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Abstract

A widespread anomaly in financial markets is the inverse relation between volatility

and future returns: the low-volatility effect. We take a new look at this phenomenon

in the market for equity options. Our empirical results show that the negative

association between stock return volatilities and option returns is not a general

pattern, but is conditional on market makers being net short in options. If they are

net long, the effect can even be reversed. The conditional nature of the low-volatility

effect in option markets stresses the importance of market imperfections and the

reaction of market makers in explaining the anomaly. Moreover, the conditional low-

volatility effect contains important information for option market investors because

it is three to four times stronger than the unconditional effect.

Key Takeaways:

• The low-volatility effect in stock options is a conditional effect that appears

when market makers are net short in options.

• The conditional low-volatility effect is three to four times stronger than the

unconditional low-volatility effect.

• The conditional low-volatility effect cannot be explained by common factor

risks or market inefficiencies but stresses the importance of market makers

and market imperfections for the low-volatility anomaly.

JEL Classification: G12; G13

Keywords: low-volatility effect, option returns, market imperfections
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I Introduction

Volatility is negatively related to future returns. This empirical regularity, often

called the low-volatility anomaly or the low-volatility effect, is one of the most

interesting puzzles in financial economics and has been observed in many markets

(Ang, Hodrick, Xing, and Zhang, 2006, 2009). Cao and Han (2013) have documented

a specific variant of this anomaly: delta-hedged option returns decrease with an

increasing idiosyncratic volatility (IVOL) of the underlying stock. In this paper, we

provide new empirical evidence on the low-volatility effect in stock options that sheds

new light on the economic forces behind the anomaly. By doing so, we contribute

to a better understanding of the anomaly generally.

We propose and investigate the conditional low-volatility effect, arguing that a neg-

ative relation between stock volatility and future option returns is conditional on

market makers being net short in options. If market makers are net long in options,

there can be a converse relation, leading to a high-volatility effect. A reason for this

conditional low-volatility effect is based on the idea that high IVOLs cause prob-

lems for market makers in option markets because they are accompanied by high

volatility risk that cannot be hedged easily due to a lack of volatility derivatives

for individual stocks. If there is end-user buying pressure, market makers need ex-

tra compensation in the form of higher prices for writing options on high-volatility

stocks, driving option returns down. If there is selling pressure by end users and

market makers need to buy options, then option prices need to be lower, leading to

higher returns for options on high-volatility stocks. The effect may not be symmet-

ric, however. As short positions in options impose a higher risk on market makers

than long positions in terms of maximum losses, the low-volatility effect could be

stronger than the high-volatility effect, causing an inverse relation between volatility

and option returns on average—that is, an unconditional low-volatility effect.

Our empirical results provide clear evidence for a conditional low-volatility effect.
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An inverse relation between stock volatility and future option returns holds for a

fraction of options only. Using double-sorts based on stock volatility and a proxy for

market-maker positions, only those quintiles where market makers are most likely

to hold short positions show a low-volatility effect. For the quintiles where mar-

ket makers are most likely net long in options, the effect can be reversed. This

conditional high-volatility effect, however, is much weaker than the conditional low-

volatility effect and not statistically significant. Due to this asymmetry, the average

(unconditional) relation shows increasing mean option returns with decreasing stock

volatility, confirming the results by Cao and Han (2013). Separation between sys-

tematic volatility (SVOL) and idiosyncratic volatility (IVOL) via a one-factor mar-

ket model reveals that IVOL is the crucial component. When separation is instead

based on the three-factor model by Fama and French (1993), SVOL also leads to

significant effects. We interpret these findings as evidence for unhedgeable volatility

risk—that is, non-market volatility risk, being an important economic driver of the

low-volatility effect.

The results of our paper contribute to a better economic understanding of the low-

volatility effect by providing new evidence on the importance of market makers—

facing market frictions and market incompleteness—in the relation between stock

volatility and option returns. Our analysis also offers new insights for investors. If

investors want to integrate the low-volatility effect in stock options into their trading

strategy, they could just concentrate on a fraction of options: those that actually

show this pattern. Moreover, the conditional effect is about three to four times

stronger than the unconditional one. Because the conditioning variable that we use

in our empirical study requires knowledge of historical stock and option prices only,

the necessary information is relatively easy to obtain. To investigate the potential

benefits for investors in more detail, we check whether the conditional low-volatility

effect is related to common factor risks in stock and options markets and whether it

remains stable over time. Finally, we explore if it is strong enough to be exploited
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via a simple long–short trading strategy under transaction costs.

Our paper contributes to two strands of literature. First, it belongs to the group

of studies that investigate the low-volatility effect. Different explanations for this

effect have been put forward in the literature. One line of argument points to the

extra demand for high-volatility assets, caused either by leverage constraints that

investors have to meet (Frazzini and Pedersen, 2014), the irrational behavior of

private investors (Mohrschladt and Schneider, 2018), or speculative demand due to

investor preferences for lottery-like payoffs (Bali, Cakici, and Whitelaw, 2011; Bali,

Brown, Murray, and Tang, 2017). Such speculative demand is also what Cao and

Han (2013) have in mind as a reason for the low-volatility effect in option markets.1

Our suggestion of a conditional low-volatility effect is fully consistent with these

demand-based explanations. However, we broaden the picture by looking at the

supply side and ask how costly it is to meet a specific demand. Even if end-user

demand for high-volatility stocks and low-volatility stocks were equal, if market

makers have to bear higher costs to meet the demand for high-volatility stocks,

then there is still a low-volatility effect. This change of perspective from demand

towards the balancing of supply and demand may also be fruitful for analyses of the

low-volatility effect in other markets.

Second, our paper contributes to the literature on the cross section of expected op-

tion returns. Most importantly, it shows that two well-known return patterns—the

low-volatility effect, as discovered by Cao and Han (2013), and the “expensiveness ef-

fect” by Goyal and Saretto (2009)—are closely related, because expensiveness serves

as a conditioning variable to proxy market-maker positions in our study. Our paper

also complements other results on specific regularities in option returns by stress-

ing the importance of conditioning on market-maker positions (Kanne, Korn, and

Uhrig-Homburg, 2018), the importance of the different risk profiles of long versus

1Further evidence on the relation between lottery-like preferences and option returns is provided
by Byun and Kim (2016).
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short positions in options that are reflected in margin requirements (Hitzemann, Hof-

mann, Uhrig-Homburg, and Wagner, 2018), and the general importance of market

imperfections for the understanding of the cross section of expected option returns

(Christoffersen, Goyenko, Jacobs, and Karoui, 2018).

