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• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional

distribution of Θ given X = x, the posterior distribution.
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• A parameter Θ is generated according to a prior distribution Π.

• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional

distribution of Θ given X = x, the posterior distribution.

The prior expresses our uncertainty about the parameter.

The posterior expresses our remaining uncertainty after seeing the data.
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Thomas Bayes followed this argument with Θ possessing the Beta(1,1)

distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he could compute that the posterior distribution is then

Beta(X + 1, n−X + 1).
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Nonparametric Bayes
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If the parameter θ is a function, then the prior is a probability distribution on a

function space.
So is the posterior, given the data.

Prior and posterior are typically visualized by plotting functions that are
simulated from these distributions.
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Why Bayesian?
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If you are a Bayesian, then you find this a stupid question.

If you are an ordinary person, then you might like Bayesian methods, because:

• they work better

• they are more elegant

• they allow to incorporate prior information better

• they are easier to implement

• they are computationally efficient
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If you are a Bayesian, then you find this a stupid question.

If you are an ordinary person, then you might like Bayesian methods, because:

• they work better [NO]

• they are more elegant [YES]

• they allow to incorporate prior information better [YES]

• they are easier to implement [SOMETIMES]

• they are computationally efficient [NO]
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Analytical computation of a posterior is rarely possible, but clever algorithms

allow to simulate from it.

Markov Chain Monte Carlo (MCMC) produces a Markov chain θ1, θ2, . . . that
has the posterior as its stationary distribution.

After discarding θ1, . . . , θk,

• the average of θk+1, . . . , θk+l is taken as estimate of the posterior mean

• the fraction of θk+1, . . . , θk+l that falls in a set B is taken as estimate of

the posterior mass of B.
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Analytical computation of a posterior is rarely possible, but clever algorithms

allow to simulate from it.

Markov Chain Monte Carlo (MCMC) produces a Markov chain θ1, θ2, . . . that
has the posterior as its stationary distribution.

After discarding θ1, . . . , θk,

• the average of θk+1, . . . , θk+l is taken as estimate of the posterior mean

• the fraction of θk+1, . . . , θk+l that falls in a set B is taken as estimate of

the posterior mass of B.

Time-consuming, must be tuned properly, many short-cuts suggested.



Computation (2) — MCMC

11 / 86

A Markov chain θ1, θ2, . . . is a sequence of random variables such that the

distribution of θk+1 given θ1, . . . , θk depends only on θk. A distribution Π is
stationary if every θi is marginally distributed according to Π.

Two important MCMC algorithms

• Metropolis-Hastings: given θk generate θ̃k+1 from some Q(·| θk) and

set θk+1 = θ̃k+1 with probability αQ,Π(θk, θ̃k+1) and θk+1 = θk

otherwise.

• Gibbs: for multivariate θk+1 = (θk+1,1, . . . , θk+1,d) simulate one
coordinate θk+1,i at a time from its conditional distribution given the other

current coordinates.

Typically only approximately stationary, as it is impossible to simulate θ1
correctly, whence burn-in is necessary.



Computation (3) — Hierarchical priors
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Many priors are defined by a hierarchy of the type:

• α ∼ Πα

• β|α ∼ Πβ|α

• γ|α, β ∼ Πγ|α,β

• · · ·

• θ|α, β, · · · ∼ Πθ|α,β,···.

The prior for θ is a certain mixture of the priors Πθ|α,β,··· over α, β, . . ..

MCMC may simulate a Markov chain (α1, β1, . . . , θ1), (α2, β2, . . . , θ2), . . .,
and next forget the α’s, β’s, etc.



Regularization
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By Bayes’ rule the posterior corresponding to observing X ∼ pθ has density

π(θ|X) ∝ pθ(X)π(θ).

The posterior mode maximizes

θ 7→ log pθ(X) + log π(θ).

The log prior acts as a regularization penalty attached to the log likelihood.

Bayesian thinking suggests penalties.

Bayesian inference gives a full posterior distribution.



Examples of priors
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Polya trees and Dirichlet process
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Given a sequence of binary partitions:

X = X0 ∪ X1 = (X00 ∪ X01) ∪ (X10 ∪ X11) = · · · ,

assign the total mass 1 by splitting it randomly over the partitioning sets using

independent Beta variables V0, V00, V10, · · · .

X

X0 X1

X00 X01 X10 X11

V0 V1

V00 V01 V10 V11

The Dirichlet process prior is the special case that the parameters of Vε are
(

α(Xε0), α(Xε1)
)

for a fixed measure α, the mean measure. It puts mass on

discrete measures only.



Dirichlet mixtures
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A prior on densities can be obtained from by putting the Dirichlet on the mixing

distribution P in

x 7→
∫

1

σ
φ
(x− z

σ

)

dP (z).

with φ e.g. the normal density. We can also put a prior on the scale σ.

This is often formulated in a Bayesian hierarchy:

• µ and τ are chosen from priors.

