, all requested
monitoring data are available in JSON format.

This module has proven very useful during the development of other HappyFace mod-
ules, as it provides a quick and easy-to-understand overview of the HappyFace database.

55

5. HappyFace Module Development for GoeGrid

Figure 5.14.: Web output of the web service module. This module basically is a GUI
to the RESTful web service and provides a quick and easy-to-understand
overview of the HappyFace database.

Furthermore, it served in the debugging of the RESTful web service and allows for a quick
manual extraction of HappyFace monitoring data.

56

6. Conclusion and Outlook

6.1. Conclusion

Only the comprehensive monitoring of all hardware and software parts of a computing
infrastructure guarantees its unobstructed operation with maximum performance. The
HappyFace 3 meta-monitoring framework fulfils this task at the WLCG ATLAS Tier-2
centre GoeGrid and has proven its reliable operability during an extensive testing phase.
During this period, both, the core of the HappyFace framework and all recently developed
modules, were reviewed. The necessity of the further processing of previously gathered
information required remote access to the HappyFace database. This entailed the devel-
opment of a RESTful and a WSDL/SOAP-based web service, which allow to retrieve data
from the HappyFace database regardless of the understanding of the HappyFace database
structure.

The deployment of HappyFace version 3 as a replacement for the previous version 2 of
the HappyFace meta-monitoring framework necessitated the redevelopment of all exist-
ing and used HappyFace modules. Newly emerging demands or thus far not considered
grid site testing mechanisms also required the new development of a number of Happy-
Face modules. The modules currently in use in the HappyFace instance run at GoeGrid
cover the full spectrum of local hardware, software, and service monitoring; central ser-
vice and infrastructure monitoring; and the monitoring of results of external site testing
mechanisms. Due to the wide use of generic monitoring systems in WLCG grid sites,
such as Nagios and Ganglia, the modules developed for this purpose can be deployed to
other grid sites, too. Furthermore, the ATLAS-wide use of the compute node information
module, the analysis GANGA jobs module, the PanDA monitoring module, the APEL
accounting module, the DDM dashboard monitoring module, the DDM deletion module,
and the SAM module is easily possible. This flexibility required a generic design, easy
configurability, and extensive testing. Several redeveloped modules constitute a consid-
erable improvement and summary of modules that were previously split up in multiple
parts. With the successful porting of old modules and the development of new modules

57

6. Conclusion and Outlook

for the GoeGrid HappyFace instance, the monitoring of GoeGrid as part of the WLCG
infrastructure is ensured. All new modules especially provide the easy access to detailed
information and the correlation of monitoring data.

Web services enable the communication of applications via a network, typically the
internet. Thus, data can be retrieved and remote procedures can be called. For the
remote access to data stored in the HappyFace database, two web services were devel-
oped. A lightweight and easy-to-use RESTful web services provides access the HappyFace
database via HTTP GET requests. A standardised WSDL/SOAP-based web service pro-
vides a well-described interface to HappyFace. Furthermore, all stored data can also be
selected via a web interface, which is integrated into HappyFace as a module. These
interfaces allow the versatile retrieval of monitoring data that a HappyFace instance has
aggregated. Well-structured return formats simplify the further processing of this data.

6.2. Outlook

HappyFace is not yet in wide use in WLCG ATLAS grid sites, though a wide use of this
meta-monitoring tool is desirable for collaborative ATLAS-specific module development.
In this context, HappyFace needs to be advertised throughout the ATLAS community.
Until now, the installation and the setup of HappyFace requires a considerable amount of
effort and therefore may not seem attractive to other ATLAS grid sites. The compilation
and maintenance of an RPM package instead of an installation via subversion could con-
vince sites not yet involved to use HappyFace.

Both, the RESTful and the WSDL/SOAP-based web service for access to the Happy-
Face database, do not require any authentication. In general, this is not security-critical
since protected data can be chosen not to be offered by the web service server implemen-
tation. Nevertheless, the extension of both web services to inherit data protection from
the individual HappyFace module configuration certificate authorisation settings would
guarantee the smooth concurrence of HappyFace and the attached web services. In order
to make the WSDL/SOAP-based web service a fully grid-enabled access method to Hap-
pyFace monitoring data, the use of GSI 1 would be favoured.

