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1 Introduction

In this manual we provide a brief review of the methodological background for the four regression
tools currently implemented in BayesX. The first two regression tools (bayesreg objects and mcm-
creg objects) rely on Markov chain Monte Carlo (MCMC) simulation techniques and yields fully
Bayesian posterior mean or posterior mode estimates. While bayesreg objects provide access to
exponential family structured additive regression as well as survival times and multi-state models,
mcmcreg objects implement distributional and quantile structured additive regression models as
well as multilevel extensions of structure additive regression. The third regression tool (remlreg
objects) is based on the mixed model representation of penalised regression models with inference
being based on penalised maximum likelihood and marginal likelihood (a generalisation of restricted
maximum likelihood) estimation. The fourth regression tool (stepwisereg objects) simultaneously
performs model choice and estimation with inference being based on penalised likelihood. MCMC
techniques are partly used for computing interval estimates. All regression tools allow to esti-
mate structured additive regression (STAR) models (Belitz & Lang (2008), Brezger & Lang (2006),
Fahrmeir, Kneib & Lang (2004)) with complex semiparametric predictors. STAR models cover a
number of well known model classes as special cases, including generalized additive models (Hastie
& Tibshirani 1990), generalized additive mixed models (Lin & Zhang 1999), geoadditive models
(Kammann & Wand 2003), varying coefficient models (Hastie & Tibshirani 1993), and geographi-
cally weighted regression Fotheringham, Brunsdon & Charlton (2002). Besides models for responses
from univariate exponential families, BayesX also supports non-standard regression situations such
as models for categorical responses with either ordered or unordered categories, uni- and multi-
variate distributional regression in the spirit of generalised additive models for location, scale and
shape with parametric response distributions beyond the exponential family framework, Bayesian
quantile regression, continuous time survival data, or continuous time multi-state models. To pro-
vide a first impression of structured additive regression, Sections 2 to 6 describe STAR models for
exponential family regression. Section 7 extends structured additive regression to the analysis of
survival times and multi-state data while Section 8 considers extensions for distributional regres-
sion, quantile regression and multilevel specifications. Full details on STAR methodology can be
found in the following references:

Structured additive regression based on MCMC simulation

• Brezger, A., Lang, S. (2006): Generalized Structured Additive Regression based on Bayesian
P-Splines. Computational Statistics and Data Analysis, 50, 967–991.

• Brezger, A., Lang, S. (2008) Simultaneous Probability Statements for Bayesian P-splines.
Statistical Modelling, 8, 141–168.

• Brezger, A., Steiner, W. (2008): Monotonic Regression based on Bayesian P-Splines: an
Application to Estimating Price Response Functions from Store-level Scanner Data. Journal
of Economic and Business Statistics, 26, 90–104.

• Fahrmeir, L., Kneib, T., Lang, S., Marx, B. (2013): Regression: Models, Methods and Appli-
cations, New York: Springer-Verlag.

• Fahrmeir, L., Lang, S. (2001): Bayesian Inference for Generalized Additive Mixed Models
based on Markov Random Field Priors. Journal of the Royal Statistical Society C (Applied
Statistics), 50, 201–220.

• Fahrmeir, L., Lang, S. (2001): Bayesian Semiparametric Regression Analysis of Multicate-
gorical Time-Space Data. Annals of the Institute of Statistical Mathematics, 53, 10–30.

• Hennerfeind, A., Brezger, A., Fahrmeir, L. (2006): Geoadditive Survival Models. Journal of
the American Statistical Association, 101, 1065–1075.
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• Klein, N., Kneib, T., Lang, S. (2013): Bayesian Structured Additive Distributional Regres-
sion. Under revision for Annals of Applied Statistics.

• Klein, N., Kneib, T., Lang, S. (2014): Bayesian Generalized Additive Models for Location,
Scale and Shape for Zero-Inflated and Overdispersed Count Data. To appear in Journal of
the American Statistical Association, doi:10.1080/01621459.2014.912955.

• Klein, N., Kneib, T., Klasen, S., Lang, S.(2014): Bayesian Structured Additive Distributional
Regression for Multivariate Responses. To appear in Journal of the Royal Statistical Society
C, doi:10.1111/rssc.12090.

• Kneib, T., Hennerfeind, A. (2006) Bayesian Semiparametric Multi-State Models. Statistical
Modelling, 8, 169–198..

• Lang, S., Brezger, A. (2004): Bayesian P-Splines Journal of Computational and Graphical
Statistics, 13, 183–212.

• Lang, S., Umlauf, N., Wechselberger, P., Harttgen, K. and Kneib, T. (2014): Multilevel
Structured Additive Regression, Statistics and Computing, 24, 223–238

Presumably the best starting point is the paper by Brezger & Lang (2006) or the monograph by
Fahrmeir et al. (2013).

Structured additive regression based on mixed model methodology

• Fahrmeir, L., Kneib, T., Lang, S. (2004): Penalized Structured Additive Regression for Space-
Time Data: a Bayesian Perspective. Statistica Sinica, 14, 715–745.

• Kneib, T. (2006): Mixed Model based Inference in Structured Additive Regression. Dr. Hut
Verlag, München. Available online from http://edoc.ub.uni-muenchen.de/archive/00005011/

• Kneib, T. (2006): Geoadditive Hazard Regression for Interval Censored Survival Times. Com-
putational Statistics and Data Analysis, 51, 777–792.

• Kneib, T., Fahrmeir, L. (2007): A Mixed Model Approach for Geoadditive Hazard Regression.
Scandinavian Journal of Statistics, 34, 207–228.

• Kneib, T., Fahrmeir, L. (2006): Structured Additive Regression for Multicategorical Space-
Time Data: A Mixed Model Approach. Biometrics, 62, 109–118.

• Kneib, T., Hennerfeind, A. (2006): Bayesian Semiparametric Multi-State Models. Statistical
Modelling, 8, 169–198.

Presumably the best starting point is the paper by Fahrmeir, Kneib & Lang (2004) or the mono-
graph by Kneib (2006).

Structured additive regression including model selection

• Belitz, C. (2007): Model Selection in Generalised Structured Additive Regression Models.
Dr. Hut Verlag, München.

• Belitz, C., Lang, S. (2008) Simultaneous Selection of Variables and Smoothing Parameters
in Structured Additive Regression Models. Computational Statistics and Data Analysis, 53 ,
61-81.

Presumably the best starting point is the paper by Belitz & Lang (2008).
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2 Generalized regression models
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Figure 1: Guidelines for reading this manual.

Guideline for the reader

The rest of this manual is organized as follows:

The next section describes the general structure of STAR models for distributions of the response
variable belonging to an exponential family. The following Sections 3 – 6 discuss alternative ap-
proaches for specifying and estimating the different model terms in STAR models. Section 3
describes the models from a more classical penalized least squares perspectives. A Bayesian point
of view is taken in Section 4. The close connection to mixed models is highlighted in Section 5.
Section 6 gives a brief outline of the various inference techniques for exponential family STAR mod-
els. Fully Bayesian inference via MCMC simulation techniques for exponential family responses,
categorical responses and duration times is the topic of Section 6.1. Inference based on mixed
model technology is sketched in Section 6.2. Simultaneous selection of relevant model terms and
estimation of the parameters is described in Section 6.3. Section 7 discusses extensions for duration
times and multi-state models while Section 8 provides details on distributional regression, quantile
regression and multilevel specifications.
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For most users of BayesX it is sufficient to read only parts of this manual. Some recommendations
are given in Figure 1.

2 Generalized regression models

Generalized linear models assume that, given covariates u and unknown parameters γ, the distri-
bution of the response variable y belongs to an exponential family, i.e.

p(y |u) = exp

(
yθ − b(θ)

ϕ

)
c(y, ϕ) (1)

where b(·), c(·), θ and ϕ determine the specific response distribution. A list of the most common
distributions and their parameters can be found for example in Fahrmeir & Tutz (2001), page 21.
The mean µ = E(y|u,γ) is linked to a linear predictor η by

µ = h(η) η = u′γ, (2)

where h is a known response function and γ are unknown regression parameters.

In most practical regression situations, however, we are facing at least one of the following problems:

• For the continuous covariates in the data set, the assumption of a strictly linear effect on the
predictor may be not appropriate.

• Observations may be spatially correlated.

• Observations may be temporally correlated.

• Complex interactions may be required to model the joint effect of some of the covariates
adequately.

• Heterogeneity among individuals or units may be not sufficiently described by covariates.
Hence, unobserved unit or cluster specific heterogeneity has to be considered appropriately.

To overcome these difficulties, we replace the strictly linear predictor in (2) by a structured additive
predictor

η = f1(x1) + . . .+ fj(xj) + . . .+ fp(xp) + u′γ, (3)

where xj denote covariates of different type and dimension, and fj are (not necessarily smooth)
functions of the covariates. The functions fj comprise usual nonlinear effects of continuous covari-
ates, time trends and seasonal effects, two-dimensional surfaces, varying coefficient models, i.i.d.
random intercepts and slopes as well as spatial effects. STAR-models cover a number of special
cases well known from the literature, in particular Generalized additive models (GAM), Generalized
additive mixed models (GAM), Geoadditive models, Multilevel models, Varying coefficient models
(VCM), ANOVA type interaction models and geographically weighted regression.

3 Penalized least squares

In BayesX, the nonlinear functions fj are modeled by a basis functions approach, i.e. a particular
nonlinear function f is approximated by a linear combination of basis functions:

f(x) =

K∑
k=1

βkBk(x)
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The Bk are known basis functions and β = (β1, . . . , βK)′ is a vector of unknown regression coeffi-
cients to be estimated. Note that the term basis function in our understanding is not limited to basis
functions known from nonparametric smoothing such as B-splines but also refers to non-standard
basis functions such as indicator functions for regions or clusters. To ensure enough flexibility,
typically a large number of basis functions is defined. To avoid overfitting, a roughness penalty on
the regression coefficients is additionally specified. We use quadratic penalties of the form β′P(λ)β
where P(λ) is a penalty matrix. The penalty depends on one or multiple smoothing parameters λ
that govern the amount of smoothness imposed on the function f . Most penalty matrices are of
the particular simple form P(λ) = λK where λ is a scalar smoothing parameter. For stepwisereg
objects more complicated penalties are sometimes possible. They are an additive combination of
penalty matrices. An example is P(λ) = λ1K1+λ2K2 where λ1 and λ2 are smoothing parameters
and K1 and K2 are penalty matrices.

