
(a) Logarithm of the auxiliary transition
rates from E to E⇤ at T = 1.8, g = �.5

(b) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .8, g = �.1

(c) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .8, g = �1.

(d) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .2, g = �1.

(e) Logarithm of the auxiliary transition
rates from E to E⇤ at T = .2, g = �10.

Figure 5.2: In all graphs E⇤ is on the y-axis an E on the x-axis

For T > 1/2 it seems like the behavior is indeed analogous to the Bo model, but with a
bump that goes ”faster” to lower energies. But it does look as like the curve reaches a limit
shape. It was observed that the shape was in fact g independent. See figures 5.5a and 5.5b. The
second bump corresponds to the same time but di↵erent values of g. The heights are roughly
the same, about 0.4. We also saw this curve depends on time t. In figure 5.5a we see two distinct
bump for di↵erent times. The activity was observed to have a dependence of order ⌧�(1+↵) with
↵ > 0. There was not su�cient data to guess a temperature dependence, but a finite number
of jumps was definitely suggested. In figure 5.7a an exponent of this kind is observed. See also
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Areas for Bachelor projects

Non-Equilibrium Statistical Physics
AG Peter Sollich

Institut für Theoretische Physik, Georg-August-Universität Göttingen

Techniques you can learn

Equilibrium statistical physics
• Well-defined framework
• Fluctuation-response relations for dynamics
• Changes of scale / coarse-graining straightforward

Motivation Research questions

Non-equilibrium statistical physics
• Many / most systems of interest not at equilibrium
• May take too long to equilibrate: transients matter, aging
• Or be driven from outside (biological systems), which

breaks detailed balance (microscopic reversibility)
• Often no Hamiltonian, system defined purely by dynamics

(e.g. agent-based models, network dynamics)
• Even this dynamical description may be unknown

• What general frameworks for non-equilibrium are there?
• How do we change scale or focus on subsystems?
• What structures and behaviours can non-equilibrium 

dynamics produce?
• How do we analyse systems with many different timescales?
• Can we learn dynamical models from data?
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• Path integrals (coherent states, Martin-Siggia-Rose)
• Trajectory thermodynamics, large deviation techniques
• Projection approaches (nonlinear Zwanzig-Mori)
• Cavity methods for networks
• Long-time scaling, stochastic simulation
• Random matrix theory

𝑍 = Tr 𝑒!"# → ?

3

tion of this problem is essentially analogous to the quan-
tum mechanical tunneling problem treated in a semiclas-
sical approximation [33] (see also [34–36] for a discussion
in the statistical mechanics context). The theory of large
deviations gives the dominant scaling of the escape rate
r in the weak-noise limit as [37, 38]

r ⇠= e
�S(qb;qa)/D, S(qb; qa) = inf

t�0
S(qb, t; qa). (12)

The optimal path that provides the lowest (infinimum in
Eq. (12)) action is achieved for t ! 1 [33]. For � =
0, S(qb; qa) can be determined analytically as twice the
height of the energy barrier, �V = V (qb)� V (qa). Since
D = 2T for thermal noise, Eq. (12) thus recovers the
Arrhenius result [1]. In this case, the optimal escape or
“excitation” path is the time-reverse of a deterministic
relaxation path from qb to qa [34–36].

For � 6= 0, deterministic relaxations with g
⇤ = 0 still

solve the EL equations and have zero action, but their
time-reversal no longer gives the excitation paths. This
is clear from the predictions for di↵erent amplitude dis-
tributions in Fig. 1, which we have confirmed by direct
path sampling. The optimal escape paths have the char-
acteristic instanton shape: for large t the system spends
most of its time close to qa and qb while the actual bar-
rier transition is sharply localized in time. The key ob-
servation is that the instanton shape varies with �, while
the deterministic relaxation and its time reverse are en-
tirely independent of � and �. Moreover, we observe
that the optimal action S(qb; qa) is reduced compared
to the Gaussian limit of the noise for a range of small
� values: the non-Gaussian noise makes escape faster.
Di↵erences between amplitude distributions become pro-
nounced especially in the limit � ! 0: the Gaussian case
is approached continuously with the low-order truncated
� and for constant and Gaussian distributed noise am-
plitudes, though the approach is extremely slow for the
latter (Fig. 2). For exponential and Gamma noise, the
action is discontinuous at � = 0: as � ! 0 it converges
to a value considerably smaller than 2�V . Puzzlingly,
for ↵ > 0 the small � regime appears inaccessible, with
q
⇤ becoming complex below some threshold.
In order to understand these surprising observations,

we proceed analytically and integrate out g directly from
Eq. (7). In the weak noise-limit this can again be done by
saddle point integration and gives an action for q alone.
(Technically we discretize into small time intervals dt and
take dt ! 0 after D ! 0.) Defining �(k) = k