• P is chosen from a Dirichlet with mean measure N(µ, τ).

• Z1, . . . , Zn are chosen i.i.d. from P .

• σ is chosen from an inverse Gamma.

• ε1, . . . , εn are i.i.d. from N(0, 1).

• Observations Xi = Zi + σεi.



Dirichlet mixtures — computation
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• P ∼ Dirichlet(α).

• Z1, . . . , Zn|P ∼ i.i.d. P .

• ε1, . . . , εn|P,Z1, . . . Zn i.i.d. ∼ N(0, 1).

• Observations Xi = Zi + εi.

Then Zi|Zj : j 6= i,X1, . . . , Xn ∼ mixture of empirical of (Zj : j 6= i) and α.

The Gibbs sampler for simulating from Z1, . . . , Zn given X1, . . . , Xn is a

partial bootstrap.

Also P |Z1, . . . , Zn, Xn . . . , Zn ∼ Dirichlet (α+
∑

δZi
).



Gaussian priors
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The law of a stochastic process (Wt: t ∈ T ) is a prior distribution on the space

of functions w:T → R

Gaussian processes have been found useful, because

• they offer great variety

• they are easy (?) to understand through their covariance function

(s, t) 7→ EWsWt

• they can be computationally attractive



Gaussian processes
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Brownian motion t 7→Wt — Prior density t 7→ c exp(Wt)
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Gaussian processes

20 / 86

Integrated Brownian motion — Prior density
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Independent increment processes
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A prior on monotone functions can be obtained by placing randomly generated

jumps at the event times of a Poisson process (a compound Poisson process).

For better results we need more jumps, as in Lévy processes or general
independent increment processes.
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Sparsity (1)
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Parameter θ = (θ1, . . . , θn) ∈ R
n. We think only few θi are nonzero.

Prior on θ ∈ R
n:

• Choose p from prior on {1, 2, . . . , n}.

• Given p choose random S ⊂ {1, . . . , n} of size p.

• Given (p, S) choose (θi: i ∈ S) from density gS on R
p and set

(θi: i /∈ S) = 0.

We can build in more a-priori knowledge, e.g. to model genetic networks in
micro-array analysis.



Sparsity (2)
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We wish to build a prediction model for Y given X1, X2, . . . , Xp.

The number of predictors p is large, but only few should matter.

We place prior weights on models that include various sets of Xi.
We combine these with priors on the models into an overall prior.



Series priors
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Given a basis e1, e2, . . . put a prior on the coefficients (θ1, θ2, . . .) in an

expansion

θ =
∑

i

θiei.

A practical approach is to choose θk+1, θk+2, . . . zero for some randomly

chosen k.



Adaptation
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Nonparametric estimation often works with scales of regularity classes. For

instance, functions having α > 0 derivatives (bounded by a given constant).

For a given α there are many appropriate priors Πα.

Put prior w on α and next given α use Πα, yielding the overall prior

∫

Πα dw(α).

This should solve the bandwidth problem.



Frequentist Bayesian theory
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Frequentist Bayesian
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If you are a Bayesian, then you worry

• about using the “right” prior

• about computation of the posterior.

If you are an ordinary person, then you worry about this too AND

• you can study the posterior as a random measure from a frequentist point

of view:

You assume that the data X is generated according to a given parameter θ0
and want the posterior Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most”
X .



Parametric models
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Suppose the data are a random sample X1, . . . , Xn from a density

x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector θ ∈ R
d.

THEOREM [Bernstein, von Mises, LeCam,..]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0, for

θ̃n = θ0 + n−1
∑n

i=1I
−1
θ0

˙̀
θ0

(Xi),

∥

∥

∥
Π(·|X1, . . . , Xn) −Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0.
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Suppose the data are a random sample X1, . . . , Xn from a density

x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector θ ∈ R
d.

THEOREM [Bernstein, von Mises, LeCam,..]
Under Pn

θ0
-probability, for any prior with density that is positive around θ0, for

θ̃n = θ0 + n−1
∑n

i=1I
−1
θ0

˙̀
θ0

(Xi),

∥

∥

∥
Π(·|X1, . . . , Xn) −Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0.

In particular, the posterior distribution concentrates most of its mass on balls of

radius O(1/
√
n) around θ0.



Semi- or nonparametric models
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Does Bayes do a good job for infinite-dimensional models too?
Does the posterior contract to the truth at a good rate?

Does the posterior adapt to unknown regularity?

Does the posterior detect sparsity?



Complete class theorem
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According to the complete class theorem (e.g. Le Cam, 1964) the set of Bayes

procedures is sufficiently rich to dominate every statistical procedure.
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According to the complete class theorem (e.g. Le Cam, 1964) the set of all

limits of Bayes procedures is sufficiently rich to dominate every statistical
procedure.

Which priors?

Most priors do not work! [Freedman and Diaconis, 1970s/80s]



Rate of contraction
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Asymptotic setting: assume Xn is generated according to a given parameter

θ0 where the information increases as n→ ∞.