The choice of basis functions B1, . . . , BK and penalty P(λ) depends on our prior assumptions
about the smoothness of f as well as the type and dimension of x. We will give specific ex-
amples below. Defining the n × K design matrix X with elements X[i, k] = Bk(xi) the vector
f = (f(x1), . . . , f(xn))

′ of function evaluations can be written in matrix notation as f = Xβ.
Accordingly, for model (3) we obtain

η = X1β1 + . . .+Xpβp +Uγ + ε,

where U is the design matrix for linear effects, γ is the vector of regression coefficients for linear
effects, and ε are the vectors of observations and errors. In the next subsections we will give specific
examples for modeling the unknown functions fj or in other words for the choice of basis functions
and penalty matrices. We start with modeling the effect of continuous covariates using splines.

3.1 Continuous covariates

3.1.1 P(enalized)-splines

Suppose first that a particular component x of the covariate is univariate and continuous. There is
a considerable amount of literature on basis functions approaches in combination with a (quadratic)
roughness penalty for continuous covariates. BayesX applies the P-splines approach introduced by
Eilers & Marx (1996). The approach assumes that the unknown functions can be approximated by
a polynomial spline of degree l and with equally spaced knots

xmin = ζ0 < ζ1 < · · · < ζm−1 < ζm = xmax

over the domain of x. The spline can be written in terms of a linear combination of K = m + l
B-spline basis functions. The columns of the design matrix X are given by the B-spline basis
functions evaluated at the observations xi. To overcome the well known difficulties involved with
regression splines, Eilers & Marx (1996) suggest a relatively large number of knots (usually between
20 to 40) to ensure enough flexibility, and to introduce a roughness penalty on adjacent regression
coefficients based on squared r-th order differences, i.e.

β′λKβ = λ
K∑

k=r+1

(∆rβk)
2.

The penalty matrix is given by K = D′
rDr where Dr is a r-th order difference matrix. Typically,

second or third order differences are used. The limiting behavior λ→ ∞ depends both on the order
of the spline and the order of the penalty. If the order of the spline is equal to or higher than the
order of the penalty, which is typically the case, then a polynomial fit of degree r − 1 is obtained
in the limit.
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The approach can be extended to impose monotonicity or more general shape constraints. We
follow an approach proposed by Bollaerts, Eilers & van Mechelen (2006). A sufficient condition for
a decreasing spline is given by βk ≤ βk−1, i.e. a parameter βk is less than its predecessor βk−1.
The simple but powerful idea is to impose the required constraint by expanding the penalty by an
additional term. More specifically they propose the composed penalty

P(λ) = β′ (λ1K1 + λ2K2)β

where λ1 and K1 are the usual smoothing parameter and penalty matrix for P-splines. The ad-
ditional penalty matrix K2 is a diagonal matrix with entries 1 whenever the condition βk ≤ βk−1

fails and 0 otherwise. For increasing functions, K2 has to be adapted accordingly. The parameter
λ2 is not estimated but set large enough to enforce monotonic functions.

3.1.2 Tensor product P-splines

Assume now that x is two-dimensional, i.e. x =
(
x(1), x(2)

)′
with continuous components x(1) and

x(2). The aim is to extend the univariate P-spline from the preceding section to two dimensions.
A common approach is to approximate the unknown surface f(x) by the tensor product of one
dimensional B-splines, i.e.

f
(
x(1), x(2)

)
=

K1∑
k=1

K2∑
s=1

βksB1,k(x
(1))B2,s(x

(2)), (4)

where B11, . . . , B1K1 are the basis functions in x(1) direction and B21, . . . , B2K2 in x(2) direction.
The n×K = n×K1K2 design matrix X now consists of products of basis functions.

Several alternatives are available for the penalty matrix P(λ):

a) Penalty based on first differences: The two-dimensional generalization of a penalty based on
first differences is given by combining row- and column wise quadratic differences

K1∑
k=2

K2∑
s=1

(βks − βk−1,s)
2 = β′(IK2 ⊗D1)

′(IK2 ⊗D1)β

K1∑
k=1

K2∑
s=2

(βks − βk,s−1)
2 = β′(D2 ⊗ IK1)

′(D2 ⊗ IK1)β

to the penalty

β′P(λ)β = β′λ
[
(IK2 ⊗D1)

′(IK2 ⊗D1) + (D2 ⊗ IK1)
′(D2 ⊗ IK1)

]
β.

Another way of expressing the penalty is given by

β′P(λ)β = β′λ [IK2 ⊗K1 +K2 ⊗ IK1 ]β, (5)

where K1 and K2 are the respective one dimensional penalty matrices. In the limit λ → ∞
a constant fit is obtained.

b) Penalty based on second differences: In a similar way two-dimensional penalties based on
higher order differences are constructed. A second order difference penalty is obtained if K1

and K2 in (5) correspond to penalty matrices based on second rather than first differences.
Similar to one dimensional P-splines the limit λ→ ∞ results in linear effects in x(1) and x(2)

with an additional interaction effect, i.e.

f
(
z(1), z(2)

)
= c0 + c1 x

(1) + c2 x
(2) + c3 x

(1)x(2).
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c) Anisotropic penalty: The two penalties considered so far are not capable of different penaliza-
tion in x(1) and x(2) direction, respectively. Anisotropic penalties are obtained by assuming
separate smoothing parameters λ1 and λ2 in x(1) and x(2) direction. The penalty is then
given by

β′P(λ)β = β′ [λ1IK2 ⊗K1 + λ2K2 ⊗ IK1 ]β. (6)

The resulting fit in the limit λ1 → ∞ and λ2 → ∞ depends on the penalty used to construct
K1 and K2. If K1 and K2 correspond to a first order difference penalty a constant fit is
obtained in the limit. Second order difference penalties result in a linear fit for f

(
x(1), x(2)

)
.

d) Penalties with main effects in the limit: Sometimes it is desirable to decompose the effect of
the two covariates x(1) and x(2) into two main effects modeled by one dimensional functions
and a two-dimensional interaction effect, i.e.

f
(
x(1), x(2)

)
= f1

(
x(1)

)
+ f2

(
x(2)

)
+ f1|2

(
x(1), x(2)

)
. (7)

Usually a two-dimensional surface smoother together with two additional one dimensional
P-splines (or other smoothers) are estimated. This approach is possible with bayesreg objects
and remlreg objects. stepwisereg objects take, however, a different approach. We specify a
two-dimensional surface based on tensor product P-splines and compute the decomposition
of the resulting surface into main effects and the interaction effect after estimation. More-
over, we specify a penalty that allows for a main effects only model as a special case. This
allows to discriminate between a simple main effects model and a more complicated two way
interactions model. A penalty that guarantees a main effects model in the limit is defined by
the Kronecker product of the two penalty matrices for one dimensional P-splines, i.e.

β′P(λ)β = β′λK1 ⊗K2β. (8)

The drawback of this penalty is that the limit λ → ∞ yields unpenalized main effects, i.e.
wiggly functions. We therefore use a modified penalty which is effectively a combination of
the two penalties (6) and (8). More specifically we define

β′P(λ)β = β′
[
λ1
K1

IK2 ⊗K1 +
λ2
K2

K2 ⊗ IK1 + λ3K1 ⊗K2

]
β, (9)

where K1 and K2 are penalty matrices corresponding to one dimensional P-splines based on
first or second order differences. This penalty has the following nice properties:

• The limit λ3 → ∞ results in a mere main effects model. The main effects are one
dimensional P-splines with smoothing parameters λ1 and λ2.

• The limit λ3 → 0 yields the anisotropic penalty (6) as a special case.

• The limit λ1 → 0 and λ2 → 0 yields the Kronecker product penalty (8) as a special case.

• The limit λ1 → ∞, λ2 → ∞ and λ3 → ∞ results in a main effects model with linear or
constant main effects depending on the difference order used to construct K1 and K2.

3.2 Spatial effects

In this subsection we assume that x represents the location a particular observation pertains to.
The location is typically given in two ways. If exact locations are available x = (x(1), x(2))′ is
two-dimensional and the components x(1) and x(2) correspond to the coordinates of the location.
In this case, the spatial effect f(x(1), x(2)) could be modeled by two-dimensional surface estimators
as described in the preceding section.
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In many applications, however, exact locations are not available. Typically, a geographical map
is available and x ∈ {1, . . . ,K} is an index that denotes the region (e.g. district) an observation
pertains to. A common approach is to assume f(x) = βx, i.e. separate parameters β1, . . . , βK
for each region are estimated. The n × K design matrix X is an incidence matrix whose entry
in the i-th row and k-th column is equal to one if observation i has been observed at location k
and zero otherwise. To prevent overfitting a penalty based on squared differences is defined that
guarantees that parameters of neighboring regions are similar. Typically two regions are assumed
to be neighbors if they share a common boundary although other neighborhood definitions are
possible. The penalty is defined as

β′λKβ = λ
K∑
k=2

∑
s∈N(k),s<k

(βk − βs)
2,

where N(k) denotes all sites that are neighbors of site k. The elements of the penalty matrix are
given by

K[s, r] = λ


−1 k ̸= s, k ∼ s,
0 k ̸= s, k � s,
|N(k)| k = s.

(10)

Depending on the prior belief on smoothness of the spatial effect several alternatives to penalty
(10) are available. If a very smooth effect is assumed, the two-dimensional smoothers discussed in
the preceding section could be used as an alternative. Since exact locations are not available the
centroids of the regions could be used instead.

3.3 Unit- or cluster specific heterogeneity

Typically, unit- or cluster specific random effects are introduced to account for unobserved het-
erogeneity. In its simplest form, a random intercept βx with βx ∼ N(0, τ2) is introduced. Here,
x ∈ {1, . . . ,K} is an index variable that denotes the cluster a particular observation pertains to.
This is equivalent to a penalized least squares approach with function f(x) = βx, penalty matrix I
and smoothing parameter λ = σ2/τ2. The n×K design matrix X is a 0/1 incidence matrix whose
entry in the i-th row and k-th column is equal to one if observation i belongs to the k-th cluster
and zero otherwise. Random slopes could be treated in the same way, see the next subsection.

A particular cluster variable is a spatial index that indicates the region an observation pertains to.
Usually a spatially correlated effect as described in the preceding subsection is specified. However,
in some situations a smooth spatial effect is not justified because of local, spatial heterogeneity.
In this case, the assumption of spatial dependence of neighboring parameters is not meaningful.
Instead, the simple (ridge type) penalty

β′λKβ = λβ′β = λ
K∑
k=1

β2k

with penalty matrix K = I may be defined. This penalty does not assume any spatial dependence
but prevents highly variable estimates induced by small samples for some regions or sites.