HappyFace is designed for meta-monitoring explicitly. Any kind of automatic adapta-
1Grid Security Infrastructure [68]

58

6.2. Outlook

tion of warning thresholds or even action taking is not foreseen in the HappyFace frame-
work and would require deep changes to the HappyFace core framework. As soon as root
cause analysis and expert systems are available for GoeGrid, the integration of these sys-
tems into HappyFace allows new scopes for design. By the close collaboration of core and
module developers, the integration of these future systems is possible and yields promising
opportunities for the automation of cluster monitoring and maintenance.

59

A. Appendix

A.1. Installation of HappyFace 3 on CentOS 6.3

1 # obtain python - cherrypy3 from http :// pkgs.org/centos -6-rhel -6/ repoforge -i386/python -
cherrypy -3.1.2 -1. el6.rf. noarch .rpm.html

2 yum install ./ python -cherrypy -3.1.2 -1. el6.rf. noarch .rpm
3 yum install python - sqlalchemy
4 # obtain python - migrate from http :// pkgs.org/centos -6-rhel -6/ epel -i386/python -migrate

-0.6 -6. el6. noarch .rpm.html
5 yum install ./ python -migrate -0.6 -6. el6. noarch .rpm
6 yum install python -mako
7 yum install numpy
8 yum install python - matplotlib
9 svn co https :// ekptrac . physik .uni - karlsruhe .de/ public / HappyFace / branches /v3 .0 HappyFace

10 cd HappyFace
11 svn co https :// ekptrac . physik .uni - karlsruhe .de/ public / HappyFaceModules / trunk modules
12 wget http :// www -ekp. physik .uni - karlsruhe .de /~ sroecker / files / hf3_config .tar.gz
13 tar -zxvf hf3_config .tar.gz
14 mv config / HappyFace
15 yum install mod_wsgi
16 # copy Apache configuration to /etc/ httpd /conf.d/
17 service httpd restart

A.2. Example Configuration for the HappyFace 3
Core

1 [paths]
2 happyface_url = / happy /
3

4 static_dir = static
5 archive_dir = %(static_dir)s/ archive
6

7 tmp_dir = %(static_dir)s/tmp
8

9 hf_template_dir = templates
10 module_template_dir = modules / templates
11 template_cache_dir = mako_cache
12

13 template_icons_url = %(static_url)s/ themes / armin_box_arrows
14

15 local_happyface_cfg_dir = config

61

A. Appendix

16 category_cfg_dir = config / categories - enabled
17 module_cfg_dir = config /modules - enabled
18

19 acquire_logging_cfg = defaultconfig / acquire .log
20 render_logging_cfg = defaultconfig / render .log
21

22 # NOTE: Changing these URLs might have limited effect
23 static_url = %(happyface_url) sstatic
24 archive_url = %(static_url)s/ archive
25

26

27 [happyface]
28 # colon separated list of categories , if empty
29 # all are used in a random order . The name here
30 # corresponds to the section name.
31 categories =
32 stale_data_threshold_minutes = 60
33

34 # automatic reload interval in minutes
35 reload_interval = 15
36

37 [auth]
38 # A file containing authorized DNs to access the site.
39 # One DN per line
40 dn_file =
41

42 # If the given DN is not found in the file above , if any , the following
43 # script is called with DN as first argument .
44 # The script must return 1 if user has access , 0 otherwise .
45 auth_script =
46

47 [template]
48 # relative to static URL
49 logo_img = / images / default_logo .jpg
50 documentation_url = https :// ekptrac . physik .uni - karlsruhe .de/trac/ HappyFace
51 web_title = HappyFace Project
52

53 [database]
54 url = sqlite :/// HappyFace .db
55

56 [downloadService]
57 timeout = 300
58 global_options =
59

60 [plotgenerator]
61 enabled = False
62 backend = agg
63

64

65 [global]
66

67 server . socket_host : "0.0.0.0"
68 server . socket_port : 8080
69

70 tools . encode .on: True

62

A.3. Example Apache Configuration for HappyFace 3

71 tools . encode . encoding : "utf -8"
72 tools . decode .on: True
73 tools . trailing_slash .on: True

A.3. Example Apache Configuration for HappyFace 3

1 WSGIDaemonProcess hf_wsgi user= happy threads =20 processes =1
2 WSGISocketPrefix /var/run/wsgi
3 NameVirtualHost *:80
4

