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Simple Summary: Genome duplication or multiplication, polyploidy, has contributed substantially
to the evolutionary success of plants. Polyploidy is often connected to a higher resilience to environ-
mental stress. We have chosen the goldilocks, the Ranunculus auricomus complex, to study effects
of light stress. In this species complex, diploid (2x), tetraploid (4x), and hexaploid (6x) cytotypes
occur in Central Europe in both shaded and sun-exposed habitats. In this study, we exposed them to
different photoperiods in climate growth chambers to explore how the efficiency of photosynthesis
varied between the various ploidies (2x, 4x, and 6x). We used fluorescence experiments exploring the
proportion of light that is captured for photosynthesis and the resulting energy fluxes. In addition,
quenching coefficients can be calculated that inform about the capability of a plant to deal with
excess light. We found that the polyploids can quench excess light better, which concurs with their
adaptation to open habitats and their predominantly asexual mode of reproduction that is probably
favored by low stress levels in the reproductive tissues.

Abstract: Polyploidy has substantially contributed to successful plant evolution, and is often con-
nected to a higher resilience to environmental stress. We test the hypothesis that polyploids tolerate
light stress better than diploids. The Ranunculus auricomus complex comprises diploid (2x), tetraploid
(4x), and hexaploid (6x) cytotypes, the former of which occur in shaded habitats and the latter more
in open, sun-exposed habitats in Central Europe. In this study, we experimentally explored the
effects of ploidy and photoperiod extension on the efficiency of photosystem II in the three cytotypes
in climate growth chambers. Quantum yields and various coefficients that can be calculated from
light curve, Kautsky curve, and fluorescent transient OJIP experiments provided support for the
hypothesis that, in comparison to diploids, the improved regulation of excess light by more efficient
photochemical and non-chemical quenching in polyploids might have facilitated the adaptation to
unshaded habitats. We suggest how lower stress levels in reproductive tissues of polyploids might
have favored asexual reproduction.

Keywords: apomixis; Kautsky curve; OJIP; quantum yield; light stress; photochemical quenching;
non-photochemical quenching; habitat adaptation

1. Introduction

Polyploidy, whole-genome multiplication, denotes the presence of double or multiple
chromosome sets by either genome doubling in a single species (autopolyploidy), or by
hybridization of two species with associated genome doubling (allopolyploidy) [1]. Poly-
ploidy enhances stress tolerance in response to drastic environmental changes by enabling
more extensive adaptations as consequences of gene and genome duplication [2] and acts
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as a driver of evolution and speciation in plants [3]. Compared to their diploid progeni-
tor, polyploids exhibit better stress resistance [2]. For example, they are able to increase
abscisic acid (ABA) signaling under drought conditions [4], alter volatile profiles and
photosynthesis performance under cold stress [5], and increase non-photochemical quench-
ing (NPQ) and xanthophyll production in light stress [6]. Polyploid plants can perform
photosynthesis more efficiently [7] because they have larger mesophyll cells containing
more chloroplasts, and thus more chlorophyll and expressed ribulose-1,5-bisphosphate-
carboxylase/-oxygenase (RuBisCo) in comparison to their diploid relatives [8,9]. Moreover,
the higher diversity in their genomes, transcriptomes, and metabolomes of polyploids may
contribute to their higher resilience to environmental stress [10].

In plants, photoperiod extension can induce flower meristem development [11], en-
hance photosynthesis efficiency [12,13], growth [14], and metabolite biosynthesis [15], as a
result of adjusting the circadean oscillator [16]. In a survey of 23 tree species, photoperiod
affected photosynthesis more profoundly than temperature [12].

Light stress in plants occurs whenever light absorption in leaves exceeds those levels
that can be utilized as energy and those that can be buffered by dissipation capabilities [17].
Chloroplasts, besides mitochondria and peroxisomes, represent the major source of reactive
oxygen species (ROS) that can damage cell components if their concentrations rise above
levels that are used for signaling [18]. When photodamage exceeds the antioxidant repair
capacity, photosystem II (PSII) is downregulated (photoinhibition) [19]. Plants can avoid
this situation by repartitioning the energy of the absorbed light between photochemistry
and energy dissipating pathways as a photoprotective mechanism, among which we differ-
entiate photochemical (PQ) and non-photochemical quenching (NPQ) processes [17,20].