Note that more than one random intercept with respect to different cluster variables are possible.
In many cases there exists a hierarchical ordering of clusters. Models with such hierarchical clusters
are also called multilevel models.
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3.4 Varying coefficients

Suppose now that the effect of a continuous covariate x(2) is assumed to vary with respect to a
categorical covariate x(1). For notational convenience, we restrict the discussion to binary covariates
x(1). The generalization to (multi)categorical covariates is straightforward. The interaction between
x(2) and x(1) can be modeled by a predictor of the form

η = . . .+ f1(x
(2)) + g(x(2))x(1) + . . . ,

where f1 and g are smooth functions (modeled by P-splines). The interpretation of the two functions
f1 and g depends on the coding of the binary variable x(1). If x(1) is in dummy-coding, the function
f1 corresponds to the effect of x(2) subject to x(1) = 0, and g is the difference effect for observations
with x(1) = 1. If x(1) is in effect-coding, the function f1 can be interpreted as an average effect of
x(2), where g and −g represent the deviation from f1 for x(1) = 1 and x(1) = −1, respectively. It
turns out that the coding of x(2) is not only important for interpretation but sometimes also crucial
for inference (in bayesreg objects and stepwisereg objects). Estimation for bayesreg and stepwisereg
objects described in the next section is based on an iterative backfitting type procedure. Hence
dependence between f1 and g should be minimized to avoid convergence problems. Hence, effect
coding for x(2) is an effective yet simple device to avoid convergence problems.

Models with interaction effects of the form g(x(2))x(1) are known as varying coefficient models
because the effect of x(1) varies smoothly with respect to the continuous covariate x(2). Covariate
x(2) is called the effect modifier of x(1). The approach can be easily extended to a two-dimensional
effect modifier with components x(2) and x(3). The interaction effect is then given by g(x(2), x(3))x(1)

where g(x(2), x(3)) is a two-dimensional surface which is modeled by the tensor product P-splines
discussed in section 3.1.2. Another modification arises if the effect modifier is the location either
given as the coordinates or as a spatial index. In this case we have a space varying effect of
x(1). Models of this kind are also known as geographically weighted regression, see Fotheringham,
Brunsdon & Charlton (2002). A final modification is obtained for a unit or cluster index as effect
modifier. The effect of x(1) is now assumed to be unit- or cluster-specific and typically referred to
as a random slope.

Independent of the specific type of the effect modifier, the interaction term g
(
x(2)

)
x(1) (or

g
(
x(2), x(3)

)
x(1)) can be cast into our general framework by defining

f
(
x(1), x(2)

)
= g

(
x(2)

)
x(1) or f

(
x(1), x(2), x(3)

)
= g

(
x(2), x(3)

)
x(1). (11)

The overall design matrix X is given by diag(x
(1)
1 , . . . , x

(1)
n )X(1) where X(1) is the usual design

matrix for P-Splines, tensor product P-splines, spatial-, or cluster-specific effects.

4 Bayesian point of view

For Bayesian inference, the unknown functions f1, . . . , fp in predictor (3), more exactly correspond-
ing vectors of function evaluations, and the fixed effects parameters γ are considered as random
variables and must be supplemented by appropriate prior assumptions.

In the absence of any prior knowledge, diffuse priors are the appropriate choice for fixed effects
parameters, i.e.

p(γj) ∝ const

Another common choice, not yet supported by BayesX, are informative multivariate Gaussian priors
with mean µ0 and covariance matrix Σ0.
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Priors for the unknown functions f1, . . . , fp depend on the type of the covariates and on prior
beliefs about the smoothness of fj. In the following we express the vector of function evaluations
fj = (fj(x1j), . . . , fj(xnj))

′ of a function fj as the matrix product of a design matrix Xj and a
vector of unknown parameters βj , i.e.

fj = Xjβj . (12)

Then, we obtain the predictor (3) in matrix notation as

η = X1β1 + · · ·+Xpβp +Uγ, (13)

where U corresponds to the usual design matrix for fixed effects.

A prior for a function fj is defined by specifying a suitable design matrix Xj and a prior distribution
for the vector βj of unknown parameters. The general form of the prior for βj is given by

p(βj |τ2j ) ∝
1

(τ2j )
rank(Kj)/2

exp

(
− 1

2τ2j
β′
jKjβj

)
, (14)

where Kj is a penalty matrix. In most cases Kj will be rank deficient and therefore the prior for
βj is partially improper.

The variance parameter τ2j is equivalent to the inverse smoothing parameter in a penalized likelihood
approach and controls the trade off between flexibility and smoothness.

In the following we will describe specific priors for different types of covariates and functions fj .

4.1 Continuous covariates

Several alternatives have been proposed for specifying smoothness priors for continuous covariates
or time scales. These are random walk priors or more generally autoregressive priors (see Fahrmeir
& Lang (2001) and Fahrmeir & Lang (2001), Bayesian P-splines (Lang & Brezger 2004) and
Bayesian smoothing splines (Hastie & Tibshirani 2000). BayesX supports random walk priors and
P-splines.

4.1.1 Random walks

Suppose first that x is a time scale or continuous covariate with equally spaced ordered observations

x(1) < x(2) < · · · < x(K).

Here K ≤ n denotes the number of different observed values for x in the data set. A common
approach in dynamic or state space models is to estimate one parameter βk for each distinct x(k),
i.e. f(x(k)) = βk, and penalize too abrupt jumps between successive parameters using random walk
priors. For example, first and second order random walk models are given by

βk = βk−1 + uk and βk = 2βk−1 − βk−2 + uk (15)

with Gaussian errors uk ∼ N(0, τ2) and diffuse priors p(β1) ∝ const, and p(β1) and p(β2) ∝ const,
for initial values, respectively. Both specifications act as smoothness priors that penalize too rough
functions f . A first order random walk penalizes abrupt jumps βk−βk−1 between successive states
while a second order random walk penalizes deviations from the linear trend 2βk−1 − βk−2. The
joint distribution of the regression parameters β is easily computed as the product of conditional
densities defined by (15) and can be brought into the general form (14). The penalty matrix is of



4.1 Continuous covariates 13

the form K = D′D where D is a first or second order difference matrix. For example, for a random
walk of first order the penalty matrix is given by:

K =


1 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

.
The design matrix X is a simple 0/1 matrix where the number of columns equals the number of
parameters, i.e. the number of distinct covariate values. If for the i-th observation xi = x(k) the
element in the i-th row and k-th column of X is one and zero otherwise.

In case of non-equally spaced observations slight modifications of the priors defined in (15) are
necessary, see Fahrmeir & Lang (2001) for details.

4.1.2 P-splines

A second approach for effects of continuous covariates, that is closely related to random walk
models, is based on P-splines introduced by Eilers & Marx (1996). The approach assumes that an
unknown smooth function f of a covariate x can be approximated by a polynomial spline of degree
l defined by a set of equally spaced knots xmin = ζ0 < ζ1 < · · · < ζm−1 < ζm = xmax within the
domain of x. Such a spline can be written in terms of a linear combination of K = m+ l B-spline
basis functions Bk, i.e.

f(x) =

K∑
k=1

βkBk(x).

In this case, β = (β1, . . . , βK)′ corresponds to the vector of unknown regression coefficients and
the n × K design matrix X consists of the basis functions evaluated at the observations xi, i.e.
X[i, k] = Bk(xi). The crucial point is the choice of the number of knots. For a small number
of knots, the resulting spline may not be flexible enough to capture the variability of the data.
For a large number of knots, estimated curves tend to overfit the data and, as a result, too rough
functions are obtained. As a remedy, Eilers & Marx (1996) suggest a moderately large number
of equally spaced knots (usually between 20 and 40) to ensure enough flexibility, and to define
a roughness penalty based on first or second order differences of adjacent B-Spline coefficients to
guarantee sufficient smoothness of the fitted curves. This leads to penalized likelihood estimation
with penalty terms

λ

K∑
k=r+1

(∆rβk)
2, r = 1, 2 (16)

where λ is the smoothing parameter. First order differences penalize abrupt jumps βk − βk−1

between successive parameters while second order differences penalize deviations from the linear
trend 2βk−1 − βk−2. In a Bayesian approach we use the stochastic analogue of difference penalties,
i.e. first or second order random walks, as priors for the regression coefficients. Note that simple
first or second order random walks can be regarded as P-splines of degree l = 0 and are therefore
included as a special case. More details about Bayesian P-splines can be found in Lang & Brezger
(2004) and Brezger & Lang (2006).

4.1.3 Tensor product P-splines

Assume now that x is two-dimensional, i.e. x =
(
x(1), x(2)

)′
with continuous components x(1)

and x(2). Similar to section 3.1.2 the aim is to extend the univariate P-spline to two dimensions.
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In BayesX Bayesian surface fitting is based on two-dimensional P-splines described in more de-
tail in Lang & Brezger (2004) and Brezger & Lang (2006). The unknown surface f(x(1), x(2)) is
approximated by the tensor product of two one-dimensional B-splines, i.e.

f
(
x(1), x(2)

)
=

K1∑
k=1

K2∑
s=1

βksB1,k(x
(1))B2,s(x

(2)),

where B11, . . . , B1K1 are the basis functions in x(1) direction and B21, . . . , B2K2 in x(2) direction.
The n×K = n×K1K2 design matrix X now consists of products of basis functions.

Priors for β = (β11, . . . , βK1,K2)
′ can be based on spatial smoothness priors common in spatial

statistics, e.g. two-dimensional first order random walks. The most commonly used prior specifi-
cation based on the four nearest neighbors is defined by

βks|· ∼ N

(
1

4
(βk−1,s + βk+1,s + βk,s−1 + βk,s+1),

τ2

4

)
(17)

and appropriate edge corrections. This prior as well as higher order bivariate random walks can be
easily brought into the general form (14).

4.2 Spatial effects

4.2.1 Markov random fields

Suppose that the index s ∈ {1, . . . , S} represents the location or site in connected geographical
regions. For simplicity we assume that the regions are labelled consecutively. A common way
to introduce a spatially correlated effect is to assume that neighboring sites are more alike than
arbitrary sites. Thus, for a valid prior definition a set of neighbors for each site s must be defined.
For geographical data one usually assumes that two sites s and s′ are neighbors if they share a
common boundary.

The simplest (but most frequently used) spatial smoothness prior for the function evaluations
f(s) = βs is given by

βs|βs′ , s ̸= s′, τ2 ∼ N

 1

Ns

∑
s′∈∂s

βs′ ,
τ2

Ns

 , (18)

where Ns is the number of adjacent sites and s′ ∈ ∂s denotes that site s′ is a neighbor of site s.
Hence, the (conditional) mean of βs is an unweighted average of function evaluations of neighboring
sites. The prior is a direct generalization of a first order random walk to two-dimensions and is
called a Markov random field (MRF).