Our paper is structured as follows: In Section II, we introduce the conditional low-

volatility effect and develop hypotheses for our empirical investigation. Section III

describes our data set and the data processing. Next, we present our main results

on the conditional low-volatility effect in Section IV. In Section V, we provide addi-

tional results, centering on the extent to which the effect is beneficial for investors.

Section VI concludes.

II Volatility and Imperfect Markets: The Condi-

tional Low-Volatility Effect

This paper takes a new look at the economic forces behind the low-volatility effect

in options markets. In particular, it investigates a potential link between the low-

volatility effect and market imperfections. Market imperfections and volatility are

related because stochastic IVOL is an important non-hedgeable risk for market

makers, and the magnitude of volatility risk is likely to grow with the volatility

level.2 Non-hedgeable risks lead to inventory risk, and inventory risk can have

significant effects on option prices and returns (Gârleanu, Pedersen, and Poteshman,

2009). Does such a link, however, suffice to constitute a low-volatility effect? Should

delta-hedged option returns be lower or higher when market imperfections are more

severe? That is, should option returns decrease or increase with growing stock

2This latter point is in line with standard option pricing models. In the model by Heston
(1993), variance risk is proportional to volatility. In the model by Christoffersen, Fournier, and
Jacobs (2018), both market variance risk and idiosyncratic variance risk are proportional to market
volatility and IVOL, respectively.
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volatility? In our view, the answer depends on whether market makers are net long

or net short in options. If there is end-user buying pressure and market makers end

up with net short positions in options, market imperfections should lead to higher

option prices and lower returns. Therefore, option returns should decrease with

stock volatility and there is a low-volatility effect. If market makers are net long,

however, higher stock volatilities should be associated with higher option returns

and there is a high-volatility effect. This argument leads to our first hypothesis.

Hypothesis 1: Delta-hedged option returns decrease with stock volatility in the

cross section for options with net short positions of market makers, leading to a

low-volatility effect. For options with net long positions of market makers, option

returns increase with stock volatility, leading to a high-volatility effect.

Hypothesis 1 conjectures a low-volatility effect that is conditional on the net position

of market makers being negative. Conversely, if market makers are net long, a

positive relation between volatility and option return should appear: that is, stocks

with higher volatility will have options with higher expected returns. However, the

two settings of negative versus positive net positions of market makers may not be

symmetric. Consider a market maker who has bought a call option. The downside

risk of this position is capped at the option premium. In contrast, if the market

maker had written the call, the downside risk of the position is unlimited. Such

differences between long and short positions in terms of risk are also reflected in

margin requirements, leading to different margin costs. It is therefore reasonable to

conjecture that stock volatility affects option returns more severely if market makers

have to deal with short positions, as stated in our second hypothesis.

Hypothesis 2: The relation between stock volatility and option returns is not

symmetric with respect to a net short or net long position of market makers: the
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conditional low-volatility effect is stronger than the conditional high-volatility effect.

If Hypothesis 2 were true, it could resolve the empirical puzzle of an unconditional

low-volatility effect that is associated with market makers being net long on average

(over all stocks) in stock options (Ni, Pan, and Poteshman, 2008; Muravyev, 2016;

Christoffersen, Goyenko, Jacobs, and Karoui, 2018).3 If more stocks show a high-

volatility effect (market makers being net long in stock options) than low-volatility

effect (market makers being net short in stock options), but the latter effect is much

stronger, then the unconditional effect could well be a negative relation between

stock volatility and delta-hedged options returns.

When investigating the link between stock volatility and option returns, conditioning

on the market-maker position is not the only issue to consider. It is also crucial to be

precise about the relevant volatility concept. Because it is non-hedgeable risk that

causes problems for market makers’ inventories, the hedgeable and non-hedgeable

parts of volatility should be distinguished. This distinction is not necessarily the

same as that between SVOL and IVOL, however, because the latter depends on the

specific factor model employed in an empirical study. If market imperfections are the

root cause of the low-volatility effect, then what matters should be the availability

of liquid hedging instruments for volatility risk, leading to our third hypothesis.

Hypothesis 3: Only volatility risk that cannot be easily hedged via volatility

derivatives is relevant for the low-volatility effect.

Hypotheses 1 to 3 take the perspective that market imperfections are at the heart

of the low-volatility effect. Even if these hypotheses are supported empirically,

potential alternative explanations for the conditional low-volatility effect are still to

3However, these studies also show a very large variation in market-maker positions between
option series. That is, although market makers are net long on average, there are many stocks
where market makers are net short in the respective options.
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be considered. The reason is that these alternative explanations may have important

consequences for investors. First, there is the question of whether the observed

empirical patterns are at least partly explained by risk premiums for common factor

risks. If investors try to incorporate options into factor-investing strategies, this

information is key to making judgments about the potential to generate alpha and

achieve diversification benefits. Second, is the conditional low-volatility effect big

enough to offer significant trading profits even after accounting for common risks

and transaction costs? If the answer is yes, then at least part of the effect could be

a result of market inefficiencies. The question of whether such market inefficiencies

still exist or were reduced over time is another important piece of information for

investors. We investigate these issues in the penultimate section of this paper.

III Data and Data Processing

Data Sources and Filters

Our first major data source is the OptionMetrics IvyDB database. This database

contains information on all US exchange-listed individual equity and index options.

For our analysis, we use the daily closing bid and ask quotes of options written on

individual stocks, deltas, implied volatilities (IVs), and the matching stock prices.

Deltas and IVs are calculated by OptionMetrics’s proprietary algorithms, which

account for discrete dividend payments and the early exercise of American options.

OptionMetrics also provides 365-day historical return volatilities of the options’

underlying stocks. The sample period for the options data is from January 1996 to

August 2015.

We use similar data filters as in previous studies (e.g., Goyal and Saretto, 2009;

Cao and Han, 2013; Kanne, Korn, and Uhrig-Homburg, 2018) to reduce the impact

of recording errors. We drop all observations where the option bid price is zero,

8



the bid price is higher than the ask price, the bid–ask spread is lower than the

minimum tick size, and the mid price is smaller than $1/8. Options written on stocks

with an ex-dividend date during the option’s remaining time-to-maturity as well as

options that violate obvious no-arbitrage conditions are also excluded. Moreover,

we require a non-missing delta, IV, and 365-day historical volatility (HV), to retain

an observation in our sample.