Among plant organs, the reproductive parts are most sensitive to stress, e.g., moder-
ate temperature stress can reduce seed set [21]. Water, temperature, and light stress can
hamper male gamete and female ovule development [22]. The development of apomixis,
asexual reproduction via seeds [23], can also be affected by stress. Apomixis is usually
facultative, which means that the same plant can produce both sexual and apomictic
seeds [23]. Frequencies of sexual reproduction in facultative apomictic plants increased
after stress, e.g., in Boechera [24], Ranunculus [25,26], Eragrostis [27], and Paspalum [28].
The putative background for this phenomenon is that increased oxidative stress in ovules
triggers initiation of meiosis [24,29]. The genetic regulation of apomixis, however, is com-
plex (Schmidt 2020), and differs from the cytological processes of microsporogenesis and
formation of unreduced male gametes [30,31]. Apomeiosis, the production of unreduced
embryo sacs [23], is the key developmental step in gametophytic apomixis in the Ranuncu-
lus auricomus complex [32]. This polyploid complex is a well-established model system for
expression of facultative apomixis [31–35] and for evolution of polyploid cytotypes [36–39].
The polyploid cytotypes are evolutionarily young (less than 100,000 years old [40]) and
exhibit a low genetic divergence [26]. The Ranunculus auricomus complex comprises diploid
sexual and tetraploid and hexaploid facultative apomictic, aposporous, and pseudogamous
lineages and they develop their flowers under short day conditions (nights ≥ 12 h) [32,39].
In facultative apomictic polyploids, higher stress levels increased proportions of meiotic
compared to apomeiotic ovules [25,26,29]. Congruently, a recent study on the Ranunculus
auricomus complex over a large geographical area in Europe revealed that, among many
climatic parameters, light intensity was positively correlated to the distribution of sexual
reproduction [39].

The reproduction mode of the same three cytotypes that were used in this study have
been investigated previously in terms of reproduction mode development in different
photoperiods [25,26]. Extended photoperiods reduced formation of asexual ovules in favor
of meiotic ones. We hypothesize that lower stress levels in polyploids favor apomictic
reproduction. The major aim of the present study was to investigate how ploidy level
and extended photoperiod affect photosynthesis efficiency and to explore if these insights
provide hypotheses in efforts to explain the observed shifts in ovule type formation.
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Three cytotypes of the R. auricomus complex (2x, 4x, and 6x [32]), with different eco-
logical amplitudes, were exposed to the more or less adapted (10 h) and a moderately
extended photoperiod (16.5 h) [25]. We examined the photosynthetic efficiency by perform-
ing various chlorophyll fluorescence experiments, quantum yield in light-adapted plants
and dark-adapted plants, relative electron transport rates (rETR) during increasing actinic
light (light curves), fluorescence induction in actinic light and darkness (Kautsky curves),
and fast fluorescence transients (OJIP) [41–43]. Fluorescence coefficients that were obtained
from the Kautsky curves allowed the calculation of a number of coefficients that quantify
photosystem II quenching processes, PQ and NPQ [44]. The OJIP analysis provides coef-
ficients that inform about PSII energy fluxes and general performance [45,46]. In terms
of exploring photosynthesis efficiency of different ploidies and the effects of an extended
photoperiod on them, to the knowledge of the authors, a comparable comprehensive range
of fluorescence experiments has not been performed previously. The expected insights are
aimed to contribute to a better understanding of to what extent photosynthetic performance
and stress response can contribute to the formation of apomictic seeds in plants, a trait to
which plant breeders pay still a lot of attention as one mechanism to fix vigorous hybrid
genotypes over generations [47,48]. Since many crop plants are polyploids, we further
contribute to the understanding of photosynthesis performance of different cytotypes.