The n×S design matrix X is a 0/1 incidence matrix. Its value in the i-th row and the s-th column
is 1 if the i-th observation is located in site or region s, and zero otherwise. The S × S penalty
matrix K has the form of an adjacency matrix.

4.2.2 Kriging

If exact locations s = (sx, sy) are available, we can use two-dimensional surface estimators to model
spatial effects. One option are two-dimensional P-splines, described in subsubsection 3.1.2. An-
other option are Gaussian random field (GRF) priors, originating from geostatistics. These can also
be interpreted as two-dimensional surface smoothers based on radial basis functions and have been
employed by Kammann & Wand (2003) to model the spatial component in Gaussian regression
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models. The spatial component f(s) = βs is assumed to follow a zero mean stationary Gaussian ran-
dom field {βs : s ∈ R2} with variance τ2 and isotropic correlation function Cov(βs, βs+h⃗

) = C(||⃗h||).
This means that correlations between sites that are ||⃗h|| units apart are the same, regardless of
direction and the sites location. For a finite array s ∈ {s1, . . . , sS} of sites as in image analysis, the
prior for β = (β1, . . . , βS)

′ is of the general form (14) with K = C−1 and

C(i, j) = C(||si − sj ||), 1 ≤ i, j ≤ S.

The design matrix X is again a 0/1 incidence matrix.

Several proposals for the choice of the correlation function C(r) have been made. In the kriging
literature, the Matérn family C(r; ρ, ν) is highly recommended. For prechosen values ν = m+1/2,
m = 0, 1, 2, . . . of the smoothness parameter ν simple correlation functions C(r; ρ) are obtained,
e.g.

C(r; ρ) = exp(−|r/ρ|)(1 + |r/ρ|)

with ν = 1.5. The parameter ρ controls how fast correlations die out with increasing r = ||h||. It can
be determined in a preprocessing step or may be estimated jointly with the variance components by
restricted maximum likelihood. A simple rule, that also ensures scale invariance of the estimates,
is to choose ρ as

ρ̂ = max
i,j

||si − sj ||/c.

The constant c > 0 is chosen in such a way, that C(c) is small, e.g. 0.001. Therefore the different
values of ||si− sj ||/ρ̂ are spread out over the r-axis of the correlation function. This choice of ρ has
proved to work well in our experience.

4.2.3 Discrete vs. continuous spatial smoothing

Although we described them separately, approaches for exact locations can also be used in the case
of connected geographical regions, e.g. based on the centroids of the regions. Conversely, we can
also apply MRFs to exact locations if neighborhoods are defined based on a distance measure. In
general, it is not clear which of the different approaches leads to the ”best” fits. For data observed
on a discrete lattice MRFs seem to be most appropriate. If the exact locations are available,
surface estimators may be more natural, particularly because predictions for unobserved locations
are available. However, in some situations surface estimators lead to an improved fit compared to
MRF’s even for discrete lattices and vice versa. A general approach that can handle both situations
is given by Müller, Stadtmüller & Tabnak (1997).

From a computational point of view MRF’s and P-splines are preferable to GRF’s because their
posterior precision matrices are band matrices or can be transformed into a band matrix like
structure. This special structure considerably speeds up computations, at least for inference based
on MCMC techniques. For inference based on mixed models, the main difference between GRFs and
MRFs, considering their numerical properties, is the dimension of the penalty matrix. For MRFs
the dimension of K equals the number of different regions S and is therefore independent from the
sample size. On the other side, for GRFs, the dimension of K is given by the number of distinct
locations, which is usually close to the sample size. Therefore, the number of regression coefficients
used to describe a MRF is usually much smaller than for a GRF and therefore the estimation of
GRFs is computationally much more expensive. To overcome this difficulty Kammann & Wand
(2003) propose low-rank kriging to approximate stationary Gaussian random fields. Note first, that
we can define GRFs equivalently based on a design matrix X with entries X[i, j] = C(||si − sj ||)
and penalty matrix K = C. To reduce the dimensionality of the estimation problem we define a
subset of knots D = {κ1, . . . ,κM} of the set of distinct locations C. These knots can be chosen to
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be ”representative” for the set of distinct locations C based on a space filling algorithm. Therefore
consider the distance measure

d(s,D) =

(∑
κ∈D

||s− κ||p
) 1

p

,

with p < 0, between any location s ∈ D and a possible set of knots C. Obviously this distance
measure is zero for all knots. Using a simple swapping algorithm to minimize the overall coverage
criterion (∑

s∈C
d(s,D)q

) 1
q

with q > 0 (compare Johnson, Moore & Ylvisaker (1990) and Nychka & Saltzman (1998) for details)
yields an optimal set of knots D. Based on these knots we define the approximation f = Xβ with
the n×M design matrix X[i, j] = C(||si−κj ||), penalty matrix K = C, and C[i, j] = C(||κi−κj ||).
The number of knots M allows to control the trade-off between accuracy of the approximation (M
close to the sample size) and numerical simplification (M small).

4.3 Unit- or cluster-specific heterogeneity

In many situations we observe the problem of heterogeneity among clusters of observations caused
by unobserved covariates. Neglecting unobserved heterogeneity may lead to considerably bi-
ased estimates for the remaining effects as well as false standard error estimates. Suppose now
x ∈ {1, . . . ,K} is a cluster variable indicating the cluster a particular observation belongs to. A
common approach to overcome the difficulties of unobserved heterogeneity is to introduce additional
Gaussian i.i.d. effects f(x) = βx with

βx ∼ N(0, τ2), x = 1, . . . ,K. (19)

The design matrixX is again a n×K-dimensional 0/1 incidence matrix that represents the grouping
structure of the data, while the penalty matrix is simply the identity matrix, i.e. K = I. From a
classical perspective, (19) defines i.i.d. random effects. However, from a Bayesian point of view all
unknown parameters are assumed to be random and hence the notation ”random effects” in this
context is misleading. Hence, one may also think of (19) as an approach for modelling an unsmooth
function.

Prior (19) may also be used for a more sophisticated modelling of spatial effects. In some situation
it may be useful to split up the spatial effect fspat into a spatially correlated (structured) part fstr
and a spatially uncorrelated (unstructured) part funstr, i.e.

fspat = fstr + funstr.

A rationale is that a spatial effect is usually a surrogate of many unobserved influential factors, some
of which obeying a strong spatial structure while others are present only locally. By estimating
a structured and an unstructured component we aim at distinguishing between the two kinds of
influential factors, see also Besag, York & Mollié (1991). For the smooth spatial part we can assume
any of the spatial priors discussed in subsection 4.2. For the uncorrelated part we may assume prior
(19).

4.4 Varying coefficients

The models considered so far are not appropriate for modelling interactions between covariates. A
common approach is based on varying coefficient models introduced by Hastie & Tibshirani (1993)
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in the context of smoothing splines. Varying coefficient terms have already been discussed in the
previous chapter, see section 3.4.

4.5 Regularization Priors for highdimensional covariates

In this section the vector βs = (βp+1, . . . βp+q) is a subvector of the unknown regression coefficients
γ for fixed (linear) effects. A desirable feature for variable selection is to shrink small effects to zero
but to shrink important effects only moderately to prevent them from large bias. At the opposite to
the unregularized regression coefficients where flat priors p (γ) ∝ 1 are assumed, we need informative
priors appropriate for shrinkage. Several alternatives have been proposed for specifying shrinkage
priors for the regression coefficients, see e.g. Griffin and Brown (2005). Three shrinkage priors,
which are hierarchically represented as scale mixtures of normals, are implemented in BayesX:
the ridge-, the lasso- and the Normal Mixture of Inverse Gamma (NMIG)-prior. Common for
all approaches is an informative, zero mean conditional Gaussian distribution of the regression
coefficients

βj |σ2, τ2j
i.i.d.∼ N

(
0, σ2τ2j

)
, j = p+ 1, . . . , p+ q

together with special mixing distributions for the variances τ 2
s =

(
τ2p+1, . . . , τ

2
p+q

)
. The general

form of the prior for βs is given by

p
(
βs|σ2, τ2s

)
∝ 1

det (Ks)
1/2

exp

(
−1

2
β

′
sK

−1
s βs

)
, (20)

where Ks = diag
(
σ2τ2p+1, . . . , σ

2τ2p+q

)
denotes the diagonal matrix of the variances.

Ridge-Prior

In this case the priors of the variances τ2j are point masses given the shrinkage parameter λ

τ2j |λ
i.i.d.∼ δ1/2λ

(
τ2j
)
, j = p+ 1, . . . , p+ q. (21)

The symbol δa(x) denotes the Kronecker function which is 1 if x = a and 0 if x ̸= a. The shrinkage
parameter λ determines the amount of the shrinkage of the regression coefficients and is equipped
with a Gamma distribution

λ ∼ Ga (a, b) ; a, b > 0

which results in a marginal (respective τ2j ) Gaussian distribution of the regression coefficients

βj |σ2, λ
i.i.d.∼ N

(
0, λ
/
2σ2
)
. The logarithm of the common marginal prior for βj |σ2, λ corresponds

to the ridge penalty and for a given value of λ posterior mode estimation coincides with penalized
likelihood estimation.

The adaptive version allows the tuning each variance patameter via

τ2j |λj ∼ δ1/2λj

(
τ2j
)
,

λj ∼ Ga (aj , bj) .

Lasso-Prior

In this case the variances τ2j are (conditional) exponential distributed given the squared shrinkage

parameter λ2

τ2j |λ2
i.i.d.∼ Exp

(
λ2
/
2
)
, j = p+ 1, . . . , p+ q. (22)

The prior of the squared shrinkage parameter is also a gamma distribution
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λ2 ∼ Ga (a, b) ; a, b > 0

and the corresponding marginal priors of the regression coefficients are i.i.d. Laplace distributions

βj |σ2, λ
i.i.d.∼ Lap (0, λ/σ) so that the logarithm of the common marginal prior for β (respective τ2j )

corresponds to the Lasso penalty (Park and Casella, 2008).

The adaptive version allows the tuning each variance patameter via

τ2j |λ2j ∼Exp
(
λ2j
/
2
)
,

λ2j ∼ Ga (aj , bj) .

Normal-Mixture of inverse Gamma-Prior

The variance parameters τ2j , j = p+1, . . . , p+q are, in contrast to the ridge and the lasso, specified
through a mixture distribution modeled by the product of the two components

Ij |ν0, ν1, ω ∼ (1− ω) δνo (·) + ωδν1 (·) ,
t2j |a, b ∼ IG (a, b) .