5 <VirtualHost *:80 >
6 Servername happyface3 . local
7 ServerAdmin christian@wehrberger .de
8 DocumentRoot /home/ happy / HappyFace
9 # DocumentRoot /var/www/html/ HappyFace

10 WSGIProcessGroup hf_wsgi
11 <Directory /home/ happy /HappyFace >
12 Order deny , allow
13 Allow from all
14 </Directory >
15 WSGIScriptAlias / /home/ happy / HappyFace / render .py
16 SetEnv configuration /home/ happy / HappyFace
17 </ VirtualHost >

A.4. A WSDL/SOAP-based Web Service for Access
to the HappyFace Database in Python

A.4.1. WSDL Document

1 <?xml version ="1.0" ?>
2 <definitions name =" DatabaseService " targetNamespace =" urn:ZSI" xmlns =" http :// schemas .

xmlsoap .org/wsdl /" xmlns : myType =" DatabaseTable_NS " xmlns :soap =" http :// schemas . xmlsoap
.org/wsdl/soap /" xmlns :tns =" urn:ZSI" xmlns :wsdl =" http :// schemas . xmlsoap .org/wsdl /"
xmlns :xsd =" http :// www.w3.org /2001/ XMLSchema ">

3 <types >
4 <schema targetNamespace =" DatabaseTable_NS " xmlns =" http :// www.w3.org /2001/ XMLSchema ">
5 <complexType name =" time_interval ">
6 <sequence >
7 <element name =" from" type =" xsd: dateTime "/>
8 <element name =" to" type =" xsd: dateTime "/>
9 </sequence >

10 </ complexType >
11 <complexType name =" instance ">
12 <sequence >
13 <element name =" instance " type =" xsd: string "/>
14 </sequence >
15 </ complexType >
16 <complexType name =" response_mod_webservice ">
17 <sequence >

63

A. Appendix

18 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice .id" type =" xsd
: decimal "/>

19 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . instance "
type =" xsd: string "/>

20 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . run_id " type
=" xsd: decimal "/>

21 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . status " type
=" xsd: float "/>

22 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . description "
type =" xsd: string "/>

23 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . instruction "
type =" xsd: string "/>

24 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . error_string "
type =" xsd: string "/>

25 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice . source_url "
type =" xsd: string "/>

26 <element maxOccurs =" unbounded " minOccurs ="0" name =" mod_webservice .
database_structure_file " type =" xsd: string "/>

27 </sequence >
28 </ complexType >
29 <complexType name =" request_mod_webservice ">
30 <sequence >
31 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice .id" type =" xsd: boolean

"/>
32 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . instance " type =" xsd:

boolean "/>
33 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . run_id " type =" xsd:

boolean "/>
34 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . status " type =" xsd:

boolean "/>
35 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . description " type ="

xsd: boolean "/>
36 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . instruction " type ="

xsd: boolean "/>
37 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . error_string " type ="

xsd: boolean "/>
38 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice . source_url " type =" xsd

: boolean "/>
39 <element maxOccurs ="1" minOccurs ="0" name =" mod_webservice .

database_structure_file " type =" xsd: boolean "/>
40 </sequence >
41 </ complexType >
42 [...]
43 </schema >
44 </types >
45 <message name =" response_mod_webservice ">
46 <part name =" mod_webservice " type =" myType : response_mod_webservice "/>
47 </message >
48 <message name =" request_mod_webservice ">
49 <part name =" time_interval " type =" myType : time_interval "/>
50 <part name =" mod_webservice " type =" myType : request_mod_webservice "/>
51 <part name =" instance " type =" myType : instance "/>
52 </message >
53 [...]
54 <portType name =" mod_webservice ">

64

A.4. AWSDL/SOAP-basedWeb Service for Access to the HappyFace Database in Python

55 <operation name =" mod_webservice ">
56 <input message =" request_mod_webservice "/>
57 <output message =" response_mod_webservice "/>
58 </operation >
59 </portType >
60 [...]
61 <binding name =" mod_webservice " type =" mod_webservice ">
62 <soap: binding style =" rpc" transport =" http :// schemas . xmlsoap .org/soap/http "/>
63 <operation name =" mod_webservice ">
64 <soap: operation soapAction =" urn: crafted .wsdl# mod_webservice "/>
65 <input >
66 <soap:body namespace =" urn: crafted .wsdl" use =" literal "/>
67 </input >
68 <output >
69 <soap:body namespace =" urn: crafted .wsdl" use =" literal "/>
70 </output >
71 </operation >
72 </binding >
73 [...]
74 <service name =" Database Service ">
75 <documentation > Database Web Service </ documentation >
76 <port binding =" tns: mod_webservice " name =" mod_webservice ">
77 <soap: address location =" http :// localhost :7000/ mod_webservice "/>
78 </port >
79 [...]
80 </port >
81 </service >
82 </ definitions >