2
/2+��̄(k),

the resulting action is S[q] =
R
ds⇡(q̇(s) + V

0(q(s))).
Here ⇡(·) is the Legendre transform of �(·), i.e. ⇡(f) =
max[kf � �(k)] with the maximum taken over the range
of k where �̄(k) remains non-singular. Note that the
function ⇡ is not equivalent to the Hamiltonian H since
we have integrated out the momenta ig. In fact, since
q̇+V

0(q) = ⇠ from the original equation of motion, the ac-
tion S[q] =

R
ds⇡(⇠(s)) gives the weight of any trajectory
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FIG. 2: (Colors online) The normalized action Snorm =
S(qb; qa)/

�
2�V/(1 + �A2

0)
�
with A0 = 1 obtained for the

same potential as in Fig. 1. The reference value 2�V/(1 +
�A2

0) is the action for the Gaussian limit of �, i.e. truncated
after the quadratic term. The �↵ curve is dashed where op-
timal paths cannot be found from the EL equations because
they involve jumps. Inset: Snorm as a function of lnA0 for
�exp and �↵, at fixed D� = �A2

0 = 1. For large A0 (small �)
the curves converge to S0 =

R
dqmin(2V 0(q), 1/A0).

of the noise (averaged again over small dt) in the large
deviation limit D ! 0. The function ⇡(⇠) thus general-
izes the simple quadratic ⇠

2
/2 appearing in the Wiener

measure exp[�
R
ds ⇠(s)2/(2D)] for Gaussian noise.

One can now think of q(t) as a path in the (q, v)-plane,
with v = q̇. Then the action reads S =

R
dq ⇡(v +

V
0(q))/|v| and for each q we can find v = q̇ simply as the

minimum of ⇡(v+V
0(q))/|v|. We do not need to enforce

the total time constraint t =
R
dq/|v| as we want t ! 1

and the integral automatically diverges at both ends for
paths between stationary points of V . The trivial global
minimum is v = �V

0(q), which describes deterministic
relaxation. For an excitation from qa to qb > qa we need
v > 0, on the other hand. The condition for a minimum
of ⇡(v + V

0(q))/v with respect to v for excitation paths
can be cast in the form

V
0(q) = �(k)/k, (13)

v = �
0(k)� V

0(q) (14)

using basic properties of Legendre transforms. Here, k
has to be found from Eq. (13) and then gives v using
Eq. (14). This implicitly defines a function v = q̇ =
⌅(V 0(q)) and hence characterizes the shape of the exci-
tation path. Moreover, we obtain the action simply as

S =

Z qb

qa

dq k(q), (15)

where k(q) is the solution of Eq. (13). Eqs. (13–15) re-
produce existing results for special cases. In the Gaus-
sian case (� = 0) one has �(k) = k

2
/2; thus k(q) =

2V 0(q) and v = V
0(q), the expected time reverse of

Fluctuations in 
reaction networks

• Chemical reaction / protein inter-
action networks, gene regulation, …

• Problem: strong fluctuations at small 
copy numbers (e.g. genes)

• Approximate path integrals, methods 
from spin glasses, field theory

• Estimate for data likelihood, can use
. to learn parameters

Dynamics with
non-Gaussian noise

• Relevant in bacterial swimmer 
suspensions, granular gases, …

• Exact solutions in low noise limit
• Time for crossing potential barrier?
• Is non-Gaussian noise more efficient?
• Effects of activity, e.g. self-propulsion?

Dimensionality effects?

Path-based 
thermodynamics

• Study dynamical large deviations: 
trajectories with high current, activity 

• Probe by biasing trajectory distribution: 
thermodynamics of fluctuating paths,
dynamical phase transitions

• Interaction of driving (bias) and aging?
• Universality classes of aging?

Dynamics 
on networks

• Simple picture of amorphous material: 
hopping on network of metastable states

• Non-eq dynamics: competition of energetic 
(barriers) & entropic (connectivity) effects

• Flexible model: energy-connectivity 
correlations (local minima, saddles), …

• Analysis by random matrix theory, links to
. many-body localization, ...

Subnetworks &
coarse graining

• Most biological networks too large for 
intuitive understanding: reduce to subnets

• Gives memory functions, can be nonlinear 
(for multiple fixed points)

• Machine learning network topology from
memory effects (boundary structure)?

• Coarse-graining larger networks by 
“milestoning”?

Amorphous & 
active matter

• Amorphous materials (glass, sand, 
emulsions) trapped in metastable states

• How do disorder and heterogeneity affect 
dynamics and mechanical behaviour?

• Jamming vs glass transition?
• Extension to active matter? Important for

biophysics, e.g. cytoskeletal rheology

Phase separation
in complex mixtures

• Relevant in soft matter (colloids), biology 
(cytoplasm, lipid membranes)

• How do particle species redistribute 
between phases? Effect of crowding?

• Non-eq. structures by slow kinetics? 
• Use interaction design to break Gibbs’ rule
• Effect of non-reciprocal interactions?