2. Materials and Methods
2.1. Plant Material

Ranunculus auricomus plants comprised the same individuals as in a previously pub-
lished study [26]. Table 1 provides an overview and Table S1 shows which experiments
have been performed on which individuals. The sampling covers the whole morphological
diversity of leaf shape within the complex, as the diploid cytotype forms both divided and
undivided basal leaves [49], the tetraploids have mostly divided leaves [36], while both
hexaploid clones have mostly undivided leaves [38]. We did not observe any effects of
light treatments on morphological traits. All seedlings developed under equal conditions
outdoors in the Old Botanical Garden of the University of Goettingen. At all ploidy levels,
plants represented closely related hybrid genotypes [26].

Table 1. Origin of 2x, 4x, and 6x Ranunculus auricomus plants.

Ploidy Origin

2x Synthetic F2 hybrid crosses of the sexual taxa R. carpaticola × R. notabilis
that occur in forest sites in Central Europe [38].

4x
Open habitat-adapted meadow type grown from seeds of plants that were
originally collected near Schönau, Mühlkreis, Austria (48◦22′46.00′′ N
14◦44′46.00′′ E, wet meadow) by L. Hodač and K. Spitzer (LH002).

6x

Hexaploid plants (6x) were grown from seeds of natural hybrids of R.
carpaticola × R. cassubicifolius from Slovakia (original clone 29 from a forest
margin and clone 35 from a meadow [25,38]). Originally, both clones were
combined to obtain sufficient replicate numbers.

2.2. Photoperiod Experiments in Climate Chambers

Growth conditions for control and stress treatments were optimized in a previous
study [25]. The climatic chambers were set at a temperature of 18 ◦C, 60% humidity, and
an average light intensity of about 250 µmol photons m−2 s−1. The photoperiod spanned
10 h for control and 16.5 h for light stress treatment. Consequently, the plants received
9.0 mol m−2 d−1 and 14.8 mol m−2 d−1, respectively.

2.3. Photosynthesis

We analyzed the effect of extended photoperiod on photosynthesis efficiency as a
proxy of stress conditions. All photosynthesis analyses were performed on 3–11 plants per
ploidy level and treatment. A fully developed basal leaf (upper side) that supported the
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inflorescence was chosen for the measurement. Fluorescence analyses started in the first
weeks after sprouting in March 2019 when plants produced flower buds. Flower buds are
covered by green sepals as photosynthetic tissue, of which no measurements were possible
with the available equipment. Basal leaves had to suffice under assumptions that effects on
photosynthesis were comparable in both leaf types.

The photosynthesis performances were observed by measurement of chlorophyll fluo-
rescent intensity with a PAM fluorometer, PAR-FluorPen FP 110 LM/S (Photon Systems
Instruments, Drásov, Czech Republic). Table S2 shows the used coefficients and their
calculations on the basis of the obtained fluorescence data. By using the preprogrammed
device protocol, first, we measured the leaves without pre-dark adaptation to record the
PSII potential quantum yield y (φPSII). Then, plants were dark-adapted for at least 30 min
for further parameter measurements, i.e., a light curve (LC) to determine the relative
electron transport rate (rETR), Kautsky curve fluorescence induction decay (KC) to ex-
plore photochemical (PQ) and non-photochemical quenching (NPQ), and fast fluorescence
transient curve (OJIP). Maximum quantum efficiency of PSII (φmax) was determined in all
dark-adapted experiments (LC, KC, and OJIP).

2.3.1. Light Curves (LC)

After dark adaptation, the experiment was started with an initial saturating super
pulse in the dark, and subsequently, similar pulses were applied during an actinic light
phase with increasing intensity, 10, 20, 50, 100, 300, and 500 µmol photons m−2 s−1. Higher
light intensities were not used due to a strong intensity decrease at 500 µmol photons
m−2 s−1 actinic light. The measuring pulse was set to 0.09 µmol photons m−2 s−1, the
saturating and super pulses to 2400 µmol photons m−2 s−1. The coefficient rETR was
calculated as shown in Table S2.