A.4.2. Server Implementation

1 import time
2 from time import mktime
3 from datetime import datetime
4 from optparse import OptionParser
5 from ZSI. wstools import logging
6 from ZSI. ServiceContainer import AsServer
7 from DatabaseService_server import *
8 from sqlalchemy import *
9 from sqlalchemy .orm import sessionmaker

10 from sqlalchemy .ext. declarative import declarative_base
11

12 # Setup the database
13 def db_setup (connection_string =’ sqlite :/// HappyFace .db ’, echo= False):
14 engine = create_engine (connection_string , echo=echo)
15 Session = sessionmaker (bind=engine , autoflush =False , autocommit = False)
16 session = Session ()
17 metadata = MetaData (engine)
18 return session , engine , metadata
19

20 session , engine , metadata = db_setup ()
21 metadata . reflect ()
22 metadata . tables .keys ()
23 Base = declarative_base ()

65

A. Appendix

24

25 class table_hf_runs (Base):
26 __table__ = Table (’hf_runs ’, metadata , autoload =True)
27

28 class table_mod_webservice (Base):
29 __table__ = Table (’ mod_webservice ’, metadata , autoload =True)
30

31 class MyDatabaseService_mod_webservice (Database_Service):
32 _wsdl = "". join(open (" crafted .wsdl "). readlines ())
33

34 def soap_mod_webservice (self , ps , ** kw):
35 # Call the generated base class method to get appropriate
36 # input / output data structures
37 request , response = Database_Service . soap_mod_webservice (self , ps , ** kw)
38

39 time_from = datetime . fromtimestamp (mktime (request . _time_interval . _from))
40 time_to = datetime . fromtimestamp (mktime (request . _time_interval ._to))
41

42 class mod_webservice :
43 pass
44

45 for column in dir(request . _mod_webservice):
46 if str(column)[0] == ’_’ and str(column)[1] != ’_ ’:
47 if getattr (request . _mod_webservice , str(column)):
48 column_name = column [len(’ mod_webservice_ ’) +1:]
49 if (not request . _time_interval . _from is None) and (not request .

_time_interval ._to is None):
50 query = session . query (getattr (table_mod_webservice , column_name))

. filter (table_hf_runs .id == table_mod_webservice .id). filter (
table_hf_runs .time > time_from). filter (table_hf_runs .time <
time_to). filter (table_mod_webservice . instance == request .
_instance . _instance).all ()

51 elif not request . _time_interval . _from is None:
52 query = session . query (getattr (table_mod_webservice , column_name))

. filter (table_hf_runs .id == table_mod_webservice .id). filter (
table_hf_runs .time > time_from). filter (table_mod_webservice .
instance == request . _instance . _instance).all ()

53 elif not request . _time_interval ._to is None:
54 query = session . query (getattr (table_mod_webservice , column_name))

. filter (table_hf_runs .id == table_mod_webservice .id). filter (
table_hf_runs .time < time_to). filter (table_mod_webservice .
instance == request . _instance . _instance).all ()

55 setattr (mod_webservice , str(column), [element [0] for element in query
])

56 response . _mod_webservice = mod_webservice
57 return request , response
58

59 op = OptionParser (usage ="% prog [options]")
60 op. add_option ("-l", "-- loglevel ", help =" loglevel (DEBUG , WARN)", metavar =" LOGLEVEL ")
61 op. add_option ("-p", "--port", help =" HTTP port", metavar =" PORT", default =7000 , type =" int ")
62 options , args = op. parse_args ()
63 # set the loglevel according to cmd line arg
64 if options . loglevel :
65 loglevel = eval(options .loglevel , logging . __dict__)
66 logger = logging . getLogger ("")

