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MaxSAT

Contents

® Boolean Optimization

e MaxSAT
e Pseudo-Boolean Optimization (PBO)
e Conversion between PBO and MaxSAT

® Example Applications

e Configuration and Re-Configuration
e Minimal Vertex Cover

® Techniques

e Cardinality Constraints
e Pseudo-Boolean Constraints

o Practical Algorithms

e Branch & Bound (not covered)
e lterative SAT Solving
e Core-Guided Algorithms (not covered)
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MaxSAT Motivation

What is MaxSAT?

Example
X6 V Xo —Xg V Xo =Xy V X1 —1X1
—Xg V Xg Xe V —1Xg Xo V Xy —Xs V Xg
X7 V Xz —X7 V Xg —X5 V X3 —X3

Is this clause set satisfiable?
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MaxSAT Motivation

What is MaxSAT?

X6 V Xo —Xg V Xo =Xy V X1 —1X1
—Xg V X3 X V TXg Xo V Xy =Xz V Xg
X7 V Xs —X7 V X5 —X5 V X3 —1X3

Clause set is unsatisfiable!

MaxSAT:
e Find a valuation which maximizes the number of satisfied clauses
e In the above set, a maximum of 10 clauses can be satisfied simultaneously

e There are several variants of the MaxSAT problem
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Variants of MaxSAT — 1

MaxSAT

e All clauses are soft, i.e. need not necessarily be satisfied.
e Maximize number of satisfied soft clauses

e Minimize number of unsatisfied soft clauses

Partial MaxSAT

e There are hard clauses, which must be satisfied

e Minimize number of unsatisfied soft clauses

Application example: car configuration
e Hard clauses: certain options/features must be present in car
e Soft clauses: additional options/features with dependencies

e Question: how many (and which) options can be ordered additionally for the
car?
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MaxSAT Motivation

Variants of MaxSAT — 2
Weighted MaxSAT

e All clauses are soft

o All clauses carry weights in addition

e Minimize the sum of weights in unsatisfied clauses

Weighted Partial MaxSAT

e There are hard clauses, which must be satisfied

e There are soft clauses which carry weights

e Minimize the sum of weights in the unsatisfied soft clauses

Application example: car configuration
e Hard clauses: the configuration constraints given by the manufacturer
(technical, legal, sales, ...)
e Soft clauses: options/features desired by the customer (typically unit clauses:
a set of option codes desired to be all true), possibly with priorities or costs
as weights
e Questions: optimal car configuration (sum of priorities maximized)
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MaxSAT Motivation

Notation

Notation: weighted clause

(c, w): weighted clause

e c is a set of literals (a clause)

e w is a non-negative integer value or co (or T)
e cost (penalty), if ¢ is not satisfied

Notation: clause set

©: set of weighted clauses
e Soft clauses: (¢, w) with w < o
e Cost, if c is not satisfied
e Hard clauses: (c, o0)
e Clause ¢ must be satisfied
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MaxSAT Motivation

Modelling Example

Minimum Vertex Cover
o Vertex Cover U C V: For each edge (v;,vj) € E we

<> @ have v e Uor v, € U
e Minimum Vertex Cover: Vertex Cover U of minimal
‘ size

Example
Partial MaxSAT Encoding

e \ariables: x; for each vertex v; € C, with x; =1, iff v € U

e Hard clauses: (x; V x;j) for each edge (v;,v;) € E (... is Vertex Cover)
o Soft clauses: (—x;) for each edge v; € V' (... is minimal)
e the more variables are set to 0, the smaller the cover set
Encoding:
e on ={0aVxe),(x1Vx3),(xxVxa)}
* s = {(mx),(7x2), (—x3), (—xa) }
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MaxSAT vs. MinUNSAT

MinUNSAT

e Find valuation which minimizes the number U of unsatisfied clauses

e this valuation also maximizes the number of satisfied clauses

e MinUNSAT(¢p) := U.

e variants partial, weighted, and partial weighted are possible (like with
MaxSAT)

e Weighted MinUNSAT: minimize the weight of unsatisfied clauses

Let © be a clause set, then:
|| = MaxSAT () + MinUNSAT(y)
Note: this relation holds for all variants

e Sometimes algorithms are given for MinUNSAT which can equally well be
used for MaxSAT because of this relation
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MaxSAT Motivation

Example: MaxSAT vs. MinUNSAT

e Let ¢ = Hard U Soft with

Hard = {{x}}
Soft = {({—x},2),({y},6),{—x,~y},5)}

o PartialWeightedMaxSAT(yp) =6
Valuation: x— 1, y — 1

o PartialWeightedMinUNSAT(p) =7
Valuation: x— 1, y — 1

e \We have:

13 = PartialWeightedMaxSAT(¢) + PartialWeightedMinUNSAT ()
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MaxSAT Pseudo-Boolean Optimization

Pseudo-Boolean Constraints & Optimization

Pseudo-Boolean Constraints

e Boolean variables: xq,..., X,

e Linear inequalities

Za,-f,- > b, l; € {X,',)?,'},X,' < {O, 1}, aj, b e N(_)'_
IieN

Pseudo-Boolean Optimization

Minimize

with respect to n PB constraints

Za,-jﬁ,- > bj, J € {1 e n},f,- c {X,',)?,'},X,' c {0, 1},a,-j, bj c NS_
ieN

Kiichlin / Walter (U. Tiibingen) Introduction to MaxSAT 25/07/15 10 / 34



MaxSAT Pseudo-Boolean Optimization

Modelling Example

Minimum Vertex Cover
o Vertex Cover U C V: for each edge (v;,v;) € E we
<> @ have v e Uor v; € U

e Minimum Vertex Cover: Vertex Cover U of minimal
a size
Encoding as PBO

e Variables: x; for each vertex v; € V, with x;, =1 if v; € U
e PB Constraints: x; + x; > 1 for each edge (vi,v;) € E

e Goal function: minimize number of variables with value=1

= i.e. minimize number of vertices in the Vertex Cover

Problem instance: xi + xc > 1, x1 + x3 > 1,x1 + x4 > 1
Goal function: x; + x> + x3 + x4
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MaxSAT Pseudo-Boolean Optimization

From (pure) MaxSAT to PBO

Starting from an unsatisfiable CNF formula ¢:
® Generate ¢’ from @

e Replace each clause ¢; with ¢ = ¢; U {r;}
e where r; is a new variable (selector variable, blocking variable)
e Now the problem can be trivially solved by setting all r; to 1

® Minimize goal function ) r;

e CNF formula ¢:
QY = {{Xla_'x2}7 {X17X2}7 {_'Xl}}
e Modified formula ¢':
Y = {{X17_'X27 fl}, {X1,X2, fz}, {_'Xla f3}}

e PB Constraints: xy +xo +n >1.xy+x+n>1,x1+mn>1

e Minimize goal function: r{ + rn + r3
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MaxSAT Pseudo-Boolean Optimization

From Partial (Weighted) MaxSAT to PBO
Starting from a Partial (Weighted) MaxSAT instance with ¢y and s

Generate PBO instance:

minimize > w;r;, such that @7 holds, with

° o1 = Pl Ups
e Each hard clause (c, 00) is mapped to a clause ¢ in ¢,

e Each soft clause (¢, w) is mapped to a clause (¢; V r;) and the term w;r; is
added to the goal function

e Original problem: ({x,y,—z}, o), ({x,—y},4),({—x},8),({x,z},2)
® O1T = Sxayv_'z)ang Y, r1)7 (_'Xv I’2), (X727 r3z

J/

Ph P’
e PB constraints: x4+ y+z>1,x4+y+n>1.x+n>1,x+z4+nr>1
e Minimize goal function: 4r; + 8r, + 2r3
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Applications of MaxSAT Software Package Upgrades

Application: Software Package Upgrades

e Available software packages: P = {p1,...,pn}
e Variable x; for each package p; € P. x; = 1, iff p; is installed
e Constraints for each package p;: (pi, Di, G)
e D;: Dependencies (required packages) when installing p;
e C;: Conflicts (disallowed packages) when installing p;
e Example problem: Maximum Installability

e Maximal number of packages which can be installed
e Package Constraints are hard clauses
e Each individual package is a soft clause

Package Constraints MaxSAT Encoding

(p1, {p> V p3}, {pa}) o = {(x1Vx2Vx3),(—x1V-xyg),

(P2> {p3};{pa}) (mx2 V x3), (mx2 V —xa), (x5 V X2),
(p3, {p2},0) (—x4 V x2), (—xg V x3)

(Pe: {p2 1 P}, ) s = {(x). (). (), ()
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Cardinality Constraints

Question: How do we handle Cardinality Constraints?
e General form: Zj'f':lxj > k with e {<, <, =,>,>1

e In particular AtMost1 constraints: 2;721 xjp <1

Use a special PB Solver

- Hard to keep up with progress in SAT Solving

- For SAT /UNSAT the best solvers already encode in CNF
e such as Minisat+, QMaxSat, MSUnCore, (W)PM2

e encode cardinality constraints in CNF

e use a SAT solver
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Encoding Techniques Cardinality Constraints