2.3.2. Kautsky Curve Fluorescence Induction Decay (KC)

The measuring and super pulses were the same as in the light curve analysis (LC). The
actinic light was set to 300 µmol photons m−2 s−1. After the initial saturating super pulse,
actinic light was switched on and lasted for 1 min. Within this time period, five additional
super pulses were applied, the first one after 7 s and the following in 12 s intervals. The
subsequent dark period lasted 88 s, during which three super pulses were applied, the
first one after 11 s and the following in 26 s intervals. The fluorescence parameters F0, FM,
FM
′, F(t), F0

′′, and FM
′′ (Figure S1) allowed calculating a number of coefficients (Table S2),

among which non-photochemical quenching (NPQ), energy-dependent non-photochemical
quenching coefficient (qE), and photoinhibitory photochemical quenching coefficient (qI)
informed about non-photochemical quenching (NPQ) and photochemical quenching (PQ)
together with the photochemical quenching coefficients qP and qL about photochemical
quenching (for detailed explanations, see Table S2).

2.3.3. Fast Fluorescence Transient Analysis (OJIP)

OJIP (alternatively O-J-I-P) experiments followed Strasser et al. [43]. The OJIP curve
was induced by a pulse of red light of 3000 µmol photons m−2 s−1. The relative fluorescence
intensity of the OJIP curve at time points O, J, I, and P, 0.5, 2, 30, and 1000 ms, respectively
(F0, FJ, FI, and FP), was determined after dark adaptation. Several OJIP-specific coefficients
can be calculated (Table S2). Additional individuals had to be included as the number of
available remaining basal leaves from the hitherto investigated individuals was insufficient
(Table S1).

2.4. Statistical Analysis

All statistical analyses were conducted with R (version 4.0.2 for Windows, R Foun-
dation for Statistical Computing, [50]). Data handling and visualization were performed
using the packages dplyr [51], tidyr [52], and ggplot2 [53]. Boxplots were created with
ggpubr [54]. Differences in the photoperiods’ effect on the photosynthetic performance
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of the different ploidies in the two photoperiods were explored with ANOVA and a 95%
Tukey or 95% Duncan multiple range test (glmmTMB [55]).

3. Results
3.1. Cytotype 6x_35 Showed Lower PSII Potential Quantum Yield (φPSII) in Both Photoperiods

The extended photoperiod did not affect the light-adapted φPSII in the tested cyto-
types, with clone 6x_35 being the exception that showed significantly lower φPSII values
(Figure 1a). Initially, both hexaploid cytotypes were regarded as sufficiently uniform to
contribute to the investigated 6x cytotypes. The high variability in the experimental data
and the calculated coefficients caused us to re-evaluate to what extent each of the two
clones, 6x_29 and 6x_35, contributed to the observed variation. One clone, 6x_29, was
found to yield rather homogenous data compared to the other cytotypes. The other clone,
6x_35, by contrast, deviated by predominantly yielding lower φPSII values. Consequently,
and in contrast to the original experimental plan, the two clones were treated separately in
attempts not to hamper statistical data evaluation by inhomogeneous sample groups.
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Figure 1. Quantum yields of R. auricomus cytotypes exposed to two different photoperiods: (a) po-
tential quantum yield, φPSII, from light-adapted plants; (b) maximum quantum yield, φmax, from
dark-adapted plants. For summary statistics, see Table S3, letters represent 95% Tukey. Boxplots show
the 25th, median, and 75th percentile range, and jitter plots represent the exact data distribution.

3.2. Cytotype 6x_35 Showed Lower PSII Maximum Quantum Efficiency (φmax) in Both
Photoperiods

Likewise, the extended photoperiod did not affect the dark-adapted maximum quan-
tum yield of PSII (φmax) with the only exception again being clone 6x_35 that differed
significantly from the others (Figure 1b). Interestingly, after dark adaptation, 6x_35 plants
that had been exposed to the extended photoperiod showed a lower median than in the
case of φPSII, in which the median of the 10 h-exposed plants was lower.