66

A.4. AWSDL/SOAP-basedWeb Service for Access to the HappyFace Database in Python

67 logger . setLevel (loglevel)
68 # Run the server with a given list services
69 print ’Started ... ’
70 AsServer (port= options .port , services =[[...] , MyDatabaseService_mod_webservice (’

mod_webservice ’)])

A.4.3. Client Implementation

1 import sys , time
2 from optparse import OptionParser
3 from ZSI. version import Version as zsiversion
4 print "*** ZSI version %s ***" % (zsiversion ,)
5 from DatabaseService_client import *
6 from inspect import *
7

8 def main ():
9 op = OptionParser (usage ="% prog [options]")

10 op. add_option ("-u", "--url", help =" service URL", metavar =" URL ")
11 op. add_option ("-i", "-- input ", type =" string ",
12 help =" input string for getCurrentDate WS method ", metavar =" INPUT ")
13 options , args = op. parse_args ()
14 loc = Database_ServiceLocator ()
15

16 service = loc. getmod_webservice (url= options .url , tracefile =sys. stdout)
17 Request = request_mod_webservice ()
18 # print getmembers (Request . set_element_mod_webservice)
19 class mod_webservice :
20 _mod_webservice_id = True
21 Request . set_element_mod_webservice (mod_webservice)
22 class time_interval :
23 _from = [2013 , 1, 1, 0, 0, 3, 227 , -1]
24 _to = [2013 , 8, 5, 0, 0, 3, 227 , -1]
25 Request . set_element_time_interval (time_interval)
26 Response = service . mod_webservice (Request)
27 print Response . _mod_webservice . _mod_webservice_id
28 print Response . _mod_webservice . _mod_webservice_instance
29 [...]
30

31 if __name__ == ’__main__ ’:
32 main ()

67

A. Appendix

A.5. dCache Modules

Figure A.1.: Web output of the dCache pool information module. The parsing part
of this dCache module had to be adapted to the dCache version run in
GoeGrid. This module displays overall status and storage space informa-
tion on all dCache pools and provides a plotting functionality using the
HappyFace plot generator.

68

A.5. dCache Modules

Figure A.2.: Web output of the dCache dataset restore monitoring module. The parsing
part of this dCache module had to be adapted to the dCache version run
in GoeGrid. This module detects problems with dCache stage requests.

69

Bibliography

[1] D. C. van der Ster, J. Elmsheuser, M. Ú. García, M. Paladin, HammerCloud: A
Stress Testing System for Distributed Analysis, in Journal of Physics: Conference
Series, volume 331, 7, 072036, IOP Publishing (2011)

[2] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext transfer protocol–HTTP/1.0
(1996)

[3] M. Delfino, L. Robertson, Solving the LHC Computing Challenge: A Leading Appli-
cation of High Throughput Computing Fabrics combined with Computational Grids,
CERN-IT-DLO-2001-003 (2001)

[4] ALICE Collaboration, ALICE Technical Design Report, CERN/LHCC 2001-021
(2001)

[5] ATLAS Collaboration, ATLAS: technical proposal for a general-purpose pp experi-
ment at the large hadron collider at CERN, CERN/LHCC pages 171–173 (1994)

[6] CMS Collaboration, CMS - Technical Proposal, CERN/LHCC/94-38 (1994)

[7] LHCb Collaboration, LHCb Technical Proposal, CERN/LHCC 98-4 (1998)

[8] L. Evans, The large hadron collider project, CERN Reports pages 275–286 (1997)

[9] R. Jones, D. Barberis, The ATLAS computing model, in Journal of Physics: Confer-
ence Series, volume 119, 7, 072020, IOP Publishing (2008)

[10] T. Maeno, PanDA: distributed production and distributed analysis system for ATLAS,
in Journal of Physics: Conference Series, volume 119, 6, 062036, IOP Publishing
(2008)

[11] ATLAS Distributed Data Management, URL https://twiki.cern.ch/twiki/bin/
view/Atlas/DistributedDataManagement

71

https://twiki.cern.ch/twiki/bin/view/Atlas/DistributedDataManagement
https://twiki.cern.ch/twiki/bin/view/Atlas/DistributedDataManagement

Bibliography

[12] V. Büge, V. Mauch, G. Quast, A. Scheurer, A. Trunov, Site specific monitoring of
multiple information systems - the HappyFace Project, Journal of Physics Confer-
ence Series 219, 062057 (2010)