(23)

The first component in (23) is an indicator variable with point mass at the values ν0 > 0 and ν1 > 0
denoted by the corresponding Kronecker symbols. Therein the parameter ν0 should have a positive
value close to zero and the value of ν1 is set to 1 by default. The parameter ω controls how likely
the binary variable Ij equals ν1 or ν0, and therefore it takes on the role of a complexity parameter
that controls the size of the models. The assumptions in (23) are leading to a continuous bimodal
distribution for the variance parameters τ2j := Ijt

2
j , given ν0, ν1, ω , a, b with representation as a

mixture of scaled inverse Gamma distributions

π
(
τ2j |ν0, ν1, ω, a, b

)
= (1− ω) · IG

(
τ2j |a, ν0b

)
+ ω · IG

(
τ2j |a, ν1b

)
.

We assume a beta prior for the parameter ω, i.e. ω ∼ Beta (aω, bω), with aω = bω = 1 as default,
which expresses an indifferent prior knowledge about the model complexity.

The adaptive version enables

Ij |ν0, ν1, ωj ∼ (1− ωj) δνo (·) + ωjδν1
ωj ∼ Beta (aω,j , bω,j) .

More Details can be found in Kneib, Konrath, Fahrmeir (2009) for the Gaussian case and in
Konrath, Kneib and Fahrmeir (2008) for exponential family and hazard regression.

5 Mixed Model representation

In this section we show how STAR models can be represented as generalized linear mixed models
(GLMM) after appropriate reparametrization, an idea dating back to Green (1987) in the context
of smoothing splines. A broader overview is given in the book by Ruppert, Wand & Carroll
(2003), while Fahrmeir, Kneib & Lang (2004) specifically discuss the mixed model representation
of structured additive regression models. In fact, model (2) with the structured additive predictor
(13) can always be expressed as a GLMM. This provides the key for simultaneous estimation of the
functions fj , j = 1, . . . , p and the variance parameters τ2j in the empirical Bayes approach described
in subsection 6.2 and used for estimation by remlreg objects. To rewrite the model as a GLMM,
the general model formulation again proves to be useful. We proceed as follows:
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The vectors of regression coefficients βj , j = 1, . . . , p, are decomposed into an unpenalized and a
penalized part. Suppose that the j-th coefficient vector has dimension Kj×1 and the corresponding
penalty matrix Kj has rank kj . Then we define the decomposition

βj = Xunp
j βunp

j +Xpen
j βpen

j , (24)

where the columns of the Kj × (Kj − kj) matrix Xunp
j contain a basis of the nullspace of Kj

and Xpen
j contains the orthogonal deviation form this nullspace. Therefore, decomposition (24)

effectively separates the unpenalised part in βj from the penalised part. For example, for penalised
splines with kj-th order difference penalty, a polynomial of order kj − 1 forms the null space and
is therefore captured in βunp

j . The Kj × kj matrix Xpen
j can be derived as Xpen

j = Lj(L
′
jLj)

−1

where the Kj × kj matrix Lj is determined by the decomposition of the penalty matrix Kj into
Kj = LjL

′
j . A requirement for the decomposition is that L′

jX
unp
j = 0 and Xunp

j L′
j = 0 hold.

Hence the parameter vector βunp
j represents the part of βj which is not penalized by Kj whereas

the vector βpen
j represents the deviation of βj from the nullspace of Kj .

In general, the decomposition Kj = LjL
′
j is obtained from the spectral decomposition Kj =

ΓjΩjΓ
′
j . The (kj × kj) diagonal matrix Ωj contains the positive eigenvalues ωjm, m = 1, . . . , kj , of

Kj in descending order, i.e. Ωj = diag(ωj1, . . . , ωj,kj ). Γj is a (Kj × kj) orthogonal matrix of the

corresponding eigenvectors. From the spectral decomposition we can choose Lj = ΓjΩ
1
2
j . In some

cases a more favorable decomposition can be found. For instance, for P-splines a simpler choice for
Lj is given by Lj = D′ where D is the first or second order difference matrix. Of course, for prior
(19) of subsection 4.3 and in general for proper priors a decomposition of Kj is not necessary. In
this case the unpenalized part vanishes completely.

The matrix Xunp
j is the identity vector 1 for P-splines with first order random walk penalty and

Markov random fields. For P-splines with second order random walk penalty Xunp
j is a two column

matrix where the first column again equals the identity vector while the second column is composed
of the (equidistant) knots of the spline.

From the decomposition (24) we get

1

τ2j
β′
jKjβj =

1

τ2j
(βpen

j )′βpen
j

and from the general prior (14) for βj it follows that

p(βunpjm ) ∝ const, m = 1, . . . ,Kj − kj

and
βpen
j ∼ N(0, τ2j I). (25)

Finally, by defining the matrices Ũj = XjX
unp
j and X̃j = XjX

pen
j , we can rewrite the predictor

(13) as

η =

p∑
j=1

Xjβj +Uγ

=

p∑
j=1

(Ũjβ
unp
j + X̃jβ

pen
j ) +Uγ

= Ũβunp + X̃βpen.

The design matrix X̃ and the vector βpen are composed of the matrices X̃j and the vectors
βpen
j , respectively. More specifically, we obtain X̃ = (X̃1 X̃2 . . . X̃p) and the stacked vec-

tor βpen = ((βpen
1 )′, . . . , (βpen

p )′)′. Similarly the matrix Ũ and the vector βunp are given by

Ũ = (Ũ1 Ũ2 . . . ŨpU) and βunp = ((βunp
1 )′, . . . , (βunp

p )′,γ ′)′.
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Finally, we obtain a GLMM with fixed effects βunp and random effects βpen ∼ N(0,Λ) where
Λ = diag(τ21 , . . . , τ

2
1 , . . . , τ

2
p , . . . , τ

2
p ). Hence, we can utilize GLMM methodology for simultaneous

estimation of smooth functions and the variance parameters τ2j , see the next section.

The mixed model representation also enables us to examine the identification problem inherent to
nonparametric regression from a different perspective. For most types of nonparametric effects the
design matrix Ũj for the unpenalized part contains the identity vector. Provided that there is at
least one such nonlinear effect and that γ contains an intercept, the matrix Ũ has not full column
rank. Hence, all identity vectors in Ũ except for the intercept have to be deleted to guarantee
identifiability.

6 Inference

BayesX provides four alternative approaches for Bayesian inference. Bayesreg objects (chapter 7
of the reference manual) estimate exponential family, categorical and duration time STAR models
using MCMC simulation techniques described in subsection 6.1. MCMCreg objects (chapter 10 of
the reference manual) provide the counterpart for distributional and quantile regression as well as
multilevel models (see section 8). Remlreg objects (chapter 8 of the reference manual) use mixed
model representations of STAR models for empirical Bayesian inference, see subsection 6.2. Step-
wisereg objects (chapter 9 of the reference manual) simultaneously perform model selection and
estimation of parameters, see subsection 6.3.

6.1 Full Bayesian inference based on MCMC techniques

This subsection may be skipped if you are not interested in using the regression tool for full Bayesian
inference based on MCMC simulation techniques (bayesreg objects).

For full Bayesian inference, the unknown variance parameters τ2j are also considered as random
variables supplemented with suitable hyperprior assumptions. In BayesX, highly dispersed (but
proper) inverse Gamma priors p(τ2j ) ∼ IG(aj , bj) are assigned to the variances. The corresponding
probability density function is given by

τ2j ∝ (τ2j )
−aj−1 exp

(
− bj
τ2j

)
.

Using proper priors for τ2j (with aj > 0 and bj > 0) ensures propriety of the joint posterior despite
the partial impropriety of the priors for the βj . A common choice for the hyperparameters are
small values for aj and bj , e.g. aj = bj = 0.001 which is also the default in BayesX.

In some situations, the estimated nonlinear functions fj may depend considerably on the particular
choice of hyperparameters aj and bj . This may be the case for very low signal to noise ratio and/or
small sample size. It is therefore highly recommended to estimate all models under consideration
using a (small) number of different choices for aj and bj to assess the dependence of results on
minor changes in the model assumptions. In that sense, the variation of hyperparameters can be
used as a tool for model diagnostics.

Bayesian inference is based on the posterior of the model given by

p(β1, . . . ,βp, τ
2
1 , . . . , τ

2
p ,γ |y) ∝ L(y,β1, . . . ,βp,γ)

p∏
j=1

(
p(βj |τ2j )p(τ2j )

)
(26)

where L(·) denotes the likelihood which, under the assumption of conditional independence, is the
product of individual likelihood contributions.
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In many practical situations (and in particular for most structured additive regression models)
the posterior distribution is numerically intractable. A technique that overcomes this problem
are Markov Chain Monte Carlo (MCMC) simulation methods that allow to draw random samples
from the posterior. From these random samples, characteristics of the posterior such as posterior
means, standard deviations or quantiles can be estimated by their empirical analogues. Instead of
drawing samples directly from the posterior (which is impossible in most cases anyway) MCMC
devices a way to construct a Markov chain with the posterior as stationary distribution. Hence,
the iterations of the transition kernel of this Markov chain converge to the posterior yielding a
sample of dependent random numbers. Usually the first part of the sample (the burn-in phase) is
discarded since the algorithm needs some time to converge. In addition, some thinning is typically
applied to the Markov chain to reduce autocorrelations. In BayesX the user can specify options
for the number of burn-in iterations, the thinning parameter and the total number of iterations,
see chapter 7 of the reference manual for more details.

BayesX provides a number of different sampling schemes, specifically tailored to the distribution of
the response. The first sampling scheme is suitable for Gaussian responses. The second sampling
scheme is particularly useful for categorical responses and uses the sampling scheme for Gaussian
responses as a building block. The third sampling scheme is based on iteratively weighted least
squares proposals and is used for general responses from an exponential family. A further sampling
scheme, not described in this manual, is based on conditional prior proposals.