3.3. A Visual Comparison of Fluorescence Experimental Data Hinted at Subtle Differences between
Ploidies and Photoperiods

Figure 2 provides a graphical overview of the various fluorescence-based experiments.
The OJIP transient curves represent a meticulous analysis of a single super pulse after dark
adaptation (Figure 2a). Relative electron transport rates (rETR) were calculated from the
LC experiment that explored the effect of increasing actinic light intensity (PPFD) on φPSII
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(Figure 2b). Kautsky curves monitor the decay of fluorescence induction in actinic light
and a subsequent dark period (Figure 2c).
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Figure 2. Visual overview of fluorescence experiments of R. auricomus cytotypes exposed to two
different photoperiods: (a) fluorescent transient (OJIP) (b) light curve (LC) with increasing photosyn-
thetic photon flux density (PPFD, µmol photons m−1 s−1), relative electron transport rate (rETR);
(c) Kautsky curves (KC).

Albeit revealing no specific insights, Figure 2 points to the subtle differences between
ploidies and photoperiods that merited further exploration. For example, (1) OJIP curves
of the 6x_35 varied much more than the other cytotypes (Figure 2a); (2) the light curves
of the tetraploids differed clearly from the other cytotypes (Figure 2b), and (3) different
photoperiods tended to cause some differentiation in the polyploid Kautsky curves but not
those of the diploid cytotypes (Figure 2c).
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3.4. Photoperiod and Ploidy Effects
3.4.1. OJIP Experiment

This OJIP experiment focuses just on the effect of one super pulse on chlorophyll
fluorescence after dark adaptation, albeit in a very meticulous way. Figure 3 presents a
number of coefficients that quantify specific energy fluxes, ABS/RC, DI0/RC, ET0/RC, and
TR0/RC, as well as a general performance index, PIABS. Only cytotype 6x_35 differed from
the others investigated. This became especially evident in the case of the photoperiod
extension that caused significant increases in the energy flux coefficients, such as absorption
flux per PS II reaction center (ABS/RC), dissipated energy (DI0/RC), electron transport flux
(ET0/RC), and trapped energy per reaction center (TR0/RC). The performance index PIABS
decreased.
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represent the exact data distribution.

3.4.2. Light Curve (LC) Experiment

At lower PPFDs, 10–100 µmol m−1 s−1, the 6x_35 clone showed the lowest rETR whilst
the other ploidies did not differ (Figure 4). At values ≥ 300 µmol m−2 s−1, a remarkable
change occurred, in which the 4x plants took over in showing the lowest values.
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In terms of photoperiod extension, significant differences only appeared in lower
PPFDs < 50 µmol m−1 s−1. Plants that were exposed to the longer photoperiod, 16.5 h,
showed higher rETRs. In 4x plants, this effect was visible in PPFDs ≤ 50 µmol m−2 s−1, in
2x plants only at 10 µmol m−1 s−2.

3.4.3. Kautsky Curce (KC) Experiment

The Kautsky curve experiment offered insights into non-photochemical and photo-
chemical quenching, NPQ and PQ, of the various ploidies and how elongation of photope-
riod affected these processes. Figure 5 shows the most important coefficients.

In terms of NPQ efficiency, the 4x and the 6x_35 plants showed the highest NPQ
values that differed significantly from the 2x and 6x_29 plants when exposed to the shorter
photoperiod. Its extension increased the levels to those of the 4x and 6x_35 plants. Notably,
photoperiod extension did not affect the latter. The qE coefficient quantifies the amount
of heat dissipation. The boxplots of qE reflected those of NPQ. The qI coefficient, which
quantifies the photoinhibitory NPQ, indicated that especially the 6x_29 plants and, to
a lesser extent, the 2x plants, developed rather weak activities compared to the other
cytotypes.

In terms of PQ efficiency, the PQ coefficient suggested a correlation with ploidy (lower
values indicate higher efficiency). The qP and the qL coefficients quantify the number of
reduceable (open) PSII reaction centers. They concur with PQ, with the exception that
6x_35 obviously quenched less efficiently than the other cytotypes, whereas the 6x_29
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plants showed the best PQ values (lowest number of open reaction centers). Photoperiod
extension reduced PQ in 2x, 4x, and 6x_29 plants, but not in 6x_35 plants.
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4. Discussion
4.1. Ploidy and Photoperiod Did Not Affect Quantum Yield in General