[13] J. Meyer, A. Quadt, P. Weber, et al., ATLAS Tier-2 at the Compute Resource Center
GoeGrid in Göttingen, in Journal of Physics: Conference Series, volume 331, 7,
072055, IOP Publishing (2011)

[14] GWDG, URL http://www.gwdg.de/

[15] HEP-Grid, URL http://documentation.hepcg.org/

[16] Red Hat Enterprise Linux, URL http://www.redhat.com/products/
enterprise-linux

[17] Scientific Linux CERN, URL http://linux.web.cern.ch/linux/scientific6

[18] M. Burgess, R. Ralston, Distributed resource administration using cfengine, Software:
practice and experience 27(9), 1083 (1997)

[19] F. D. Sacerdoti, S. Chandra, K. Bhatia, Grid systems deployment & management
using Rocks, in Cluster Computing, 2004 IEEE International Conference on, pages
337–345, IEEE (2004)

[20] Kernel-based Virtual Machine, URL http://www.linux-kvm.org/page/Main_Page/

[21] Autofs automatic file system mounter, URL http://www.autofs.org/

[22] dCap Protocol, URL http://www.dcache.org/manuals/Book-1.9.5/cookbook/
cb-proto-dcap-passive.shtml

[23] W. Allcock et al., GridFTP Protocol Specification, Global Grid Forum Recommen-
dation GFD.20 (2003)

[24] W. Allcock, I. Foster, S. Tuecke, A. Chervenak, C. Kesselman, Protocols and services
for distributed data-intensive science, in AIP Conference Proceedings, volume 583,
page 161 (2001)

[25] M. de Riese, P. Fuhrmann, T. Mkrtchyan, M. Ernst, A. Kulyavtsev, V. Podstavkov,
M. Radicke, N. Sharma, D. Litvintsev, T. Perelmutov, T. Hesselroth, G. Behrmann,
T. Zangerl, P. Millar, O. Syngea, A. Petersen, The dCache Book for 1.9.12-series
(2011), URL http://www.dcache.org/manuals/Book-1.9.12/Book-a4.pdf

72

http://www.gwdg.de/
http://documentation.hepcg.org/
http://www.redhat.com/products/enterprise-linux
http://www.redhat.com/products/enterprise-linux
http://linux.web.cern.ch/linux/scientific6
http://www.linux-kvm.org/page/Main_Page/
http://www.autofs.org/
http://www.dcache.org/manuals/Book-1.9.5/cookbook/cb-proto-dcap-passive.shtml
http://www.dcache.org/manuals/Book-1.9.5/cookbook/cb-proto-dcap-passive.shtml
http://www.dcache.org/manuals/Book-1.9.12/Book-a4.pdf

Bibliography

[26] A. Shoshani, A. Sim, J. Gu, Storage resource managers: Middleware components for
grid storage, in NASA Conference Publication, pages 209–224 (2002)

[27] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, C. Waldman, dCache, a
distributed storage data caching system, CHEP2001 Conference Notes pages 152–156
(2001)

[28] European Middleware Initiative, URL http://www.eu-emi.eu

[29] C. Aiftimiei, P. Andreetto, S. Bertocco, S. Fina, S. Ronco, A. Dorigo, A. Gianelle,
M. Marzolla, M. Mazzucato, M. Sgaravatto, Job submission and management through
web services: the experience with the CREAM service, Journal of Physics: Conference
Series 119, 062004 (2008)

[30] M. Göhner, C. Rückemann, Accounting-Ansätze im Bereich des Grid-Computing, D-
Grid, Fachgebiete Monitoring, Accounting und Billing im D-Grid-Integrationsprojekt
(2006)

[31] Torque Batch System, URL http://www.clusterresources.com/products/
torque-resource-manager.php

[32] Maui Batch Scheduler, URL http://www.clusterresources.com/products/
maui-cluster-scheduler.php

[33] Berkeley Database Information Index (BDII), URL https://twiki.cern.ch/
twiki/bin/view/EGEE/BDII

[34] Nagios Open Source Monitoring, URL http://www.nagios.org/

[35] M. L. Massie, B. N. Chun, D. E. Culler, The ganglia distributed monitoring system:
design, implementation, and experience, Parallel Computing 30(7), 817 (2004)