6.1.1 Gaussian responses

Suppose first that the distribution of the response variable is Gaussian, i.e. yi|ηi, σ2 ∼ N(ηi, σ
2/ci),

i = 1, . . . , n or y|η, σ2 ∼ N(η, σ2C−1) where C = diag(c1, . . . , cn) is a known weight matrix. In this
case, full conditionals for fixed effects as well as nonlinear functions fj are multivariate Gaussian
and, as a consequence, a Gibbs sampler can be employed. To be more specific, the full conditional
γ|· for fixed effects with diffuse priors is Gaussian with mean

E(γ|·) = (U′CU)−1U′C(y − η̃) (27)

and covariance matrix
Cov(γ|·) = σ2(U′CU)−1 (28)

where U is the design matrix of fixed effects and η̃ = η −Uγ is the part of the additive predictor
associated with the remaining effects in the model. Similarly, the full conditional for the regression
coefficients βj of a function fj is Gaussian with mean

mj = E(βj |·) =

(
1

σ2
X′

jCXj +
1

τ2j
Kj

)−1
1

σ2
X′

jC(y − η−j), (29)

where ηj = η −Xjβj , and covariance matrix

Cov(βj |·) = P−1
j =

(
1

σ2
X′

jCXj +
1

τ2j
Kj

)−1

. (30)

Although the full conditional is Gaussian, drawing random samples in an efficient way is not trivial,
since linear equation systems with a high dimensional precision matrix Pj must be solved in every
iteration of the MCMC scheme. Following Rue (2001), random numbers from p(βj |·) can be
obtained as follows: Compute the Cholesky decomposition Pj = LL′ and solve L′βj = z, where

z is a vector of independent standard Gaussians. It follows that βj ∼ N(0,P−1
j ). Afterwards

compute the mean mj by solving Pjmj = 1
σ2X

′
jC(y − η−j). This is achieved by first solving
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Lν = 1
σ2X

′
jC(y− η̃) by forward substitution followed by backward substitution L′mj = ν. Finally,

adding mj to the previously simulated βj yields βj ∼ N(mj ,P
−1
j ).

In most cases, the posterior precision matrices Pj can be brought into a band matrix like structure
with bandsize depending on the prior. If fj corresponds to a spatially correlated effect for regional
data, the posterior precision matrix is usually a sparse matrix but not a band matrix. In this case,
the regions of a geographical map must be reordered, using the reverse Cuthill-McKee algorithm,
to obtain a band matrix like precision matrix. Random samples from the full conditional can now
be drawn in a very efficient way using Cholesky decompositions for band matrices or band matrix
like matrices. In our implementation, we use the envelope method for band matrix like matrices as
described in George & Liu (1981).

The full conditionals for the variance parameters τ2j , j = 1, . . . , p, and σ2 are all inverse Gamma
distributions with parameters

a′j = aj +
rank(Kj)

2
and b′j = bj +

1

2
β′
jKjβj (31)

for τ2j . For σ
2 we obtain

a′σ = aσ +
n

2
and b′σ = bσ +

1

2
ε′ε (32)

where ε is the usual vector of residuals.

Note that prior to estimation the response variable is standardized in BayesX to avoid numerical
problems with too large or too small values of the response. All results are, however, retransformed
into the original scale.

The sampling scheme for Gaussian responses can be summarized as follows:

Sampling scheme 1:

1. Initialization:
Compute the posterior mode for β1, . . . ,βp and γ given fixed (usually small) smoothing
parameters λj = σ2/τ2j , by default BayesX uses λj = 0.1. This value may be changed by the
user. The mode is computed via backfitting. Use the posterior mode estimates as the initial
state βc

j , (τ
2
j )

c, γc of the chain.

2. Update regression parameters γ
Update regression parameters γ by drawing from the Gaussian full conditional with mean
and covariance matrix specified in (27) and (28).

3. Update regression parameters βj

Update βj for j = 1, . . . , p by drawing from the Gaussian full conditionals with mean and
covariance matrix given in (29) and (30).

4. Update variance parameters τ2j and σ2

Update variance parameters by drawing from inverse gamma full conditionals with parameters
given in (31) and (32).

6.1.2 Categorical Response

For most models with categorical responses, efficient sampling schemes can be developed based on
latent utility representations. The seminal paper by Albert & Chib (1993) describes algorithms
for probit models with ordered categorical responses. The case of probit models with unordered
categorical responses is dealt with e.g. in Fahrmeir & Lang (2001). Recently, a similar data
augmentation approach for logit models has been presented by Holmes & Held (2006). The adaption
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of these sampling schemes to STAR models used in BayesX is more or less straightforward. We
briefly illustrate the concept for binary data, i.e. yi takes only the values 0 or 1. We first assume a
probit model. Conditional on the covariates and the parameters, yi follows a Bernoulli distribution,
i.e. yi ∼ B(1, µi) with conditional mean µi = Φ(ηi) where Φ is the cumulative distribution function
of a standard normal distribution. Introducing latent variables

Li = ηi + ϵi, (33)

with ϵi ∼ N(0, 1), we can equivalently define the binary probit model by yi = 1 if Li > 0 and yi = 0
if Li < 0. The latent variables are augmented as additional parameters and, as a consequence,
an additional sampling step for updating the Lis is required. Fortunately, sampling the Lis is
relatively easy and fast because the full conditionals are truncated normal distributions. More
specifically, Li|· ∼ N(ηi, 1) truncated at the left by zero if yi = 1 and truncated by zero at the
right if yi = 0. The advantage of defining a probit model through the latent variables Li is that
the full conditionals for the regression parameters βj (and γ) are again Gaussian with precision
matrix and mean given by

Pj = X′
jXj +

1

τ2j
Kj , mj = P−1

j X′
j(L− η̃). (34)

Hence, the efficient and fast sampling schemes for Gaussian responses can be used with slight
modifications. Updating of βj and γ can be done exactly as described in sampling scheme 1 using
the current values Lc of the latent utilities as (pseudo) responses and setting σ2 = 1, C = I.

For binary logit models, the sampling schemes become slightly more complicated. A logit model can
be expressed in terms of latent utilities by assuming ϵi ∼ N(0, λi) in (33) with λi = 4ψ2

i , where ψi

follows a Kolmogorov-Smirnov distribution (Devroye 1986). Hence, ϵi is a scale mixture of normal
form with a marginal logistic distribution (Andrews & Mallows 1974). The full conditionals for the
Lis are still truncated normals with Li|· ∼ N(ηi, λi) but additional drawings from the conditional
distributions of λi are necessary, see Holmes & Held (2006) for details.

Similar updating schemes may be developed for multinomial probit models with unordered cat-
egories and cumulative threshold models for ordered categories of the response, see Fahrmeir &
Lang (2001) for details. BayesX supports both types of models. The cumulative threshold model
is, however, restricted to three response categories. For multinomial logit models updating schemes
based on latent utilities are not available in BayesX.

6.1.3 General uni- or multivariate response from an exponential family

Let us now turn our attention to general responses from an exponential family. In this case the full
conditionals are no longer Gaussian, so that more refined algorithms are needed.

BayesX supports several updating schemes based on iteratively weighted least squares (IWLS)
proposals as proposed by Gamerman (1997) in the context of generalized linear mixed models. As
an alternative conditional prior proposals as proposed by Knorr-Held (1999) for estimating dynamic
models are also available.

The basic idea behind IWLS proposals is to combine Fisher scoring or IWLS (e.g. Fahrmeir &
Tutz (2001)) for estimating regression parameters in generalized linear models, and the Metropolis-
Hastings algorithm. More precisely, the goal is to approximate the full conditionals of regression
parameters βj and γ by a Gaussian distribution, obtained by accomplishing one Fisher scoring
step in every iteration of the sampler. Suppose we want to update the regression coefficients βj

of the function fj with current state βc
j of the chain. Then, according to IWLS, a new value βp

j

is proposed by drawing a random number from the multivariate Gaussian proposal distribution
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q(βc
j ,β

p
j ) with precision matrix and mean

Pj = X′
jW(βc

j)Xj +
1

τ2j
Kj , mj = P−1

j X′
jW(βc

j)(ỹ(β
c
j)− η−j). (35)

Here, W(βc
j) = diag(w1, . . . , wn) is the usual weight matrix for IWLS with weights w−1

i (βc
j) =

b′′(θi)(g
′(µi))

2 obtained from the current state βc
j . The vector η−j = η − Xjβj is the part of

the predictor associated with all remaining effects in the model. The working observations ỹi are
defined as

ỹi(β
c
j) = ηi + (yi − µi)g

′(µi).

The sampling scheme can be summarized as follows:

Sampling scheme 2 (IWLS-proposals):

1. Initialization
Compute the posterior mode for β1, . . . ,βp and γ given fixed smoothing parameters λj =
1/τ2j . By default, BayesX uses λj = 0.1 but the value may be changed by the user. The mode
is computed via backfitting within Fisher scoring. Use the posterior mode estimates as the
initial state βc

j , (τ
2
j )

c, γc of the chain.

2. Update γ
Draw a proposed new value γp from the Gaussian proposal density q(γc,γp) with mean

mγ = (U′W(γc)U)−1U′W(γc)(y − η̃)

and precision matrix
Pγ = U′W(γc)U.

Accept γp as the new state of the chain γc with acceptance probability

α =
L(y, . . . ,γp)

L(y, . . . ,γc)

q(γp,γc)

q(γc,γp)
,

otherwise keep γc as the current state.

3. Update βj

Draw for j = 1, . . . , p a proposed new value βp
j from the Gaussian proposal density q(γc,γp)

with mean and precision matrix given in (35). Accept βj as the new state of the chain βc
j

with probability

α =
L(y, . . . ,βp

j , (τ
2
j )

c, . . . ,γc)

L(y, . . . ,βc
j , (τ

2
j )

c, . . . ,γc)

p(βp
j | (τ2j )c)

p(βc
j | (τ2j )c)

q(βp
j ,β

c
j)

q(βc
j ,β

p
j )
,

otherwise keep βc
j as the current state.

4. Update τ2j
Update variance parameters by drawing from inverse gamma full conditionals with parameters
given in (31).

A slightly different updating scheme computes the mean and the precision matrix of the proposal
distribution based on the current posterior mode mc

j (from the last iteration) rather than the
current βc

j , i.e. (35) is replaced by

Pj = X′
jW(mc

j)Xj +
1

τ2j
Kj , mj = P−1

j X′
jW(mc

j)(ỹ(β
c
j)− η−j). (36)
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The difference of using mc
j rather than βc

j is that the proposal is independent of the current state
of the chain, i.e. q(βc

j ,β
p
j ) = q(βp

j ). Hence, it is not required to recompute Pj and mj when
computing the proposal density q(βp

j ,β
c
j).

Usually acceptance rates are significantly higher compared to sampling scheme 2. This is partic-
ularly useful for updating spatial effects based on Markov random fields where, in many cases,
sampling scheme 2 yields quite low acceptance rates.

The sampling scheme can be summarized as follows:

Sampling scheme 3 (IWLS-proposals based on current mode):

1. Initialization
Compute the posterior mode for β1, . . . ,βp and γ given fixed smoothing parameters λj =
1/τ2j . By default, BayesX uses λj = 0.1 but the value may be changed by the user. The mode
is computed via backfitting within Fisher scoring. Use the posterior mode estimates as the
initial state βc

j , (τ
2
j )

c, γc of the chain. Define mc
j and mc

γ as the current mode.