DEFINITION

• Posterior is consistent if Eθ0
Π

(

θ: d(θ, θ0) < ε|Xn
)

→ 1 for every

ε > 0.

• Posterior contracts at rate at least εn if

Eθ0
Π

(

θ: d(θ, θ0) < εn|Xn
)

→ 1.



Distributional convergence

32 / 86

The posterior of a “parameter” φ(θ) is obtained from the posterior for θ by

marginalization.

For φ(θ) ∈ R we may hope to obtain distributional approximations, such as the
Bernstein-von Mises theorem:

Π
(

φ(θ) ∈ ·|X(n)
)

−N
(

∆n(X(n)),
Σ

n

)

(·) P→ 0.

∆n(X(n)) and Σ defined from the efficient score function.

For nonregular parameters we expect a nonnormal distribution instead.



Minimaxity and adaptation

33 / 86

To a given regularity class is attached an optimal rate of convergence defined

by the minimax criterion.
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To a given regularity class is attached an optimal rate of convergence defined

by the minimax criterion.

We like the posterior to contract at this rate.

Given a scale of regularity classes, indexed by a parameter α, we like the

posterior to adapt: if the true parameter has regularity α, then we like the
contraction rate to be the minimax rate for the α-class.



General findings
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In infinite-dimensional situations the performance does depend on the prior.

The prior does not wash out as n→ ∞.

Bayesians, too, need to proceed with caution in the infinite-dimensional case,

unless they are convinced of the fine details of their priors. Indeed, the

consistency of their estimates and the coverage probability of their confidence

sets depend on the details of their priors. [DAVID FREEDMAN, 1999.]
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In infinite-dimensional situations the performance does depend on the prior.

The prior does not wash out as n→ ∞.

Bayesians, too, need to proceed with caution in the infinite-dimensional case,

unless they are convinced of the fine details of their priors. Indeed, the

consistency of their estimates and the coverage probability of their confidence

sets depend on the details of their priors. [DAVID FREEDMAN, 1999.]

The good news: with a correct prior a Bayesian method works as well as the

best nonBayesian method, it does adapt, and it does detect sparsity.
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Dirichlet mixtures
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pF,σ(x) =

∫

1

σ
φ
(x− z

σ

)

dF (z).

Observe a random sample of size n from density p0 on R. Put Dirichlet prior

on F , and positive prior on σ ∈ (a, b) ⊂ (0,∞).

THEOREM

If p0 = pF0,σ0
for F0 with subGaussian tails and σ0 ∈ (a, b), then the rate of

contraction relative to Hellinger distance is (logn)κ/
√
n.

THEOREM

If p0 is C2 and has subGaussian tails, and the prior on σ shrinks at rate n−1/5,
then the rate of contraction relative to Hellinger distance is (logn)λ/n−2/5.
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pF,σ(x) =

∫

1

σ
φ
(x− z

σ

)

dF (z).

Observe a random sample of size n from density p0 on R. Put Dirichlet prior

on F , and positive prior on σ ∈ (a, b) ⊂ (0,∞).

THEOREM

If p0 = pF0,σ0
for F0 with subGaussian tails and σ0 ∈ (a, b), then the rate of

contraction relative to Hellinger distance is (logn)κ/
√
n.

THEOREM

If p0 is C2 and has subGaussian tails, and the prior on σ shrinks at rate n−1/5,
then the rate of contraction relative to Hellinger distance is (logn)λ/n−2/5.

Conjecture: if p0 ∈ Cα and the prior on σ is fixed with sufficient mass near 0,
then rate is (logn)λ/n−α/(2α+1).



Adaptation — general
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Given a countable collection of models indexed by α ∈ An, each with its own

rate εn,α and prior Πn,α, form the hierarchical prior:

• choose α with weights wn,α ∝ µαe
−Cnε2

n,α .

• choose parameter according to Πn,α.

THEOREM [Lember&vdV 07]

Under general conditions the posterior rate is at least εn,β if the true parameter
belongs to model β.

Under more complicated conditions similar results hold for more general

weights wn,α. There are also elegant special constructions. [See later.]



Misspecification
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If the true parameter is outside the support of the prior, then the posterior

cannot contract to it.

THEOREM Kleijn & vdV, 2006
Under general conditions the posterior contracts to the parameter “in the

support” at minimal Kullback-Leibler divergence to the true parameter, at a rate

as if it were “in the support”.

For example, a Bayesian may misrepresent the error in nonparametric

regression as Gaussian, but still get consistency for the regression function.