Equals, AtLeastl & AtMostl Constraints

Special treatment of constraints with right-hand side = 1 — occurring frequently:
e Car must have exactly on motor . ..
e Exactly one graphics driver must be selected . ..

e At most one SAT solver may be installed in Eclipse ...

o J’.’Zl x; = 1: encode as (Zle xji <1)A (Zle xj > 1)

o ZJ'.’:lxj > 1: encode as (x1 Vxp V-V xp)

e > i_1% < 1:encode as:
e Pairwise encoding:
e clauses: O(n?); no auxiliary variables
e Sequential counter
e clauses: O(n); auxiliary variables: O(n)
e Bitwise encoding:

e clauses: O(nlog n); auxiliary variables O(log n)
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Encoding Techniques Cardinality Constraints

General Cardinality Constraints

General form: 3 7, x; < k (or 35, x; > k)

e Sequential counter
o clauses/variables: O(nk)
e BDDs
o clauses/variables: O(nk)
e Sorting networks
e clauses/variables: O(nlog® n)
e Cardinality networks
e clauses/variables: O(nlog® k)
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Encoding Techniques Pseudo-Boolean Constraints

Pseudo-Boolean Constraints
General form: 37, a;x; < b
e Encoding e.g. with BDDs (worst case: exponential number of clauses!)

3x1 +3x2 +x3 <3
e Encode a BDD, i.e. analyze variables by subtracting coefficients
e Convert BDD to CNF

o Simplify
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Encoding Techniques Pseudo-Boolean Constraints

Pseudo-Boolean Constraints
General form: 37, a;x; < b
e Encoding e.g. with BDDs (worst case: exponential number of clauses!)

3x1 +3x2 +x3 <3
e Encode a BDD, i.e. analyze variables by subtracting coefficients
e Convert BDD to CNF

o Simplify

e Conversion formula at node x:
F=(-xVF|x=1) A (xV F|x=0)
o yields: (—x3 V —x2)A
(—x1 VX2 Vox3) A(xy V—x V—x3)

o simplifies to: (—xy V —x2)A
(—IX2 V —|X3) A (—IX1 V —IX3)
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Practical Algorithms

Some Practical Algorithms

e Branch & Bound

o lIterative (pure) SAT Solving

e Step-wise approach from below (pure, simple, inefficient)
e Leaping approach from above: LeBerre s Algorithm (for MaxSAT)
e Binary Search (for MaxSAT)

e [terative SAT Solving using the unsat core extension

e Fu and Malik Algorithm for Partial MaxSAT
e PM?2 for Partial MaxSAT
e WPMI1 for Partial Weighted MaxSAT
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Practical Algorithms Iterative SAT Solving

MaxSAT by lterative SAT Solving

Reducing MaxSAT Solving to SAT Solving

e |dea:
e lteratively call a SAT Solver, switching off clauses through blocking variables

e Advantage:

e immediately use all modern efficient SAT Solving techniques (Unit propagation
with Watched Literals, Clause Learning with non-chronological backtracking,
etc) which do not (or only partially) apply to MaxSAT directly.

e Two approaches:

e Reduction to (pure) SAT-Solving
e Reduction to SAT-Solving with unsat core extension

Basic idea: step-wise approach from below

e Introduce a new blocking variable for each constraint: C; becomes C; V b;.
e Introduce additional cardinality constraint on the blocking variables (blocked
m
clauses): > ., bi < k

o lteratively solve SAT((J G;) U CNF(>_", b; < k)) fir k =0,1,... until
enough (MinUNSAT many) clauses have been switched off (blocked)
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Practical Algorithms Iterative SAT Solving

Iterative MaxSAT: Leaping approach from above

The algorithm of Daniel LeBerre

Algorithm 1: LeBerre(yp)

Input: MaxSAT instance ¢ ={Cy,...,Cp}
BV ={by,...,bn}
o< {C Vby,....,Cp V b} // Add blocking variables
ub <— m
while SAT (¢ UCNF(>_", b; < ub)) do
// Are blocking variables used at all?
if #satisfiedBlockingVariables > 0 then
| ub + #satisfiedBlockingVariables

else
L return 0

return ub

Literature: Biere et al. Handbook of Satisfiability, 19.6, S.625. 10S Press, 2009.

Kiichlin / Walter (U. Tiibingen) Introduction to MaxSAT 25/07/15 21 / 34