Our second major data source is the Center for Research in Security Prices database.

Daily stock returns from the database are matched with the options data to calculate

historical 30-day stock volatilities. Finally, we use Kenneth French’s database to

obtain the returns of specific factor portfolios. These factor portfolios are required

to distinguish SVOL from IVOL and to control for potential factor risk premiums.

Risk-free interest rates are also taken from Kenneth French’s database.

Delta-Hedged Option Returns

Following Cao and Han (2013), we take the end of each month and select for each

underlying stock the put and call options that are closest to at-the-money and have

the shortest remaining time-to-maturity of all options with a maturity of at least

one month. We also require the actual moneyness to fall within the range [0.8, 1.2],

with moneyness measured as the ratio of spot price to strike. We then calculate

delta-hedged option returns for calls and puts according to

RC
t,t+τ =

max (St+τ −KC , 0) − ∆C
t St+τ − (Ct − ∆C

t St) e
r τ

Abs(Ct − ∆C
t St)

, (1)

RP
t,t+τ =

max (KP − St+τ , 0) − ∆P
t St+τ − (Pt − ∆P

t St) e
r τ

Abs(Pt − ∆P
t St)

, (2)

where t refers to the day when we set up the delta-hedged option position (end of
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month) and t + τ is the last trading day of the option. St and St+τ denote the

matched prices of the underlying stock at times t and t + τ , respectively, KC and

KP are the options’ strike prices, and ∆C
t and ∆P

t denote the deltas. The option

prices Ct and Pt are the closing mid prices at date t. According to Equations (1)

and (2), we use the returns of delta-hedged call and put options that buy one

option contract and sell delta shares of the underlying stock. The above return

definitions also consider that a positive initial value (at date t) of a delta-hedged

option requires some capital which could alternatively be invested at the risk-free

rate. If the initial value is negative, the delta-hedged option provides some capital

that could alternatively be obtained via risk-free borrowing. Because our delta-

hedged option returns take these opportunities for risk-free investing or borrowing

into account, they are to be interpreted as excess returns.

[ Insert Table 1 about here ]

Given our data period and the data filters, we have 357,551 delta-hedged call returns

and 359,136 delta-hedged put returns. As the data period covers 236 months, we

have on average 1,515 calls and 1,522 puts in a cross section. However, the number of

observations per cross section increases over time. Panels A and B of Table 1 provide

some descriptive statistics of the delta-hedged call and put returns. Average delta-

hedged returns are negative for both calls and puts and show a very large dispersion.

The return period (time-to-maturity of options) is, on average, close to 50 days and

the moneyness of the options is close to one.

Stock-Return Volatilities

To investigate the cross-sectional relation between option returns and stock volatili-

ties, we need to calculate volatilities in a next step. Again, we closely follow Cao and

Han (2013). For every stock and every date t, we calculate the standard deviation
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of daily stock returns over the previous 30-day period.4 This is our measure of total

volatility (VOL). To separate IVOL from SVOL, we use either the market factor

or the three-factor model by Fama and French (1993).5 Because liquid derivatives

contracts are available to hedge changes in market volatility—for example, futures

on the Chicago Board Options Exchange Volatility Index (VIX)6—the one-factor

model should be more appropriate than the three-factor model in distinguishing

between hedgeable and non-hedgeable7 volatility risk. This is what we will exploit

to test Hypothesis 3. Panel C of Table 1 shows some descriptive statistics of the

(annualized) volatilities that we use in our study. On average, IVOL is greater than

SVOL whether the one- or three-factor model is used. We also see the extent to

which the three-factor model changes IVOL versus SVOL values compared to the

one-factor model.

Conditioning Variables

The core idea of this paper is that the low-volatility effect should be investigated

conditionally by considering whether market makers are net long or net short in

specific options. To proxy market-maker positions, we take a pragmatic view and

use a conditioning variable that is based on the market prices of stocks and options.

Such a conditioning variable, based on public information only, has the advantage

that a corresponding conditional low-volatility effect could be exploited more easily

via trading strategies. No proprietary information on the actual holdings of market

makers is required. The proxy that we use is option expensiveness, measured as

the difference between the option’s IV and a benchmark volatility estimate from

4To maintain a sufficient number of observations, we require to have at least 17 daily returns
available over this period.

5We use the daily data from Kenneth French’s database to obtain factor returns that exactly
match the return periods of the options.

6More information on VIX futures is provided, for example, by Shu and Zhang (2012) and
Simon and Campasano (2014).

7Volatility derivatives are not generally available for individual stocks and factor portfolios
besides the market factor.
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historical stock-return data (i.e., HV). As shown by Bollen and Whaley (2004) and

Gârleanu, Pedersen, and Poteshman (2009), there is a strong relation between end-

user demand pressure and expensiveness, which affects market-maker positions. The

higher the expensiveness of an option, the more likely it is that market makers are

net short in this option. The implementation of the expensiveness measure uses the

date t IVs of the call and put options from OptionMetrics. For the HV benchmark,

we use OptionMetrics’s 365-day volatility for the period preceding date t, as in Goyal

and Saretto (2009). Descriptive statistics for the expensiveness measure IV−HV are

provided in Panel D of Table 1. In the latter part of our paper, we provide results

that are conditional on different transaction cost scenarios. The core element of these

scenarios is the option’s quoted spread. Descriptive statistics for quoted spreads are

also provided in Panel D of Table 1.

IV The Conditional Low-Volatility Effect: Em-

pirical Evidence

For each month in our data period, we take all delta-hedged call (put) returns

and sort them into quintiles according to the corresponding stock volatility. We

use either VOL, IVOL, or SVOL in this sort. A single sort by volatility provides

evidence on the unconditional low-volatility effect. Next, we sort the returns in each

volatility quintile by IV−HV and again build quintiles. The purpose of this second

sort is an (approximate) conditioning on net market-maker positions. With higher

expensiveness, options in the respective quintiles should have a higher likelihood of

market makers holding short positions. In contrast, if expensiveness is lower, market

makers should more likely be net long in the corresponding options. For each of the

25 resulting groups, we calculate average returns. Finally, we obtain time-series

averages of the average returns in each group.
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Table 2 provides the results of these calculations, based on a one-factor market model

to distinguish between IVOL and SVOL. Panel A presents the results for call options

and Panel B the corresponding results for put options. The first five columns (1-low

to 5-high) refer to the different expensiveness quintiles, and the last column (all)

shows the average returns over all expensiveness categories; that is, it provides the

results of the single sort by volatility. Therefore, the last column delivers information

on the unconditional low-volatility effect. The first five rows (1-low to 5-high) refer to

the respective volatility quintiles. The sixth row (5-1), contains the average returns

of a long–short trading strategy that buys the high-volatility portfolio (5-high) and

sells the low-volatility portfolio (1-low). If there is a low-volatility effect, the average

return of this trading strategy should be negative. Positive returns of this trading

strategy are indicative for a high-volatility effect. Finally, the seventh row shows

the t-values for the average returns of the 5-1 portfolios.