Brownian density estimation (Toy example)
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• X1, . . . , Xn i.i.d. from density p0 on [0, 1]

• (Wx:x ∈ [0, 1]) Brownian motion

Prior on p:

x 7→ eWx

∫ 1
0 e

Wy dy

THEOREM [vdV & van Zanten 07, Castillo 08]

If w0: = log p0 ∈ Cα[0, 1], then L2-rate is n−1/4 if α ≥ 1/2; n−α/2 if

α ≤ 1/2.
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• X1, . . . , Xn i.i.d. from density p0 on [0, 1]

• (Wx:x ∈ [0, 1]) Brownian motion

Prior on p:

x 7→ eWx

∫ 1
0 e

Wy dy

THEOREM [vdV & van Zanten 07, Castillo 08]

If w0: = log p0 ∈ Cα[0, 1], then L2-rate is n−1/4 if α ≥ 1/2; n−α/2 if

α ≤ 1/2.

• This is minimax optimal if and only if α = 1/2.

• Rate does not improve if α increases from 1/2.

• Consistency for any α > 0.

Similar results hold for Gaussian regression, with w0 the true regression

function.



Other Gaussian priors
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Integrated Brownian motion (released at zero) is an optimal prior if

w0 ∈ Cα[0, 1] for α = 3/2.

More generally (α− 1/2) times (fractionally) integrated Brownian motion
(released at zero) is an optimal prior if w0 ∈ Cα[0, 1].

Alternative optimal priors can be constructed from fractional Brownian motion
or by using series expansions.

Stationary priors correspond to centered Gaussian processes G with

EGsGt = ψ(s− t).

Appropriate smoothness obtained by consideration of the tail of ψ̂.



Rescaling
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Sample paths can be smoothed by stretching
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Sample paths can be smoothed by stretching
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Rescaled Brownian motion (Toy example)
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Wt = Bt/cn
for B Brownian motion, t ∈ [0, 1] and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink)

• α ∈ (1/2, 1]: cn → ∞ (stretch)

THEOREM

The prior Wt = Bt/cn
gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1]

Surprising? (Brownian motion is self-similar!)
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Wt = Bt/cn
for B Brownian motion, t ∈ [0, 1] and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink)

• α ∈ (1/2, 1]: cn → ∞ (stretch)

THEOREM

The prior Wt = Bt/cn
gives optimal rate for w0 ∈ Cα[0, 1], α ∈ (0, 1]

Surprising? (Brownian motion is self-similar!)

THEOREM

Appropriate rescaling of k times integrated Brownian motion gives optimal prior

for every α ∈ (0, k + 1].



Rescaled smooth stationary process
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A Gaussian process with infinitely-smooth sample paths is obtained with

EGsGt = ψ(s− t),

∫

e|λ|ψ̂(λ) dλ <∞.

THEOREM

The prior Wt = Gt/cn
for cn ∼ n−1/(2α+1) gives nearly optimal rate for

w0 ∈ Cα[0, 1], any α > 0.



Adaptation by rescaling (1)
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• Choose c from a Gamma distribution

• Choose (Gt: t > 0) centered Gaussian with

EGsGt = exp
(

−(s− t)2
)

• Set Wt ∼ Gt/c

THEOREM [vdV & van Zanten 09]

• if w0 ∈ Cα[0, 1], then the rate of contraction is nearly n−α/(2α+1).

• if w0 is supersmooth, then the rate is nearly n−1/2.

Sir Thomas solved the bandwidth problem!?



Adaptation by rescaling (2)
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Gaussian regression with Brownian motion rescaled by an inverse Gamma

variable.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2

posterior for signal (red: 50%, blue: 90%) posterior for noise stdev

0.35 0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
10

Conjecture: this (nearly) gives the optimal rate n−α/(2α+1) if true regression

function is in Cα[0, 1] for α ∈ (0, 1]. Integrated BM extends this to higher α.



Sparsity
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Observe independent X1, . . . , Xn, where Xi is N(θi, 1).

pn: = #(1 ≤ i ≤ n: θi 6= 0).

Prior on θ = (θ1, . . . , θn) constructed in three steps:

• Choose p from πn on {1, 2, . . . , n}.

• Given p choose S ⊂ {1, . . . , n} of size |S| = p at random.

• Given (p, S) choose (θi: i ∈ S) from density gS on R
p and set

(θi: i /∈ S) = 0.

THEOREM (?)

If πn(p) ∝ e−p log(n/p) and gS has heavy tails (e.g. Cauchy or Laplace), then

rate of “contraction” for Euclidean norm is pn logn.



47 / 86

CONCLUSION
Correctly chosen priors yield

fully adaptive nonparametrically optimal procedures

.



Talk 2 — Contents
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• Rates — i.i.d.

• Rates — general

• Gaussian process priors — main result

• Gaussian process priors — settings

• Gaussian process priors — a proof
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Entropy
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The covering number N(ε,Θ, d) of a metric space (Θ, d) is the minimal

number of balls of radius ε needed to cover Θ
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The covering number N(ε,Θ, d) of a metric space (Θ, d) is the minimal
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Covering numbers characterize the minimax rate of convergence by the

equation [Le Cam 73 75 86, Birgé 83 06]

logN(εn,Θ, d) � nε2n.
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50 / 86

The covering number N(ε,Θ, d) of a metric space (Θ, d) is the minimal

number of balls of radius ε needed to cover Θ

Covering numbers characterize the minimax rate of convergence by the

equation [Le Cam 73 75 86, Birgé 83 06]

logN(εn,Θ, d) � nε2n.