2. Update γ
Draw a proposed new value γp from the Gaussian proposal density q(γc,γp) with mean

mγ = (U′W(mc
γ)U)−1U′W(mc

γ)(y − η̃)

and precision matrix

Pγ = U′W(mc
γ)U.

Accept γp as the new state of the chain γc with acceptance probability

α =
L(y, . . . ,γp)

L(y, . . . ,γc)

q(γp,γc)

q(γc,γp)
,

otherwise keep γc as the current state.

3. Update βj

Draw for j = 1, . . . , p a proposed new value βp
j from the Gaussian proposal density q(βc

j ,β
p
j )

with mean and precision matrix given in (36). Accept βp
j as the new state of the chain βc

j

with probability

α =
L(y, . . . ,βp

j , (τ
2
j )

c, . . . ,γc)

L(y, . . . ,βc
j , (τ

2
j )

c, . . . ,γc)

p(βp
j | (τ2j )c)

p(βc
j | (τ2j )c)

q(βp
j ,β

c
j)

q(βc
j ,β

p
j )
,

otherwise keep βc
j as the current state.

4. Update τ2j
Update variance parameters by drawing from inverse gamma full conditionals with parameters
given in (31).

6.1.4 Inference of the Shrinkage Components

If shrinkage priors are involved the posterior (26) have to be completed to take account for the
additional shrinkage components βp+1, . . . , βp+q, τ

2
p+1, . . . , τ

2
p+q and λ. Due to the similarity of the

prior (20) to the prior (14) the full conditionals of the shrinkage effects βs = (βp+1, . . . βp+q) are

similar to the full conditionals of the previous subsections 6.1.1 to 6.1.3 if the penalty matrixKj

/
τ2j

is replaced by the penalty matrix of the shrinkage priors K−1
s . For example for Gaussian responses
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6.1.1 the full conditional for the regression coefficients βs is also Gaussian with covariance (inverse
precision) matrix and mean similar to the formulas (29) and (30):

Cov (βs|·) = P−1
s =

(
1

σ2
X

′
sCXs +K−1

s

)−1

, ms = P−1
s

1

σ2
X

′
sC
(
y − η−s

)
where Xs is the design matrix corresponding to the shrinkage effects in βs and ηs = η −Xsβs.

For categorical responses 6.1.2 and for general uni- or multivariate response from an exponential
family 6.1.3 the full conditionals for the regression coefficients βs are achieved in the same way.

For all response types the full conditionals of the variances τ2s =
(
τ2p+1, . . . τ

2
p+q

)
of the shrinkage

effects and the complexity parameters λ, ω are known densities so that the corresponding updates
for the Markov chain are available via Gibbs steps.

Ridge-Prior

For the ridge prior the full conditionals of the variance parameters simplify to τ2j |· ∼ 1/2λ, j =
p+ 1, . . . , p+ q. For the shrinkage parameter λ we get a gamma density with parameters

a′ =
q

2
+ a and b′ =

p+q∑
j=p+1

β2j /σ
2 + b

and for the adaptive version

a′ =
1

2
+ aj and b′ = β2j /σ

2 + bj .

Lasso-Prior

For the variance parameters τ2j , j = p + 1, .., p + q of the Bayesian lasso the full conditionals are
inverse Gaussian distributions

1

τ2j
|· ∼ InvGauss

(√
σ2λ2

|βj |
, λ2

)
.

The full conditional for the quadratic shrinkage parameter λ2|· is a Gamma distribution with
parameters:

a′ = q + a and b′ =
1

2

p+q∑
j=p+1

τ2j + b.

For the adaptive version we get

1

τ2j
|· ∼ InvGauss


√
σ2λ2j

|βj |
, λ2j

 .

and

a′ = 1 + aj and b′ =
1

2
τ2j + bj .

Normal-Mixture of inverse Gamma-Prior

The diagonal matrix Ks now contains the diagonal elements τ2j = Ijt
2
j , j = p + 1, . . . , p + q. The

full conditionals for the binary indicator variables are Bernoulli distributions with probabilities
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p1,j = (1 +AI,j/BI,j)
−1

and

AI,j

BI,j
=

(1− ω)

ω

√
ν1√
ν0

exp

{
− 1

2σ2ν0t2j
β2j +

1

2σ2ν1t2j
β2j

}
.

The full conditionals for the second variance parameter component t2j are inverse gamma densities
with parameters

a′ =
1

2
+ a and b′ = b+

β2j
2σ2Ij

.

while the full conditional for the complexity parameter ω is a Beta (aω + n.ν1; bω + n.ν0) distribu-
tion with n.ν0 := # {j : Ij = ν0} , n.ν1 := # {j : Ij = ν1}.
For the adaptive version we get

AI,j

BI,j
=

(1− ωj)

ωj

√
ν1√
ν0

exp

{
− 1

2σ2ν0t2j
β2j +

1

2σ2ν1t2j
β2j

}
and ωj is a Beta (aω,j + 1; aω,j + 1) distribution.

The scale parameter σ2 is for all shrinkage priors inverse gamma with parameters

a′σ = aσ +
n

2
+
q

2
und b′σ = bσ +

1

2
ε′ε+

1

2
β′(Ks/σ

2)
−1

β

and the corresponding variances matrix Ks/σ
2 = diag

(
τ2p+1, . . . , τ

2
p+q

)
for the ridge, lasso and

NMIG.

6.2 Empirical Bayes inference based on mixed model methodology

This section may be skipped if you are not interested in using the regression tool based on mixed
model methodology (remlreg objects).

For empirical Bayes inference, the variances τ2j are considered as unknown constants to be estimated
from their marginal likelihood. In terms of the GLMM representation outlined in section 5, the
posterior is given by

p(βunp,βpen |y) ∝ L(y,βunp,βpen)

p∏
j=1

(
p(βpen

j |τ2j )
)

(37)

where p(βpen
j |τ2j ) is defined in (25).

Based on the GLMM representation, regression and variance parameters can be estimated us-
ing iteratively weighted least squares (IWLS) and (approximate) marginal or restricted maximum
likelihood (REML) developed for GLMMs. Estimation is carried out iteratively in two steps:

1. Obtain updated estimates β̂
unp

and β̂
pen

given the current variance parameters as the solu-
tions of the system of equations(

Ũ′WŨ Ũ′WX̃

X̃′WŨ X̃′WX̃+ Λ̃
−1

)(
βunp

βpen

)
=

(
Ũ′Wỹ

X̃′Wỹ

)
. (38)
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The (n × 1) vector ỹ and the n × n diagonal matrix W = diag(w1, . . . , wn) are the usual
working observations and weights in generalized linear models, see subsubsection 6.1.3.

2. Updated estimates for the variance parameters τ̂2j are obtained by maximizing the (approxi-
mate) marginal / restricted log likelihood

l∗(τ21 , . . . , τ
2
p ) = −1

2 log(|Σ|)− 1
2 log(|ŨΣ−1Ũ|)

−1
2(ỹ − Ũβ̂

unp
)′Σ−1(ỹ − Ũβ̂

unp
)

(39)

with respect to the variance parameters τ21 , . . . , τ
2
p . Here, Σ = W−1 + X̃ΛX̃′ is an approxi-

mation to the marginal covariance matrix of ỹ|βpen.

The two estimation steps are iterated until convergence. In BayesX, the marginal likelihood (39)
is maximized by a computationally efficient alternative to the usual Fisher scoring iterations as
described e.g. in Harville (1977), see Fahrmeir, Kneib & Lang (2004) for details.

Convergence problems of the above algorithm may occur, if one of the parameters τ2j is small.
In this case the maximum of the marginal likelihood may be on the boundary of the parameter
space so that Fisher scoring fails in finding the marginal likelihood estimates τ̂2. Therefore, the
estimation of small variances τ2j is stopped if the criterion

c(τ2j ) =
||X̃jβ̂

pen

j ||
||η̂||

(40)

is smaller than the user-specified value lowerlim. This usually corresponds to small values of the
variances τ2j but defines “small” in a data driven way.

Models for categorical responses are in principle estimated in the same way as presented above but
have to be embedded into the framework of multivariate generalized linear models, see Kneib &
Fahrmeir (2006) for details.

6.3 Simultaneous selection of model terms and estimation of unknown parameters

This section may be skipped if you are not interested in using (stepwisereg objects).

A main building block of the algorithms of stepwisereg objects are smoothers of the form

S(y,λ) = Xβ̂ β̂ = (X′X+P(λ))−1X′y,

where X and P(λ) are design and penalty matrices corresponding to the smooth covariate effects
discussed in the preceding section. For fixed smoothing parameter(s) β̂ is the minimizer of the
penalized least squares criterion

PLS(β) = (y −Xβ)′(y −Xβ) + β′P(λ)β.

Consecutively applying smoothers Sj corresponding to the j-th function fj in (3) to the current
partial residual reveals the well known backfitting algorithm to minimize the overall PLS-criterion

PLS =

y −
p∑

j=1

Xjβj −Uγ

′y −
p∑

j=1

Xjβj −Uγ

+

p∑
j=1

β′
jPj(λj)βj .

The complexity of the fit may be determined by the equivalent degrees of freedom df as a measure
of the effective number of parameters. In concordance with linear models the degrees of freedom
of the fit are defined as

df = trace(H),
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where H is the prediction matrix that projects the observations y on their fitted values ŷ, i.e.
ŷ = Hy. In complex models with many effects the trace of H is difficult and computationally
intensive to compute. Therefore df is typically approximated by the sum of the degrees of freedom
of individual smoothers, i.e.

df =

p∑
j=1

dfj + q,

where q is the number of linear effects in the model and dfj is in most cases computed as

dfj = trace(Xj(X
′
jXj +Pj(λj))

−1X′
j)− 1. (41)

The substraction of one from the trace is necessary because terms are usually centered around zero
to guarantee identifiability and as a consequence one degree of freedom is lost. For two-dimensional
P-splines as well as unit- or cluster specific effects the approximation is not valid and modifications
are necessary, see Belitz & Lang (2008).

Our variable selection procedure described below aims at minimizing a goodness of fit criterion.
The following options are available:

• Test- and validation sample
Provided that enough data are available the best strategy is to divide the data into a test-
and validation sample. The test data set is used to estimate the parameters of the models.
The fit of different models is assessed via the validation data set. In the case of a continuous
response, typically the mean squared prediction error is minimized.

• Goodness of fit criteria AIC, AICc, BIC where AICc is the bias corrected version of the
AIC as proposed by Hurvich, Simonoff & Tsai (1998).

• 5 or 10 fold cross validation
Cross validation is recommended if the approximation to the degrees of freedom is likely to
be erroneous e.g. because of strong correlations among covariates.