[ Insert Table 2 about here ]

The results in Table 2 provide clear support for a conditional low-volatility effect, as

stated in Hypothesis 1. Average delta-hedged option returns clearly decrease with

total volatility for the two highest expensiveness quintiles. Moreover, the effect is

much stronger for the highest expensiveness quintile. In terms of average 50-day

returns of the 5-1 strategy, the effect is about three times bigger in the highest

expensiveness quintile (–3.7%) than in the second highest expensiveness quintile

(–1.2%) for call options. For put options, it is more than two times bigger (–2.4%

versus –1.1%). However, no low-volatility effect can be found in the other three

quintiles, meaning that the effect is only present in a fraction of the whole data set.

Average returns of 5-1 strategies are even positive for the two lowest expensiveness

quintiles, pointing towards a high-volatility effect. However, the effect is much

smaller (in absolute terms) than the effect in the highest expensiveness quintiles and

not statistically significant. This finding supports Hypothesis 2: a conditional high-
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volatility effect, if it exists at all, is much weaker than the corresponding conditional

low-volatility effect. Consequently, the unconditional effect shows an inverse relation

between stock volatility and future option returns, which was first discovered by

Cao and Han (2013) and is confirmed by the results of the 5-1 strategy in the last

column (all). It is also important to compare the magnitudes of the conditional

and unconditional low-volatility effects. Examining the options with the highest

expensiveness, returns of the 5-1 strategy are more than four times larger (in absolute

terms) for calls (–3.7% versus –0.8%) and more than three times larger for puts

(–2.4% versus –0.7%), as compared to a strategy based on all options.

In line with market imperfections being at the heart of the low-volatility effect in

options markets, Hypothesis 3 states that only non-hedgeable volatility risk is rele-

vant for the low-volatility effect. To provide evidence on this issue, we replace VOL

with either SVOL or IVOL in our sorts. In particular, we use a one-factor market

model to distinguish between the systematic and idiosyncratic parts of volatility.

In such a setting, SVOL equals market volatility, and market volatility risk can be

hedged via liquid volatility derivatives like VIX futures.

When using IVOL instead of VOL for sorting, the conditional volatility effect ap-

pears even stronger. If we condition on SVOL instead, there is no longer any signifi-

cant low-volatility effect even in the highest expensiveness quintile. We interpret this

finding as evidence for the dominant role of non-market volatility and non-hedgeable

volatility risk, supporting Hypothesis 3. To further substantiate Hypothesis 3, we

repeat our analysis of SVOL versus IVOL, this time using the three-factor model by

Fama and French (1993) for separation. Table 3 provides our results. Given that the

three-factor model differently defines IVOL and SVOL (compared to the one-factor

model), the effects are slightly weaker for IVOL but stronger for SVOL. In the high-

est expensiveness quintile, we now find a significant low-SVOL effect for both calls

and puts. By classifying volatility due to the two additional factors as systematic,

SVOL becomes important for the low-volatility effect. This finding is consistent

14



with the view that it is important whether market makers in options markets can

easily hedge the corresponding volatility risk or not. Finally, it is worth noting that

the effects of moving from a one- to a three-factor model cannot be observed by

looking at the unconditional low-volatility effect alone. Therefore, our focus on the

conditional low-volatility effect, which is much stronger in the highest expensiveness

quintiles, helps us to study more subtle aspects of the whole phenomenon.

[ Insert Table 3 about here ]

V Benefits for Investors

In this section, we further explore the value of the conditional low-volatility effect

for investors. Our first question is whether the returns of a conditional low-volatility

trading strategy relate to some common factors that are priced either in stock or

options markets. If the returns of such a strategy were merely compensation for

common factor risks, then the value for investors is limited because more straight-

forward strategies exist to earn the respective risk premiums.

For our analysis of this question, we use a trading strategy that holds a long position

in options on low-volatility stocks (1-low) and a short positions in options on high-

volatility stocks (5-high), using the highest expensiveness quintile (5-high in Table 2)

and IVOL according to the one-factor market model (IVOL-1F in Table 2). We

consider both stock market factors and option market factors to explain the returns

of this strategy. Although we try to avoid stock price exposure by using delta-

hedged option returns, these hedges are unlikely to be perfect, and a remaining

stock price exposure may be priced. To capture such effects, we use the three

factors—market (MKT), size (SMB), and value (HML)—from the Fama and French

(1993) model, the momentum factor (MOM) by Carhart (1997), and a low-volatility

stock market factor (LowVol). The latter factor uses the returns of a long–short
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portfolio that buys low-volatility stocks and sells high-volatility stocks. The term

“low-volatility stocks” refers to the 1-low quintile of all stocks according to IVOL

(IVOL-1F in Table 2), and “high-volatility stocks” refers to the 5-high quintile of

all stocks. Inclusion of the LowVol factor ensures that our results on delta-hedged

option returns are not simply picking up the low-volatility effect in the stock market,

due to our sorting by stock volatility. We also consider option market factors. The

market volatility risk premium is approximated by the return of zero-beta straddles

written on the Standard & Poors’ (S&P) 500 Index (ZB-STR Index), as suggested by

Coval and Shumway (2001). Changes in the VIX (dVIX) are used as an indicator

for the magnitude of market volatility risk. In addition to market volatility risk,

correlation risk may be priced in the low-volatility trading strategy. As shown by

Driessen, Maenhout, and Vilkov (2009), correlation risk premiums can be captured

via differences between the market variance risk premium and the average variance

risk premium of the component stocks. Therefore, we add the average returns of

zero-beta straddles written on all component stocks (ZB-STR Stocks) of the S&P

500 Index as an additional factor. All factor returns cover the same return periods

as our delta-hedged option returns.