For instance, for estimating a density based on a random sample of n
observations with d the Hellinger distance

h(p, q) =

√

∫

(
√
p−√

q)2 dµ.



Rate — iid observations
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Given a random sample X1, . . . , Xn from a density p0 and a prior Π on a set

P of densities consider the posterior

Πn(B|X1, . . . , Xn): =

∫

B

∏n
i=1p(Xi) dΠ(p)

∫

P

∏n
i=1p(Xi) dΠ(p)

THEOREM [Ghosal & vdV 00]

If there exist Pn ⊂ P such that

• logN(εn,Pn, h) ≤ nε2n entropy

• Π(Pn) = 1 − o(e−3nε2
n)

• Π(BKL(p0, εn)) ≥ e−nε2
n prior mass

then the Hellinger contraction rate is at least εn.

BKL(p0, ε) is Kullback-Leibler neighborhood of p0.



Dirichlet mixtures of normal
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pF,σ(x) =

∫

1

σ
φ
(x− z

σ

)

dF (z).

Put Dirichlet prior on F , and positive prior on σ ∈ (a, b) ⊂ (0,∞).

KEY LEMMA

Given ε and (F, σ) there exists Fε with at most dε: = σ−1 log(1/ε) support

points and d(pF,σ, pFε,σ) < ε.

Interpretation: within accuracy ε the model is of dimension dε. Therefore prior

mass is of order

εdε

and entropy is

log(1/ε)dε ≈ 1

σ

(

log
1

ε

)2
.



Interpretation — flat prior
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THEOREM [Ghosal & vdV 00]

If there exist Pn ⊂ P such that

• logN(εn,Pn, h) ≤ nε2n entropy

• Π(Pn) = 1 − o(e−3nε2
n)

• Π(BKL(p0, εn)) ≥ e−nε2
n prior mass

then the Hellinger contraction rate is at least εn.

We need N(εn,Pn, h) ≈ enε2
n balls to cover the model. If the mass is

uniformly spread then every ball has mass

1

N(εn,Pn, h)
≈ e−nε2

n .



Rates — general
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Setting
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For n = 1, 2, . . .

• (X (n),A(n), P
(n)
θ : θ ∈ Θn) experiment

• (Θn, dn) metric space

• X(n) observation, law P
(n)
θ0

Given prior Πn on Θn form posterior

Πn(B|X(n)) =

∫

B p
(n)
θ (X(n)) dΠn(θ)

∫

Θn
p
(n)
θ (X(n)) dΠn(θ)
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For n = 1, 2, . . .

• (X (n),A(n), P
(n)
θ : θ ∈ Θn) experiment

• (Θn, dn) metric space

• X(n) observation, law P
(n)
θ0

Given prior Πn on Θn form posterior

Πn(B|X(n)) =

∫

B p
(n)
θ (X(n)) dΠn(θ)

∫

Θn
p
(n)
θ (X(n)) dΠn(θ)

Rate of contraction is at least εn if ∀Mn → ∞

P
(n)
θ0

Πn(θ ∈ Θn: dn(θ, θ0) ≥Mnεn|X(n)) → 0



Setting — Le Cam’s testing criterion
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For n = 1, 2, . . .

• (X (n),A(n), P
(n)
θ : θ ∈ Θn) experiment

• (Θn, dn) metric space

• X(n) observation, law P
(n)
θ0

Assume ∃ξ > 0 such that ∀n ∃ metric d̄n ≥ dn such that ∀ε > 0:

∀θ1 ∈ Θn with dn(θ1, θ0) > ε ∃ test φn with

P
(n)
θ0
φn ≤ e−nε2

, sup
θ∈Θn:d̄n(θ,θ1)<εξ

P
(n)
θ (1 − φn) ≤ e−nε2

. ..

θ0
θ1

> ε
radius ξε



Le Cam dimension
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N(ε,Θ, d) = smallest number of balls of radius ε needed to cover Θ

Dn(ε,Θ, dn, d̄n) = sup
η>ε

logN
(

εξ, {θ ∈ Θn: dn(θ, θ0) ≤ η}, d̄n

)

.
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N(ε,Θ, d) = smallest number of balls of radius ε needed to cover Θ

Dn(ε,Θ, dn, d̄n) = sup
η>ε

logN
(

εξ, {θ ∈ Θn: dn(θ, θ0) ≤ η}, d̄n

)

.

THEOREM [Le Cam 73,75,86, Birgé 83, 06:]

∃ estimators θ̂n with dn(θ̂n, θ0) = OP (εn) if

Dn(εn,Θn, dn, d̄n) ≤ nε2n.
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N(ε,Θ, d) = smallest number of balls of radius ε needed to cover Θ

Dn(ε,Θ, dn, d̄n) = sup
η>ε

logN
(

εξ, {θ ∈ Θn: dn(θ, θ0) ≤ η}, d̄n

)

.