[36] Open Grid Forum Web Page, URL http://www.ggf.org/

[37] I. Foster, C. Kesselman, The grid: blueprint for a new computing infrastructure,
Morgan Kaufmann (2004)

[38] S. Zanikolas, R. Sakellariou, A taxonomy of grid monitoring systems, Future Gener-
ation Computer Systems 21(1), 163 (2005)

[39] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, R. Wolski, A grid
monitoring architecture, Citeseer (2002)

73

http://www.eu-emi.eu
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.clusterresources.com/products/maui-cluster-scheduler.php
http://www.clusterresources.com/products/maui-cluster-scheduler.php
https://twiki.cern.ch/twiki/bin/view/EGEE/BDII
https://twiki.cern.ch/twiki/bin/view/EGEE/BDII
http://www.nagios.org/
http://www.ggf.org/

Bibliography

[40] Python Programming Language - Official Website, URL http://www.python.org

[41] SQLite Database Engine, URL http://www.sqlite.org

[42] The World-Wide Web Consortium (WC3): HTML, URL http://www.w3.org/html

[43] Cherrypy: A Python Minimalist Framework, URL http://www.cherrypy.org

[44] Apache Software Foundation, URL http://www.apache.org

[45] Asynchronous JavaScript and XML, URL http://www.w3schools.com/ajax/

[46] Mako Templates for Python, URL http://www.makotemplates.org

[47] SQLAlchemy, URL http://www.sqlalchemy.org

[48] PostgreSQL database, URL http://www.postgresql.org/

[49] Python WSGI adapter module for Apache, URL https://code.google.com/p/
modwsgi

[50] Subversion Version Control System, URL http://subversion.apache.org

[51] Red hat Package Manager, URL http://www.rpm.org/

[52] Apache Software Foundation: Apache License, Version 2.0, URL http://www.
apache.org/licenses/LICENSE-2.0

[53] GNU Wget, URL http://www.gnu.org/software/wget

[54] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, A. Secret, The world-wide
web, Communications of the ACM 37(8), 76 (1994)

[55] The Unicode Consortium, URL http://www.unicode.org

[56] UTF-8 Character Encoding, URL https://tools.ietf.org/html/rfc3629

[57] W3C, URL http://www.w3.org/

[58] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso,
P. Buncic, P. Kunszt, et al., Middleware for the next generation Grid infrastructure,
Computing in High Energy Physics and Nuclear Physics (CHEP 2004) (2004)

[59] WSDL XML schema definition, URL http://schemas.xmlsoap.org/wsdl/

[60] R. Salz, C. Blunck, ZSI: The Zolera Soap Infrastructure, Chapters publishing (2007)

74

http://www.python.org
http://www.sqlite.org
http://www.w3.org/html
http://www.cherrypy.org
http://www.apache.org
http://www.w3schools.com/ajax/
http://www.makotemplates.org
http://www.sqlalchemy.org
http://www.postgresql.org/
https://code.google.com/p/modwsgi
https://code.google.com/p/modwsgi
http://subversion.apache.org
http://www.rpm.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/software/wget
http://www.unicode.org
https://tools.ietf.org/html/rfc3629
http://www.w3.org/
http://schemas.xmlsoap.org/wsdl/

Bibliography

[61] K. Holtman, A. Mutz, Transparent content negotiation in HTTP, Technical report,
RFC 2295, March (1998)

[62] PanDA Shift Guide, URL https://twiki.cern.ch/twiki/bin/view/PanDA/
PandaShiftGuide

[63] K. Harrison, W. Lavrijsen, P. Mato, A. Soroko, C. Tan, C. E. Tull, N. Brook,
R. Jones, GANGA: a user-Grid interface for Atlas and LHCb, arXiv preprint
cs/0306085 (2003)

[64] Open Science Grid, URL https://www.opensciencegrid.org

[65] Nordic DataGrid Facility, URL http://www.ndgf.org

[66] V. Garonne, G. A. Stewart, M. Lassnig, A. Molfetas, M. Barisits, T. Beermann,
A. Nairz, L. Goossens, F. B. Megino, C. Serfon, et al., The ATLAS Distributed Data
Management project: Past and Future, in Journal of Physics: Conference Series,
volume 396, 3, 032045, IOP Publishing (2012)

[67] ATLAS DDM Dashboard Web Interface, URL http://dashb-atlas-data.cern.ch/
ddm2