[ Insert Table 4 about here ]

Table 4 presents the results of time-series regressions that regress the delta-hedged

option returns of the 1-5 strategy on different combinations of factors. Panel A

gives the results for call options and Panel B for put options. Model 1 explores the

impact of the stock market factors; Model 2, the importance of a market variance

risk premium; Model 3, the impact of variance risk; and Model 4, the joint influence

of variance and correlation risk premiums. Finally, Model 5 considers all factors

simultaneously. The regression analysis shows some explanatory power for certain

factors. Model 1 has significant coefficients for the MKT and HML factors, and

Model 3 indicates some explanatory power of volatility risk. These results hold for
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both call and put options. For call options, there seems to be also an effect of the

variance risk premium, according to Model 2. Most importantly, for all models in

Table 4, alphas are highly significant and very close to the average return of a 1-5

strategy, which is 4.03% for calls and 2.67% for puts. Therefore, we can conclude

that the cross-sectional phenomenon of a conditional low-volatility effect in option

markets is not just a compensation for some common factor risks.

The second question that we ask in this section is whether the conditional low-

volatility effect is only present in the early years of our data period and disappearing

over time. If this were the case, the conditional low-volatility effect is likely to be a

result of market inefficiencies that were reduced over time and should no longer be

considered by investors. In particular, the Securities and Exchange Commission’s

(SEC’s) market linkage plan, finally becoming effective in April 2003, may have

contributed to the reduction of such inefficiencies. Moreover, we ask whether the

positive average returns of our low-volatility trading strategy merely results from a

few extreme observations during the financial crisis between June 2007 and Decem-

ber 2009, which would suggest that the conditional low-volatility effect would be

irrelevant for investors in normal times.

[ Insert Table 5 about here ]

Table 5 provides the average returns and alphas (according to Model 5 in Table 4)

for four different time periods. We consider the full period (January 1996 to August

2015), the full period excluding the time of the financial crisis from June 2007

to December 2009, the period until the SEC’s market linkage plan became effective

(January 1996 to April 2003), and the period thereafter (May 2003 to August 2015).

There is no evidence that the conditional low-volatility effect is only driven by market

inefficiencies during the early years of our data period. To the contrary, if we use

the more recent data period from May 2003 onwards, both mean returns and alphas

increase, as compared to the whole data period. This is true for both calls and puts.
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If anything, the effect becomes stronger over time and there is no indication that it

should be disregarded. There is also no indication that the effect is strongly driven

by some extreme observations from the financial crisis. Excluding the crisis period,

both average returns and alphas change very little.

The third question we deal with in this section is whether the conditional low-

volatility effect can be exploited by investors via a simple trading strategy even in

the presence of transaction costs. So far, our analysis of the low-volatility trading

strategy was based on the assumption that trades can be executed at the mid quotes.

Now we take option spreads into account and consider different transaction cost

scenarios. We follow Cao and Han (2013) and assume that the effective spread

(ESPR) of transactions equals a certain fraction of the quoted spread (QSPR).8

Specifically, we assume ESPR/QSPR ratios of 10%, 25%, and 50%, respectively,

following Cao and Han (2013). As a reference point, we also repeat results under

the assumption of no transaction costs (i.e., mid price [MidP]).

[ Insert Table 6 about here ]

Table 6 reports the average delta-hedged option returns and alphas (according to

Model 5 in Table 4) of the 1-5 portfolio in the highest expensiveness quintile under

the different transaction cost scenarios. Panel A gives results for calls and Panel B

gives results for puts. Average returns and alphas stay statistically and economically

significant for an ESPR/QSPR ratio of 25%. If we move to 50%, however, we lose

significance for both call and put options. In conclusion, only investors with low

transactions costs can exploit the conditional low-volatility effect profitably, though

the effect is three to four times stronger than that of unconditional low-volatility.

However, this finding does not mean that knowledge of the conditional low-volatility

effect is useless for investors with higher transactions costs. To the contrary, our

8Compare Cao and Han (2013), page 246, Table 10, for analogous results with respect to the
unconditional low-volatility effect.
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findings show that the effect cannot be easily arbitraged away (due to the trans-

actions costs) and does not tend to shrink over time, making it more likely that

the effect will persist in the future and should be considered. For example, if in-

vestors with lottery-like preferences want to buy options on high-volatility stocks,

they should think about selecting these options from the lowest IV−HV quintile

(i.e., 1-low) instead of the highest one (i.e., 5-high). By doing so, they would avoid

the strong low-volatility effect in the highest quintile and could even profit from the

slight high-volatility effect in the lowest quintile. If we take the results from Ta-

ble 2, the differences in average 50-day delta-hedged returns (using IVOL-1F) when

selecting options on high-volatility stocks from the lowest IV−HV quintile instead

of the highest quintile would be 6.5% for calls and 4.5% for puts.9

VI Conclusions

The low-volatility effect is a well-known phenomenon in many financial markets that

challenges the intuitive idea of a risk–return trade-off. Our empirical investigation

into the low-volatility effect in stock options contributes to a better understanding

of this phenomenon. We show that the low-volatility effect is not a general pattern,

but is conditional on option expensiveness being high. Where option expensiveness

is low, the effect is even reversed, although the reverse effect is quantitatively much

weaker.

Our empirical findings support the view that market imperfections and the reaction

of market makers to these imperfections are at the heart of the effect. If high option

expensiveness is a good proxy for market makers being net short in options and

high IVOL is a good proxy for severe market imperfections, the observed pattern

9The calculations in Table 2 are based on mid quotes. If we take transaction costs into account
and repeat the calculations based on ask prices, the differences in 50-day delta-hedged returns are
7% for calls and 4.9% for puts.
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suggests that market makers receive a compensation because they sell at higher

option prices if market imperfections become more severe. If market makers are

net long, however, they receive a compensation because they buy at lower option

prices. Because risk profiles of long and short positions in options are different,

the former compensation should be greater, which is exactly what we observe. More

generally, our analysis complements demand-based explanations of the low-volatility

effect by drawing attention to the potential costs to meet a certain demand. This

is an interesting avenue for further research in other markets as well.