THEOREM [Le Cam 73,75,86, Birgé 83, 06:]

∃ estimators θ̂n with dn(θ̂n, θ0) = OP (εn) if

Dn(εn,Θn, dn, d̄n) ≤ nε2n.

¯ ¯



Rate theorem
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THEOREM [Ghosal & vdV, 2006]

For εn → 0, εn � 1/
√
n, assume ∃Θ̃n ⊂ Θn:

• Dn(εn, Θ̃n, dn, d̄n) ≤ nε2n entropy

• Πn(Θ̃n − Θn) = o(e−3nε2
n)

• Πn(Bn(θ0, εn; k)) ≥ e−nε2
n prior mass

Then P
(n)
θ0

Πn(θ ∈ Θn: dn(θ, θ0) ≥Mnεn|X(n)) → 0

Bn(θ0, ε; k) =
{

θ ∈ Θn:K(p
(n)
θ0
, p

(n)
θ ) ≤ nε2, Vk(p

(n)
θ0
, p

(n)
θ ) ≤ nk/2εk

}

(Kullback-Leibler neighborhood)

K(p, q) = P log(p/q) Vk(p, q) = P
∣

∣log(p/q) −K(p, q)
∣

∣

k



Rate theorem — refined
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THEOREM [Ghosal & vdV, 2006]

For εn → 0, assume ∃Θ̃n ⊂ Θn:

• Dn(εn, Θ̃n, dn, d̄n) ≤ nε2n

• Πn(Θ̃n − Θn)

Πn(Bn(θ0, εn; k))
= o(e−2nε2

n)

• Πn(θ ∈ Θn: dn(θ, θ0) ≤ 2jεn)

Πn(Bn(θ0, εn; k))
≤ eKnε2

nj2/2 ∀j

Then P
(n)
θ0

Πn(θ ∈ Θn: dn(θ, θ0) ≥Mnεn|X(n)) → 0

Further trade-off between complexity and prior mass possible.



I.i.d. observations
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Data X1, . . . , Xn, i.i.d. with density pθ

MAIN RESULT HOLDS WITH

• dn Hellinger distance h (or L1 or L2)

• Bn(θ0, ε; 2) = {θ:K(θ0, θ) ≤ ε2, V2(θ0, θ) ≤ ε2}

h(θ, θ′)2 =
∫ (√

pθ −
√
pθ′

)2
dµ

K(θ, θ′) = Pθ log(pθ/pθ′)

V2(θ, θ
′) = Pθ

(

log(pθ/pθ′)
)2



Independent observations
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Data X1, . . . , Xn, independent with Xi ∼ pθ,i

MAIN RESULT HOLDS WITH

• d2
n(θ, θ′) = 1

n

∑n
i=1hi(θ, θ

′)2

• Bn(θ0, ε; 2) = {θ: 1
n

∑n
i=1Ki(θ0, θ) ∨ 1

n

∑n
i=1V2,i(θ0, θ) ≤ ε2}

hi, Ki and V2,i computed for ith observation



Markov chains
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Data (X0, X1, . . . , Xn) for · · · , X0, X1, X2, · · · stationary Markov chain

with initial density qθ and transition density pθ(·|·)

Assume ∃ integrable r, constants 0 < c < C and k > 2:

1. c r(y) ≤ pθ(y|x) ≤ C r(y),

2. α-mixing,
∑∞

h=0 α
1−1/k
h <∞

MAIN RESULT HOLDS WITH

• d2
n(θ, θ′) =

∫∫

[

√

pθ(y|x) −
√

pθ′(y|x)
]2
dµ(y) r(x) dµ(x)

• Bn(θ0, ε; k) =
{

θ:Pθ0
log

pθ0

pθ
(X1|X0) ≤ ε2, Pθ0

∣

∣

∣
log

pθ0

pθ
(X1|X0)

∣

∣

∣

k
≤ εk

}



Gaussian white noise model
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Data (X
(n)
t : 0 ≤ t ≤ 1) for dX

(n)
t = θ(t) dt+ n−1/2 dBt, where B is

Brownian motion

MAIN RESULT HOLDS WITH

• dn: L2-norm

• Bn(θ0, ε; 2): L2-ball



Gaussian time series
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Data (X0, X1, . . . , Xn) for · · · , X0, X1, X2, · · · stationary mean zero

Gaussian process with spectral density θ ∈ Θ

Assume

1. supθ∈Θ ‖ log θ‖∞ <∞

2. supθ∈Θ

∑∞
h=−∞ |h|(EθXhX0)

2 <∞

MAIN RESULT HOLDS WITH

• dn: L2-norm, d̄n: supremum-norm

• Bn(θ0, ε; 2): L2-ball



Ergodic diffusions
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Data (Xt: 0 ≤ t ≤ n) for X solution to dXt = θ(Xt) dt+ σ(Xt) dBt, where