[68] S. Tuecke, Grid security infrastructure (GSI) roadmap, in Grid Forum Security Work-
ing Group Draft (2001)

75

https://twiki.cern.ch/twiki/bin/view/PanDA/PandaShiftGuide
https://twiki.cern.ch/twiki/bin/view/PanDA/PandaShiftGuide
https://www.opensciencegrid.org
http://www.ndgf.org
http://dashb-atlas-data.cern.ch/ddm2
http://dashb-atlas-data.cern.ch/ddm2

Acknowledgements

Firstly, I like to take this opportunity to thank Prof. Dr. Arnulf Quadt, who gave me the
opportunity to write this thesis and offered me a warm welcome in his research group. I
would also like to show my gratitude to Dr. Kevin Kröninger for the time and effort he
puts into this thesis as a referee.

I am indebted to Dr. Gen Kawamura, Erekle Magradze, Haykuhi Musheghyan, and
Dr. Jordi Nadal for their support and advice indispensable for the successful completion
of my Master’s Thesis. They have made available their support in a number of ways.

77

Eigenständigkeitserklärung -
Statement of Authorship

Erklärung nach §13(8) der Prüfungsordnung für den Bachelor-Studiengang Physik und
den Master-Studiengang Physik an der Georg-August-Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbstständig verfasst habe, keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe und alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche
kenntlich gemacht habe.

Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise,
im Rahmen einer nichtbestandenen Prüfung an dieser oder einer anderen Hochschule ein-
gereicht wurde.

Declaration according to §13(8) of the Examination Regulations for the Bachelor’s
degree and the Master’s degree of the Georg-August-University of Göttingen:

I declare that this document and the accompanying code has been composed by myself,
and describes my own work, unless otherwise acknowledged in the text. All verbatim
extracts have been distinguished, and all sources of information have been specifically
acknowledged.

Furthermore, this thesis has not been accepted in any previous application for a degree
neither at this university nor at any other.

Göttingen, 13.12.2013

(Christian Georg Wehrberger)

79

	1 Introduction
	2 GoeGrid - A WLCG ATLAS Tier-2 Centre
	2.1 Hardware Setup at GoeGrid
	2.2 Software Setup at GoeGrid
	2.3 Grid Services at GoeGrid
	2.4 Monitoring at GoeGrid

	3 The HappyFace Meta-Monitoring Project
	3.1 Monitoring
	3.1.1 The Grid
	3.1.2 Terminology
	3.1.3 The Monitoring Process
	3.1.4 Monitoring Requirements
	3.1.5 The Grid Monitoring Architecture
	3.1.6 Categories of Monitoring Systems

	3.2 Basic Principles of Meta-Monitoring
	3.3 The HappyFace Meta-Monitoring Project
	3.3.1 HappyFace Version 3
	3.3.2 Module Development

	4 Web Services
	4.1 WSDL/SOAP-based Web Services
	4.1.1 Simple Object Access Protocol
	4.1.2 Web Service Description Language
	4.1.3 Stub Generation
	4.1.4 WSDL/SOAP-based Web Services in Python

	4.2 RESTful Web Services
	4.3 Web Services for Access to the HappyFace Database
	4.3.1 Database Server vs. Web Service
	4.3.2 A WSDL/SOAP-based Web Service for Access to the HappyFace Database
	4.3.3 A RESTful Web Service for Access to the HappyFace Database
	4.3.4 Response Time Comparison

	5 HappyFace Module Development for GoeGrid
	5.1 HammerCloud Functional Tests
	5.2 Compute Node Information
	5.3 Analysis GANGA Jobs
	5.4 Nagios Monitoring
	5.5 Ganglia Monitoring
	5.6 PanDA Monitoring
	5.7 APEL Accounting
	5.8 DDM Dashboard Monitoring
	5.9 DDM Deletion
	5.10 Service Availability Monitoring (SAM)
	5.11 Web Service

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Outlook

	A Appendix
	A.1 Installation of HappyFace 3 on CentOS 6.3
	A.2 Example Configuration for the HappyFace 3 Core
	A.3 Example Apache Configuration for HappyFace 3
	A.4 A WSDL/SOAP-based Web Service for Access to the HappyFace Database in Python
	A.4.1 WSDL Document
	A.4.2 Server Implementation
	A.4.3 Client Implementation

	A.5 dCache Modules