The conditional low-volatility effect that we document in this paper also provides

important information for investors in options markets. First, the conditional effect

is three to four times stronger than the unconditional one. Second, it cannot be

explained by common factor risks in stock and option markets and therefore offers

some potential to create alpha. Finally, it is stable over time and cannot easily be

arbitraged away in the presence of transaction costs. Therefore, the effect is likely to

persist in the future and should be considered in the design of investment strategies

in stock options.
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Table 1: Summary Statistics of Options and Stock Data

Panel A: Call Options (357,551 observations)

µ σ q0.1 q0.25 q0.75 q0.9

Delta-Hedged Return –0.8% 14.9% –14.4% –8.1% 4.0% 14.2%
Days to Maturity 49.7 2.6 47.0 50.0 51.0 52.0
Moneyness (S/K) 1.00 0.06 0.94 0.97 1.03 1.06

Panel B: Put Options (359,136 observations)

µ σ q0.1 q0.25 q0.75 q0.9

Delta-Hedged Return –0.4% 12.1% –12.0% –6.9% 3.8% 12.4%
Days to Maturity 49.7 2.6 47.0 50.0 51.0 52.0
Moneyness (S/K) 1.01 0.06 0.94 0.97 1.04 1.07

Panel C: Stock Return Volatilities

µ σ q0.1 q0.25 q0.75 q0.9

VOL 46.1% 30.5% 18.8% 26.2% 57.0% 81.9%

1-Factor Model (1F)
IVOL-1F 39.1% 27.6% 14.8% 21.2% 49.0% 71.1%
SVOL-1F 20.7% 18.4% 4.3% 9.0% 26.3% 41.9%

3-Factor Model (3F)
IVOL-3F 36.0% 25.7% 13.5% 19.4% 45.0% 65.7%
SVOL-3F 26.4% 20.1% 9.0% 13.6% 32.8% 49.8%

Panel D: Conditioning Variables

µ σ q0.1 q0.25 q0.75 q0.9

Expensiveness: IV−HV –0.8% 16.6% –16.4% –6.6% 5.6% 13.5%
Option Spread 27% 30% 6% 10% 31% 61%

Note: This table shows descriptive statistics of the options and stock data that we use in our
empirical study. In particular, it presents the mean (µ), the standard deviation (σ), and differ-
ent quantiles (10%-quantile (q0.1), 25%-quantile (q0.25), 75%-quantile (q0.75), 90%-quantile (q0.9)).
Panel A shows the descriptive statistics for call options. Delta-hedged returns are calculated as
given in Equation (1). Panel B shows the descriptive statistics for put options. The formula for
these delta-hedged returns is given in Equation (2). Panel C provides descriptive statistics for
historical stock return volatilities. These refer to annualized values from a historical 30-day data
window, estimated from daily returns. We distinguish between total volatility (VOL), idiosyncratic
volatility (IVOL), and systematic volatility (SVOL). The separation between SVOL and IVOL is
either done via a one-factor market model (IVOL-1F, SVOL-1F) or via the three-factor model
by Fama and French (1993) (IVOL-3F, SVOL-3F). Panel D presents descriptive statistics of the
expensiveness measure, IV−HV, where IV denotes the implied volatility of the options, and HV is
a historical 365-day benchmark volatility. Moreover, Panel D provides descriptive statistics of the
quoted option spreads at the beginning of the return period, measured in percent of the mid price.
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Table 2: Average Returns of Options Sorted by Stock Volatility and Expensiveness:
One-factor Model

Panel A: Delta-hedged call returns

Option Expensiveness (IV−HV)

1-low 2 3 4 5-high all

V
O

L

1-low 0.3% –0.3% –0.4% –0.7% –1.8% –0.6%
2 0.6% –0.2% –0.6% –0.8% –2.5% –0.7%
3 1.1% –0.1% –0.5% –1.0% –2.7% –0.7%
4 1.0% 0.2% –0.5% –1.2% –3.7% –0.8%

5-high 0.7% 0.1% –0.5% –1.9% –5.5% –1.4%

5-1 0.5% 0.4% –0.0% –1.2% –3.7% –0.8%
t-stat. 1.1 1.2 –0.1 –3.8 –10.0 –2.4

1-low 2 3 4 5-high all

IV
O

L
-1

F

1-low 0.4% –0.4% –0.4% –0.6% –1.7% –0.6%
2 0.6% –0.1% –0.5% –0.8% –2.4% –0.6%
3 0.9% 0.0% –0.4% –0.9% –2.7% –0.6%
4 1.1% 0.2% –0.4% –1.2% –3.8% –0.8%

5-high 0.7% 0.1% –0.6% –2.0% –5.8% –1.5%

5-1 0.3% 0.5% –0.1% –1.3% –4.0% –0.9%
t-stat. 0.8 1.5 –0.3 –4.5 –11.5 –3.0

1-low 2 3 4 5-high all

S
V

O
L

-1
F 1-low 0.5% –0.3% –0.6% –1.0% –3.3% –0.9%

2 0.5% –0.1% –0.6% –1.0% –3.2% –0.9%
3 0.6% –0.1% –0.6% –0.9% –2.9% –0.8%
4 1.1% –0.1% –0.3% –1.0% –3.1% –0.7%

5-high 1.1% 0.0% –0.3% –1.2% –3.8% –0.9%

5-1 0.5% 0.2% 0.3% –0.2% –0.5% 0.1%
t-stat. 1.7 0.8 1.1 –0.9 –1.3 0.3
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Panel B: Delta-hedged put returns

Option Expensiveness (IV−HV)

1-low 2 3 4 5-high all

V
O

L
1-low 0.4% 0.1% 0.0% –0.3% –1.4% –0.2%

2 0.7% 0.2% –0.1% –0.4% –1.7% –0.3%
3 1.0% 0.3% –0.1% –0.5% –1.8% –0.2%
4 1.0% 0.5% 0.1% –0.7% –2.6% –0.4%

5-high 0.6% 0.3% –0.3% –1.4% –3.8% –0.9%

5-1 0.2% 0.1% –0.3% –1.1% –2.4% –0.7%
t-stat. 0.5 0.4 –1.1 –4.0 –7.3 –2.7

1-low 2 3 4 5-high all

IV
O

L
-1

F

1-low 0.5% 0.1% 0.0% –0.3% –1.3% –0.2%
2 0.8% 0.3% –0.1% –0.4% –1.6% –0.2%
3 1.0% 0.3% –0.2% –0.4% –1.9% –0.2%
4 0.9% 0.4% 0.0% –0.6% –2.6% –0.4%