B is Brownian motion B

Assume

1. stationary ergodic, state space I ,

2. stationary measure µθ0

MAIN RESULT HOLDS WITH

• d(θ, θ′) = ‖(θ − θ′)1J/σ‖µθ0
,2 J ⊂ I

• e(θ, θ′) = ‖(θ − θ′)/σ‖µθ0
,2

• B(θ0, ε; 2) ‖ · /σ‖µθ0
,2-ball



Gaussian process priors — main result
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Setting
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Data X(n) follows density p
(n)
w0

indexed by a function w0:T → R

Prior Π for w is law of Gaussian process (Wt: t ∈ T )

Posterior:

Πn(B|X(n)): =

∫

B p
(n)
w (X(n)) dΠ(w)

∫

p
(n)
w (X(n)) dΠ(w)



Setting
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Data X(n) follows density p
(n)
w0

indexed by a function w0:T → R

Prior Π for w is law of Gaussian process (Wt: t ∈ T )

Posterior:

Πn(B|X(n)): =

∫

B p
(n)
w (X(n)) dΠ(w)

∫

p
(n)
w (X(n)) dΠ(w)

Rate of contraction is defined to be at least εn if as n,M → ∞,

P (n)
w0

Πn(w: dn(w,w0) ≥Mεn|X(n)) → 0



Reproducing kernel Hilbert space
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Think of the Gaussian process as a random element in a (complete) function

space equipped with a norm: a Banach space (B, ‖ · ‖)

To every such Gaussian random element is attached a certain Hilbert space
(H, ‖ · ‖H), called the RKHS

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B
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Think of the Gaussian process as a random element in a (complete) function

space equipped with a norm: a Banach space (B, ‖ · ‖)

To every such Gaussian random element is attached a certain Hilbert space
(H, ‖ · ‖H), called the RKHS

‖ · ‖H is stronger than ‖ · ‖ and hence can consider H ⊂ B

EXAMPLE

Brownian motion is a random element in C[0, 1].
Its RKHS is H = {h:

∫

h′(t)2 dt <∞} with norm ‖h‖H = ‖h′‖2



Small ball probability
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W Gaussian map in (B, ‖ · ‖)

Small ball probability P(‖W‖ < ε)
Small ball exponent φ0(ε) = − log P(‖W‖ < ε)
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W Gaussian map in (B, ‖ · ‖)

Small ball probability P(‖W‖ < ε)
Small ball exponent φ0(ε) = − log P(‖W‖ < ε)

EXAMPLE

For Brownian motion φ0(ε) � (1/ε)2 as ε ↓ 0



Main result
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Prior W is Gaussian map in (B, ‖ · ‖)
RKHS (H, ‖ · ‖H) P(‖W‖ < ε) = e−φ0(ε)

THEOREM [vdV& van Zanten 07]

If statistical distances on the model combine “appropriately” with the norm ‖ · ‖
of B (see below), then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H ≤ nεn

2

Both inequalities give lower bound on εn; first depends on W and not on w0



Toy problem — Brownian motion
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W one-dimensional Brownian motion on [0, 1]

Small ball probability φ0(ε) � (1/ε)2

RKHS H = {h:
∫

h′(t)2 dt <∞}, ‖h‖H = ‖h′‖2

LEMMA

If w0 ∈ Cα[0, 1] for 0 < α < 1, then inf
h∈H:‖h−w0‖∞<ε

‖h‖2
H �

(1

ε

)(2−2α)/α



Toy problem — Brownian motion
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W one-dimensional Brownian motion on [0, 1]

Small ball probability φ0(ε) � (1/ε)2

RKHS H = {h:
∫

h′(t)2 dt <∞}, ‖h‖H = ‖h′‖2

LEMMA

If w0 ∈ Cα[0, 1] for 0 < α < 1, then inf
h∈H:‖h−w0‖∞<ε

‖h‖2
H �

(1

ε

)(2−2α)/α

CONSEQUENCE:

Rate is εn if

(1/εn)2 ≤ nε2n AND (1/εn)(2−2α)/α ≤ nε2n

First implies εn ≥ n−1/4 for any w0.