Quantum yields can be measured in darkness-adapted plants, φmax, and light-adapted
plants, φPSII. The latter depends on the quality of the ambient light and thus provides
a less comparable result than φmax. In this study, the different cytotypes gave similar
results for both quantum yield types, the only exception being clone 6x_35 that showed
remarkable reductions in both quantum yield types (Figure 1a,b). Quantum yield reduction
is regarded as a general stress indicator [56]. Another study that compared Allium oleraceum
L. cytotypes ≥ 4x [57] also found high similarities in their φmax values, as others did in a
study on Phragmites australis (Cav.) Trin. ex Steud. cytotypes [58]. Likewise, φmax did not
differ between 2x and 4x Lilium hybrids [59].

The photoperiod extension from 10.0 to 16.5 h caused no effect on φPSII and φmax. There
are fewer studies that focus on the effects of photoperiod on quantum yield compared to
those that focus on spectral composition. Leonardos and coworkers explored the effect of
different light sources with different wavelength compositions in short day and long day
photoperiods on the development of Chrysanthemum plants [60]. In this study, the authors
also compared high-pressure sodium lamps, similar to those that were used in this study,
and found that photoperiod did not affect quantum yield that, in contrast to this study,
was determined not by fluorescence but by CO2 gas exchange measurements. Accordingly,
the lower quantum yield of 6x_35 (Figure 1) must have been caused by other factors.
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4.2. Fast Fluorescence Transient Analyis (OJIP) Identified Stress in Cytotype 6x_35

The fast fluorescent transient analysis (OJIP), a highly detailed analysis of φmax, pro-
vides insights into energy fluxes and performance of PSII. In congruence with the quantum
yield values, 2x, 4x, and 6x_29 did not differ in the calculable coefficients even when
the photoperiod was extended. Only cytotype 6x_35 differed significantly (Figure 3), es-
pecially when the photoperiod was extended to 16.5 h. The increased absorption and
trapped energy fluxes in the reaction centers (ABS/RC, TR0/RC) and the increased elec-
tron transport (ET0/RC) were reflected in higher dissipation energy fluxes (DI0/RC). These
observations resembled those that are seen when plants are submitted to heat stress,
temperatures ≥ 40 ◦C [43], or UV-C irradiation [61]. These effects were especially promi-
nent in the 16.5 h photoperiod that aggravated the stress of the 6x_35 plants. Accordingly,
the overall performance index PIABS of 6x_35 plants decreased significantly.

4.3. Light Curve (LC) Experiments Showed That Increasing Actinic Light Caused 4x Cytotypes to
Show Lower rETRs and 6x_35 to Resemble 2x and 6x_29 Cytotypes

The exploration of how quantum yield changes in the presence of increased actinic
light is widely used to explore electron transport through PSII [41]. In this study, concerns
about bad comparability do not apply because the investigated plants belong to a closely
related species complex, in which similar pigment compositions and leaf structures can
be assumed to prevail. A comparison of the rETR values (Figure 4) showed that the
6x_35 plants showed the lowest rETR values at lower PPFDs (≤100 µmol m−2 s−1). These
observations can be explained by the stressed state of plants from this clone.

However, when PPFD increased further, the 4x plants yielded the lowest rETR values
and the 6x_35 plants started to resemble the 2x and 6x_29 cytotypes more closely. Differ-
ences of the two photoperiods, which were clearly visible at PPFDs ≤ 20 µmol m−2 s−1,
vanished at higher PPFDs. The stress of the 6x_35 cytotype that was observed in the OJIP
analysis did not explain the effects that appeared in the LC experiment. Rather idiosyncrat-
ically, the rETR of the 6x_35 cytotype improved relatively with increasing PPFD. The OJIP
experiment was carried out with dark-adapted plants and the LC experiment indicated that,
rather idiosyncratically, increasing PPFD seemed to alleviate the stress of the 6x_35 plants.