5-high 0.5% 0.3% –0.4% –1.4% –4.0% –1.0%

5-1 0.0% 0.2% –0.5% –1.1% –2.7% –0.8%
t-stat. 0.1 0.6 –1.9 –4.2 –8.9 –3.5

1-low 2 3 4 5-high all

S
V

O
L

-1
F 1-low 0.6% 0.1% –0.2% –0.4% –2.6% –0.5%

2 0.5% 0.2% –0.1% –0.7% –2.2% –0.5%
3 0.7% 0.1% –0.1% –0.3% –2.2% –0.3%
4 1.0% 0.3% 0.1% –0.6% –2.0% –0.2%

5-high 1.0% 0.3% 0.0% –0.7% –2.7% –0.4%

5-1 0.4% 0.2% 0.2% –0.2% –0.1% 0.1%
t-stat. 1.6 0.9 0.9 –1.0 –0.3 0.5

Note: This table shows average delta-hedged options returns of portfolios sorted by stock volatility
and expensiveness (IV−HV). Panel A shows the results for calls and Panel B the results for puts.
For each month of the data period January 1996 to August 2015, delta-hedged option returns are
sorted by volatility (either VOL, IVOL-1F or SVOL-1F). Within each volatility quintile, option
returns are then sorted by expensiveness. The table reports the average delta-hedged returns
for each volatility-expensiveness combination, averaged over time. The last column (all) provides
averages over all expensiveness categories. The row denoted by 5-1 presents the results for a
long–short trading strategy that buys the portfolios with the highest volatilities (5-high) and sells
the portfolios with the lowest volatilities (1-low). The t-statistics for the average returns of these
portfolios are obtained via Newey–West estimators (Newey and West, 1987), which account for
heteroskedasticity and autocorrelation of the portfolio returns.
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Table 3: Average Returns of Options Sorted by Stock Volatility and Expensiveness:
Three-factor Model

Panel A: Delta-hedged call returns

Option Expensiveness (IV−HV)

1-low 2 3 4 5-high all

V
O

L

1-low 0.3% –0.3% –0.4% –0.7% –1.8% –0.6%
2 0.6% –0.2% –0.6% –0.8% –2.5% –0.7%
3 1.1% –0.1% –0.5% –1.0% –2.7% –0.7%
4 1.0% 0.2% –0.5% –1.2% –3.7% –0.8%

5-high 0.7% 0.1% –0.5% –1.9% –5.5% –1.4%

5-1 0.5% 0.4% 0.0% –1.2% –3.7% –0.8%
t-stat. 1.1 1.2 –0.1 –3.8 –10.0 –2.4

1-low 2 3 4 5-high all

IV
O

L
-3

F

1-low 0.3% –0.3% –0.4% –0.7% –1.8% –0.6%
2 0.8% –0.2% –0.5% –0.8% –2.4% –0.6%
3 1.0% 0.1% –0.4% –0.9% –2.7% –0.6%
4 1.1% 0.1% –0.6% –1.2% –3.8% –0.9%

5-high 0.6% 0.2% –0.7% –1.9% –5.7% –1.5%

5-1 0.3% 0.6% –0.3% –1.2% –3.9% –0.9%
t-stat. 0.8 1.8 –0.7 –4.2 –11.2 –3.0

1-low 2 3 4 5-high all

S
V

O
L

-3
F 1-low 0.5% –0.3% –0.5% –0.8% –2.7% –0.8%

2 0.4% –0.2% –0.7% –0.9% –2.9% –0.9%
3 0.7% –0.1% –0.6% –0.9% –3.1% –0.8%
4 1.1% 0.0% –0.6% –1.2% –3.4% –0.8%

5-high 1.0% 0.2% –0.2% –1.2% –4.5% –1.0%

5-1 0.4% 0.5% 0.2% –0.4% –1.8% –0.2%
t-stat. 1.2 1.4 0.6 –1.1 –5.2 –0.7
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Panel B: Delta-hedged put returns

Option Expensiveness (IV−HV)

1-low 2 3 4 5-high all

V
O

L
1-low 0.4% 0.1% 0.0% –0.3% –1.4% –0.2%

2 0.7% 0.2% –0.1% –0.4% –1.7% –0.3%
3 1.0% 0.3% –0.1% –0.5% –1.8% –0.2%
4 1.0% 0.5% 0.1% –0.7% –2.6% –0.4%

5-high 0.6% 0.3% –0.3% –1.4% –3.8% –0.9%

5-1 0.2% 0.1% –0.3% –1.1% –2.4% –0.7%
t-stat. 0.5 0.4 –1.1 –4.0 –7.3 –2.7

1-low 2 3 4 5-high all

IV
O

L
-3

F

1-low 0.5% 0.2% 0.0% –0.3% –1.4% –0.2%
2 0.8% 0.3% –0.1% –0.3% –1.6% –0.2%
3 1.0% 0.5% –0.1% –0.4% –1.9% –0.2%
4 0.9% 0.4% –0.1% –0.7% –2.6% –0.4%

5-high 0.5% 0.4% –0.5% –1.4% –3.9% –1.0%

5-1 0.0% 0.2% –0.6% –1.1% –2.5% –0.8%
t-stat. 0.1 0.6 –2.3 –4.2 –8.5 –3.5

1-low 2 3 4 5-high all

S
V

O
L

-3
F 1-low 0.4% 0.2% –0.1% –0.4% –1.9% –0.4%

2 0.5% 0.2% –0.2% –0.4% –2.1% –0.4%
3 0.8% 0.2% 0.0% –0.5% –2.1% –0.3%
4 1.0% 0.4% –0.1% –0.7% –2.3% –0.3%

5-high 0.9% 0.4% 0.1% –0.8% –3.1% –0.5%

5-1 0.5% 0.2% 0.1% –0.4% –1.2% –0.2%
t-stat. 1.8 0.7 0.5 –1.3 –4.2 –0.6

Note: This table shows average delta-hedged options returns of portfolios sorted by stock volatility
and expensiveness (IV−HV). Panel A shows the results for calls and Panel B the results for puts.
For each month of the data period January 1996 to August 2015, delta-hedged option returns are
sorted by volatility (either VOL, IVOL-3F or SVOL-3F). Within each volatility quintile, option
returns are then sorted by expensiveness. The table reports the average delta-hedged returns
for each volatility-expensiveness combination, averaged over time. The last column (all) provides
averages over all expensiveness categories. The row denoted by 5-1 presents the results for a
long–short trading strategy that buys the portfolios with the highest volatilities (5-high) and sells
the portfolios with the lowest volatilities (1-low). The t-statistics for the average returns of these
portfolios are obtained via Newey–West estimators (Newey and West, 1987), which account for
heteroskedasticity and autocorrelation of the portfolio returns.
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Table 4: Regressions of Average Returns of Long–Short (1-5) Portfolios When Ex-
pensiveness is High (5-high) on Different Combinations of Factors