Second implies εn ≥ n−α/2 for w0 ∈ Cα[0, 1]



Gaussian process priors — settings
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Main result
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Prior W is Gaussian map in (B, ‖ · ‖)
RKHS (H, ‖ · ‖H) P(‖W‖ < ε) = e−φ0(ε)

THEOREM [vdV& van Zanten 07]

If statistical distances on the model combine appropriately with the norm ‖ · ‖
of B (see below), then the posterior rate is εn if

φ0(εn) ≤ nεn
2 AND inf

h∈H:‖h−w0‖<εn

‖h‖2
H ≤ nεn

2



Density estimation
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Data X1, . . . , Xn i.i.d. from density on [0, 1]

pw(x) =
ewx

∫ 1
0 e

wt dt

• Distance on parameter: Hellinger distance on pw

• Norm on W : uniform
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Data X1, . . . , Xn i.i.d. from density on [0, 1]

pw(x) =
ewx

∫ 1
0 e

wt dt

• Distance on parameter: Hellinger distance on pw

• Norm on W : uniform

LEMMA ∀v, w

• h(pv, pw) ≤ ‖v − w‖∞ e‖v−w‖∞/2

• K(pv, pw) . ‖v − w‖2
∞ e‖v−w‖∞(1 + ‖v − w‖∞)

• V (pv, pw) . ‖v − w‖2
∞ e‖v−w‖∞(1 + ‖v − w‖∞)2



Classification

75 / 86

Data (X1, Y1), . . . , (Xn, Yn) i.i.d. in [0, 1] × {0, 1}

P(Y = 1|X = x) = Ψ(wx)

E.g. Ψ logistic or probit link function

• Distance on parameter: L2-norm on Ψ(w)

• Norm on W for logistic: L2(G), G marginal of Xi

Norm on W for probit: combination of L2(G) and L4(G)



Regression
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Data Y1, . . . , Yn

Yi = w0(xi) + ei

x1, . . . , xn fixed design points

e1, . . . , en i.i.d. Gaussian mean-zero errors

• Distance on parameter: empirical L2-distance on w

• Norm on W : uniform

Can use posterior for Gaussian errors also if errors have only mean zero?

(Kleijn & vdV, 2006)



Gaussian white noise
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Data (Xt: t ∈ [0, 1])
dXt = wt + n−1/2 dBt

• Distance on parameter: L2

• Norm on W : L2



Gaussian process priors — a proof
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Reproducing kernel Hilbert space — definition
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W zero-mean Gaussian in (B, ‖ · ‖)
S: B∗ → B, Sb∗ = EWb∗(W )

RKHS (H, ‖ · ‖H) is the completion of SB
∗ under

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W )



Reproducing kernel Hilbert space — definition (2)
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W = (Wx:x ∈ X ) Gaussian stochastic process that can be seen as tight,

Borel measurable map in `∞(X ) = {f :X → R: supx |f(x)| <∞}

Covariance function K(x, y) = EWxWy

Then RKHS is completion of the set of functions

x 7→
∑

i

αiK(yi, x)

relative to inner product

〈

∑

i

αiK(yi, ·),
∑

j

βjK(zj , ·)
〉

H

=
∑

i

∑

j

αiβjK(yi, zj)



Reproducing kernel Hilbert space — definition (3)
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Any Gaussian random element can be represented as

W =
∞
∑

i=1

µiZiei

for

• µi ↓ 0

• Z1, Z2, . . . i.i.d. N(0, 1)

• ‖e1‖ = ‖e2‖ = · · · = 1

The RKHS consists of all elements h: =
∑

i hiei with

‖h‖2
H: =

∑

i

h2
i

µ2
i

<∞



Reproducing kernel Hilbert space — definition (4)
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If W is multivariate normal Nd(0,Σ), then the RKHS is R
d with norm

‖h‖H =
√
htΣ−1h



Geometry
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RKHS gives the “geometry of the support of W ”



Geometry

83 / 86

RKHS gives the “geometry of the support of W ”

THEOREM

Norm closure of H in B is smallest closed set with probability one under
Gaussian measure (and hence posterior inconsistent if ‖w0 − H‖ > 0)

THEOREM [Borell 75]

P(W /∈MH1 + εB1) ≤ 1 − Φ
(

Φ−1(e−φ0(ε)) +M
)

THEOREM [Kuelbs & Li 93]

For H1 the unit ball of RKHS

φ0(ε) � logN
( ε

√

φ0(ε)
,H1, ‖ · ‖

)



Decentered small ball probability
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W Gaussian map in (B, ‖ · ‖)
RKHS (H, ‖ · ‖H) P(‖W‖ < ε) = e−φ0(ε)

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H



Decentered small ball probability

84 / 86

W Gaussian map in (B, ‖ · ‖)
RKHS (H, ‖ · ‖H) P(‖W‖ < ε) = e−φ0(ε)

φw0
(ε): = φ0(ε) + inf

h∈H:‖h−w0‖<ε
‖h‖2

H

THEOREM [Kuelbs & Li 93)]

Concentration function measures concentration around w0:

P(‖W − w0‖ < ε) � e−φw0
(ε)

up to factors 2



Proof

85 / 86

Sufficient for posterior rate of εn is existence of sets Bn with

• logN(εn,Bn, d) ≤ nε2n entropy

• Πn(Bn) = 1 − o(e−3nε2
n)

• Πn(Bn(w0, εn)) ≥ e−nε2
n prior mass

Take Bn = MnH1 + εnB1 for appropriate Mn.

Use Borell’s inequality.
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CONCLUSION
Correctly chosen priors yield

fully adaptive nonparametrically optimal procedures

.
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