Light period extension could have acted as a priming effect in 2x and 4x plants. At
10 µmol m−2 s−1, the 16.5 h-exposed plants showed higher rETRs than the 10.0 h plants. It
disappeared, however, at PPFDs ≥ 20 µmol m−2 s−1, and was never visible in either of the
6x cytotypes, despite their pronounced differences in quantum yield. Optimization studies
of light regimes for greenhouse-reared lettuce revealed that moderate extension of the light
period may improve growth but daily received light amounts should not exceed certain
dosages [62]. A certain priming potential was attributed to a combination of high light with
high temperature in tomatoes [63]. These observations probably do not apply generally
to all plant species. At least, albeit interpretation of the observed effects is difficult, subtle
differences between the investigated cytotypes became evident.

Thus far, the discussed experiments did not include quenching mechanisms that have
evolved to protect the photosynthesis in high-light conditions, NPQ and PQ [17,20]. The
terms non-photochemical and photochemical are somewhat misleading because both of
them involve chemical reactions. NPQ covers all quenching chemical reactions with the
exception of the exciton trapping act, while PQ covers those affecting the exciton trapping
act [64]. The Kautsky curve experiments (KC) informed about the quenching chemical
reactions and represent the focus of the next section.

4.4. Kautsky Curve (KC) Analyses Identify Polploids as More Efficient Photosynthesis Quenchers

In this experiment, the actinic light was set to 300 µmol m−2 s−1, which represents the
generally assumed saturation PPFD of photosynthesis in plants [65]. Its advantage is that it
allows for exploring the quenching processes in the investigated plant leaves (Figure 5). In
terms of NPQ, the polyploid 4x and 6x_35 cytotypes proved to be the most efficient ones.
The coefficient qE, which quantifies heat dissipation, provided a highly similar picture
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to that of coefficient NPQ. The coefficient qI, which quantifies photoinhibitory NPQ, the
minor component of NPQ, yielded similar results. NPQ seemed to increase in polyploids.
Rakić and co-workers, who compared the diploid Ramonda nathaliae Panč et Petrov with the
hexaploid R. serbica Panč in terms of photosynthesis after rewetting following a desiccation
period, to which these rock-dwelling Gesneriaceae are exposed during the summer months,
reported similar findings [66]. The hexaploid R. serbica showed higher NPQ levels than the
diploid R. nathaliae. A study on artificial Lilium hybrids confirmed these observations [59].
The big differences in the coefficient values between the 6x_29 and 6x_35 cytotype may,
at first glance, contradict the hypothesis that polyploids are more efficient in NPQ. In
congruence with Achenbach and co-workers [58], ploidy alone does not suffice to explain
photosynthesis efficiency data. If, however, the adaption history to forest habitats with a
tree canopy and to open meadows is taken into account, the observed patterns make more
sense, in which the open habitat-adapted 4x and 6x_35 plants represent the more efficient
NPQ types and the forest-dwelling 2x and 6x_29 cytotypes the less efficient NPQ types.

PQ describes the chemistry at the PSII reaction centers. The coefficients qP, and even
more so qL, are regarded as the most informative [67]. They quantify the number of open
(unreduced) PSII reaction centers. The lower the number, the more efficient PQ becomes.
By the majority, and as suggested by qP and qL, the polyploids were able to use PQ better
than the diploids. The only exception is cytotype 6x_35, in which PQ is on the same level
as in the diploids. The coefficient PQ, corresponding to NPQ, deviated by assigning similar
efficiencies to 6x_29 and 6x_35, but is not considered as meaningful as qP and qL.

Light period extension only slightly increased the NPQ capabilities of the 2x cytotype.
Generally, in terms of NPQ and PQ, polyploidy contributed more to differences than the
light period extension that was applied in this study.

4.5. Photosynthesis, Habitat Adaptation, and Apomixis

This study utilized 2x, 4x, and 6x cytotypes from the Ranunculus auricomus species
complex. Especially in the more sophisticated fluorescence experiments, which in terms
of information quality exceeded simple quantum yield measurements of either light- or
dark-adapted plants, the photosynthesis efficiency of polyploids was found to be better
adapted in open habitat-conditioned plants, especially in the 4x cytotype.