Panel A: Calls

Model 1 Model 2 Model 3 Model 4 Model 5

Alpha 3.75% 3.74% 3.96% 3.74% 3.84 %
(8.85) (10.49) (11.99) (10.53) (8.98)

MKT 0.255 0.063
(3.52) (0.51)

SMB 0.145 0.046
(1.05) (0.34)

HML –0.281 –0.214
(–2.69) (–2.25)

MOM –0.014 0.023
(–0.15) (0.26)

LowVol 4.362 –3.522
(0.48) (–0.39)

ZB-STR –0.252 –1.847 –1.420
Index (–4.00) (–1.69) (–1.30)

dVIX –0.263 –0.110
(–4.90) (–1.23)

ZB-STR –1.836 –0.685
Stocks (–0.85) (–0.26)

R2
adj 0.115 0.088 0.104 0.088 0.162
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Panel B: Puts

Model 1 Model 2 Model 3 Model 4 Model 5

Alpha 2.54% 2.57% 2.63% 2.57% 2.56%
(7.37) (7.81) (8.77) (7.82) (7.48)

MKT 0.158 0.113
(2.25) (1.14)

SMB 0.096 0.100
(1.01) (1.01)

HML –0.217 –0.209
(–3.14) (–3.18)

MOM –0.007 –0.013
(–0.12) (–0.21)

LowVol 0.629 0.441
(0.09) (0.06)

ZB-STR –0.875 –1.354 –1.017
Index (–1.63) (–1.42) (–1.17)

dVIX –0.139 –0.053
(–2.66) (–0.77)

ZB-STR 1.310 2.305
Stocks (0.69) (1.07)

R2
adj 0.120 0.016 0.049 0.014 0.120

Note: This table shows the results of different regression models that regress the returns of a low-
volatility trading strategy on different combinations of factors. Panel A provides the results for
calls and Panel B the results for puts. The low-volatility trading strategy holds long positions in
a low-volatility portfolio (1-low) and short positions in a high-volatility portfolio (5-high). These
portfolios refer to the highest expensiveness quintiles (see Table 2) and use IVOL-1F. Based on
Fama and French’s (1993) model, we consider the market factor (MKT), the value factor (HML)
and the size factor (SMB). In addition, we use Carhart’s (1997) momentum factor (MOM) and a
low-volatility stock market factor (LowVol). Factors referring to the option market are the returns
of zero-beta straddles on the S&P 500 Index (ZB-STR Index), the average returns of zero-beta
straddles written on the component stocks of the S&P 500 Index (ZB-STR Stocks), and changes in
the VIX Index (dVIX). The t-statistics (in parentheses) are obtained via Newey–West estimators
(Newey and West, 1987), which account for heteroskedasticity and autocorrelation.
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Table 5: Average Returns and Alphas of Long–Short (1-5) Portfolios When Ex-
pensiveness is High (5-high) for Different Periods

Panel A: Calls

Full Period excl. Crisis ≤04/2003 >04/2003

Average Return 4.03% 4.05% 3.17% 4.54%

(11.48) (10.76) (4.26) (13.55)

Alpha 3.84% 3.74% 2.89% 4.60%

(Eight-Factor Model) (8.98) (7.09) (3.60) (12.09)

Panel B: Puts

Full Period excl. Crisis ≤04/2003 >04/2003

Average Return 2.67% 2.59% 1.38% 3.43%

(8.91) (7.74) (2.37) (14.11)

Alpha 2.56% 2.28% 1.02% 3.48%

(Eight-Factor Model) (7.48) (5.23) (1.61) (13.86)

Note: This table shows the average returns and alphas of a low-volatility trading strategy for
different time periods. Panel A provides the results for calls and Panel B the results for puts. The
low-volatility trading strategy holds a long position in a low-volatility portfolio (1-low) and a short
position in a high-volatility portfolio (5-high). These portfolios refer to the highest expensiveness
quintiles (see Table 2) and use IVOL-1F. Alphas are obtained from the eight-factor model (Model 5)
in Table 4. The full data period is from January 1996 to August 2015. The crisis period is from June
2007 to December 2009. The t-statistics (in parentheses) are obtained via Newey–West estimators
(Newey and West, 1987), which account for heteroskedasticity and autocorrelation.

31



Table 6: Effect of Transaction Costs on Average Returns and Alphas of Long–Short
(1-5) Portfolios When Expensiveness is High (5-high)

Panel A: Calls

ESRP/QSPR MidP 10% 25% 50%

Average Return 4.03% 3.30% 2.22% 0.46%

(11.48) (9.88) (6.81) (1.29)

Alpha 3.84% 3.08% 1.96% 0.14%

(Eight-Factor-Model) (8.98) (7.42) (4.80) (0.34)

Panel B: Puts

ESRP/QSPR MidP 10% 25% 50%

Average Return 2.67% 2.16% 1.39% 0.08%

(8.91) (7.49) (4.98) (0.28)

Alpha 2.56% 2.04% 1.24% –0.10%

(Eight-Factor-Model) (7.48) (6.16) (3.90) (–0.33)

Note: This table shows the average returns and alphas of a low-volatility trading strategy for
different levels of transaction costs. Panel A provides the results for calls and Panel B the results
for puts. The low-volatility trading strategy holds long positions in a low-volatility portfolio (1-
low) and short positions in a high-volatility portfolio (5-high). These portfolios refer to the highest
expensiveness quintiles (see Table 2) and use IVOL-1F. Alphas are obtained from the eight-factor
model (Model 5) in Table 4. The data period is from January 1996 to August 2015. The different
transaction cost scenarios refer to different ratios of ESPR to QSPR: 10%, 25%, or 50%. As a
reference point, the table also includes the case without transaction costs (MidP). The t-statistics
(in parentheses) are obtained via Newey–West estimators (Newey and West, 1987), which account
for heteroskedasticity and autocorrelation.
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