The second open habitat cytotype, 6x_35, yielded rather controversial results. High
value variations in photosynthesis efficiency of polyploids can occur as a result of higher
intracytotype variation and niche breadth [57]. In terms of NPQ, 6x_35 resembled the 4x
cytotype, in terms of PQ the 2x cytotype. The 6x_35 plants appeared to be more stressed
when dark-adapted. With increasing actinic light, the quantum yield was again more
similar for the 2x and 6x_29 cytotype and the 4x cytotype showed the lowest values, which
may be due to the efficient quenching capabilities, as would be expected for open habitat-
adapted species. The canopy-adapted 2x and 6x_29 cytotypes were less efficient in terms
of NPQ. In terms of PQ, the 6x_29 followed the polyploid trend to be more efficient. The
results of this study point more to NPQ than to PQ as an adaptive mechanism to open
habitats. Probably, the success of a cytotype depends on the co-ordination extent of both
quenching processes. Suboptimal co-ordination, as perhaps in 6x_35, may be responsible
for the observed idiosyncratic results.

For the experiments in this study, the plants were grown under equal garden con-
ditions, but different pre-adaptations from original habitats of the accessions may still
have influenced their photosynthesis performance. Diploids originated from crosses of
forest plants [38] and pre-adaptations to low-light conditions can be recognized in their
photosynthesis. They responded to the extended photoperiod more intensively than the
polyploids. Tetraploids were raised from light-adapted meadow plants, and the hexaploid
clone 35 (=VRU2 in [57]) also originated from a typical open habitat-adapted mother plant
from a meadow population with more sunlight exposure [38,68], whereas hexaploid clone
29 (=TRE in [57]) originated from a plant growing in a shaded habitat on a forest margin. Al-
together, tetraploids appeared to be better adapted to high-light conditions by their efficient
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NPQ and PQ. Hexaploids, however, strongly differentiated according to their provenances,
although 6x_35 behaved idiosyncratically, but not in terms of NPQ. All cytotypes originate
from sites in Central Europe (at 47–48 ◦ latitude and from the same altitudinal zone), and
hence we can rule out that differential light intensities due to strong latitude (or altitude)
gradients, as observed in a study over the whole of Europe [30], would have influenced
the evolution of their photosynthetic performance. The variability of polyploid ecotypes
in R. auricomus may rely on a greater variance in gene expression patterns as they have
highly heterozygous genomes [30]. In a comparison of diploid and tetraploid Glycine max,
overexpression of oxidative stress-regulating genes correlated to differential photosynthetic
performance and adaptation to higher light intensities [8]. Additionally, epigenetic control
mechanisms may play a role. A study on cytosine methylation of diploid and tetraploid
R. kuepferi revealed not only different methylation profiles between cytotypes, but also
indicated two different epigenetic groups within tetraploids, correlating with different
temperature exposures [69].

The photosynthesis performance of R. auricomus cytotypes, however, does relate to
mode of ovule formation, as predominantly sexual diploids showed the highest sensitivity
to an extended photoperiod and the lowest quenching capacities concomitant to the highest
proportions of sexual ovules. In tetraploids, apomictic ovules prevailed [26]. Hexaploids,
however, exhibited a very large variance in the proportions of sexual ovules, in congruence
with observations on photosynthesis efficiency [26]. Variation was mostly attributed to two
different ecotypes, one adapted to the canopy, the other to open habitats. We assume that
differential levels of oxidative stress affect the mode of reproduction, similarly as has been
suggested for different ploidy levels in the brassicacean genus Boechera [24].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10080811/s1, Figure S1, Exemplary Kautsky curve of KC experiments, indication
of fluorescence parameters and coefficients; Table S1, Sample and clone codes of plant accessions
that were used in the various photosynthesis fluorescence experiments; Table S2, Calculation and
definition of photosynthesis coefficients; Table S3, Summary statistics and 95% Tukey multiple range
test of φPSII and φMAX among cytotypes exposed to different photoperiods; Table S4, Summary
statistics and 95% Duncan multiple range test of coefficients from transient fluorescence analyses
(OJIP); Table S5; Summary statistics and 95% Duncan multiple range test of relative electron transport
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coefficients calculated from Kautsky curve experiments.
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