The basic algorithm for simultaneous selection of model terms and estimation of parameters works
as follows:

1. Initialization
Define for every possible nonlinear term fj , j = 1, . . . , p, a discrete number Mj of decreasing
smoothing parameters λj1 > . . . > λjMj . The smoothing parameters are chosen such that
they correspond to certain equivalent degrees of freedom.

2. Start model
Choose a start model with current predictor

η̂ = f̂1 + . . .+ f̂p.

where f̂j is the vector of function evaluations at the observations. Choose a goodness of fit
criterion C.

3. Iteration

a) For j = 1, . . . , p:
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For m = 0, . . . ,Mj :
Compute the fits

f̂jm :=

{
0 m = 0
Sj(y − η̂[j], λjm) m = 1, . . . ,Mj

=

{
0 m = 0
(X′

jXj +P(λjm))−1X′
j(y − η̂[j]) m = 1, . . . ,Mj

and the corresponding predictors η̂jm := η̂[j]+f̂jm. Here, η̂[j] is the current predictor

with the j-th fit f̂j removed.

Compute the updated estimate

f̂j = argmin C(f̂jm),

i.e. among the fits f̂jm for the j-th component, choose the one that minimizes the
goodness of fit criteria C.

b) The linear effects part u′γ typically consists of the intercept γ0 and dummy variables
for the categorical covariates. For the moment suppose that u contains dummies rep-
resenting only one categorical variable. Then we compare the fits γ̂0 = y − η[lin], γ1 =
0, . . . , γq = 0 (covariate removed from the model) and γ̂ = (U′U)−1U′(y− η̂[lin]) where
η̂[lin] is the current predictor with the linear effects removed and y − η[lin] is the mean
of the elements of the partial residual vector y − η̂[lin]. If more than one categorical
covariate is available the procedure is repeated for every variable.

4. Termination
The iteration cycle in 3. is repeated until the model, regression and smoothing parameters
do not change anymore.

If a two-dimensional surface with penalty (9) is specified the basic algorithm 1 must be adapted,
see Belitz & Lang (2008) for details.

7 Survival analysis and multi-state models

We will now describe some of the capabilities of BayesX for the estimation of survival time and
multi-state models. Discrete time duration and multi-state models can be estimated by categorical
regression models after some data augmentation as outlined in subsection 7.1. Continuous time
survival models can estimated using either the piecewise exponential model or structured hazard
regression, an extension of the well known Cox model (subsection 7.2). For the latter, extensions
allowing for interval censored survival times are described in subsection 7.3. Finally, subsection 7.4
contains information on continuous time multi-state models.

While discrete time models and the piecewise exponential models can be estimated with all three
regression objects available in BayesX, continuous time survival and multi-state models are only
supported by bayesreg and remlreg objects. More details on estimating continuous time survival
models based on MCMC can be found in Hennerfeind, Brezger & Fahrmeir (2006). Kneib &
Fahrmeir (2006) and Kneib (2006) present inference based on mixed model methodology. Kneib &
Hennerfeind (2006) introduce both MCMC and mixed model based inference in multi-state models.
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7.1 Discrete time duration data

In applications, duration data are often measured on a discrete time scale or can be grouped in
suitable intervals. In this section we show how data of this kind can be written as categorical
regression models. Estimation is then based on methodology for categorical regression models as
described in the previous sections. We start by assuming that there is only one type of failure
event, i.e. we consider the case of survival times.

Let the duration time scale be divided into intervals [a0, a1), [a1, a2), . . . , [aq−1, aq), [aq, a∞). Usually
a0 = 0 is assumed and aq denotes the final follow up time. Identifying the discrete time index t
with interval [at−1, at), duration time T is considered as discrete, where T = t ∈ {1, . . . , q + 1}
denotes end of duration within the interval t = [at−1, at). In addition to duration T , a sequence of
possibly time-varying covariate vectors ut is observed. Let u∗t = (u1, . . . , ut) denote the history of
covariates up to interval t. Then the discrete hazard function is given by

λ(t;u∗t ) = P (T = t | T ≥ t, u∗t ), t = 1, . . . , q,

that is the conditional probability for the end of duration in interval t, given that the interval is
reached and the history of the covariates. Discrete time hazard functions can be specified in terms
of binary response models. Common choices are binary logit, probit or grouped Cox models.

For a sample of individuals i, i = 1, . . . , n, let Ti denote duration times and Ci right censoring times.
Duration data are usually given by (ti, δi, u

∗
iti
), i = 1, . . . , n, where ti = min(Ti, Ci) is the observed

discrete duration time, δi = 1 if Ti ≤ Ci, δi = 0 else is the censoring indicator, and u∗iti = (uit,
t = 1, . . . , ti) is the observed covariate sequence. We assume that censoring is noninformative and
occurs at the end of the interval, so that the risk set Rt includes all individuals who are censored
in interval t.

We define binary event indicators yit, i ∈ Rt, t = 1, . . . , ti, by

yit =

{
1 if t = ti and δi = 1
0 else.

Then the duration process of individual i can be considered as a sequence of binary decisions
between remaining in the transient state yit = 0 or leaving for the absorbing state yit = 1, i.e.
end of duration at t. For i ∈ Rt, the hazard function for individual i can be modelled by binary
response models

P (yit = 1 | u∗it) = h(ηit), (42)

with appropriate predictor ηit and response function h : R → [0, 1]. Traditionally, a linear predictor
is assumed, i.e.

ηit = γ0(t) + u′itγ, (43)

where the sequence γ0(t), t = 1, . . . , q, represents the baseline effect. In BayesX the linear predictor
can be replaced by a structured additive predictor

ηit = f0(t) + f1(xit1) + · · ·+ fp(xitp) + u′itγ, (44)

where, again, the xj denote generic covariates of different types and dimension, and fj are (not
necessarily smooth) functions of the covariates. The baseline effect f0(t) can be modelled as a
penalised spline or a random walk.

To fix ideas, we describe the necessary manipulations that yield a data set suitable for binary
regression models with an example. Suppose the first few observations of a data set are given as
follows:
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t δ x1 x2

4 0 0 2

3 1 1 0
...

...
...

...

The first individual is censored (δ = 0) and the observed duration time is 4. The second individual
is uncensored with duration time 3. Now we augment the data set as follows:

y indnr t δ x1 x2

0 1 1 0 0 2
0 1 2 0 0 2
0 1 3 0 0 2
0 1 4 0 0 2

0 2 1 1 1 0
0 2 2 1 1 0
1 2 3 1 1 0
...

...
...

...
...

...

The first individual is now represented by 4 observations because the observed duration time is 4.
The event indicator y always equals 0 because the corresponding observations is censored. For the
second individual we obtain 3 observations and the event indicator jumps at time t=3 from 0 to 1.
Now we can estimate a logit or probit model with y as the response and covariates t, x1, x2.

So far we have only considered situations with one type of failure. Suppose now that we may
distinguish several types of failure. For example, Fahrmeir & Lang (2001) distinguished between
full- and part time jobs as events ending the duration of unemployment. Models of this kind are
often referred to as competing risks models.

Let R ∈ {1, . . . ,m} denote distinct events of failure. Then the cause-specific discrete hazard
function resulting from cause or risk r is given by

λr(t|ut, xt) = P (T = t, R = r|T ≥ t, ut, xt).

Modelling λr(t|ut, xt) may be based on multicategorial regression models. For example, assuming
a multinomial logit model yields

λr(t|ut) =
exp(ηr)

1 +
∑m

s=1 exp(ηs)

with structured additive predictors

ηr = f0r(t) + f1r(xt1) + · · ·+ fpr(xtp) + u′tγr. (45)

An alternative would be the multinomial probit model.

Again, we demonstrate the necessary data manipulations with an example. Suppose we have data
with 2 terminating events R=1 and R=2. The first few observations of a data set are given as
follows:

t δ R x1 x2

4 0 1 0 2

3 1 2 1 0

5 1 1 0 3
...

...
...

...
...
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The first individual is censored (δ = 0) and the observed duration time is 4. The second individual
is uncensored with duration time 3 and terminating event R=2. The third individual is uncensored
with duration time 5 and terminating event R=1. We augment the data set as follows:

y indnr t δ x1 x2

0 1 1 0 0 2
0 1 2 0 0 2
0 1 3 0 0 2
0 1 4 0 0 2

0 2 1 1 1 0
0 2 2 1 1 0
2 2 3 1 1 0

0 3 1 1 0 3
0 3 2 1 0 3
0 3 3 1 0 3
0 3 4 1 0 3
1 3 5 1 0 3
...

...
...

...
...

...

For the first individual we create 4 observations because the observed duration time is 4. The
event indicator y always equals 0 because the observation is censored. For the second individual
we obtain 3 observations and the event indicator jumps at time t=3 from 0 to 2. For the third
individual the event indicator jumps at time 5 from 0 to 1. Now we can estimate a multinomial
logit or probit model with y as the response, reference category 0, and covariates t, x1, x2.

7.2 Continuous time survival analysis for right censored survival times

In applications where the duration time t is measured on a continuous time scale, grouping the data
for a discrete time analysis is possible, but causes a loss of information. In this section we introduce
the continuous time Cox model and describe the two alternatives BayesX offers for the estimation
of such models. The first alternative is to assume that all time-dependent values are piecewise
constant, which leads to the so called piecewise exponential model (p.e.m.). Data augmentation is
needed here, but estimation is then based on methodology for Poisson regression, and the inclusion
of time-varying effects does not imply any difficulties. The second alternative is to estimate the
log-baseline effect by a P-spline of arbitrary degree. This approach is less restrictive and does not
demand data augmentation.

Let u∗t = {us, 0 ≤ s ≤ t} denote the history of possibly time-varying covariates up to time t. Then
the continuous hazard function is given by

λ(t;u∗t ) = lim
∆t ↓ 0

P (t ≤ T < t+∆t|T ≥ t, u∗t )

∆t
,

i.e. by the conditional instantaneous rate of end of duration at time t, given that time t is reached
and the history of the covariates. In the Cox model the individual hazard rate is modelled by

λi(t) = λ0(t) · exp(ηit) = exp(f0(t) + ηit) (46)

where λ0(t) is the baseline hazard, (f0(t) = log(λ0(t)) is the log-baseline hazard) and ηit is an
appropriate predictor. Traditionally the predictor is linear and the baseline hazard is unspecified.
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In BayesX, however, a structured additive predictor may be assumed and the baseline effect is
estimated jointly with the covariate effects either by a piecewise constant function (in case of a
p.e.m.) or by a P-spline.

7.2.1 Piecewise exponential model (p.e.m.)

The basic idea of the p.e.m. is to assume that all values that depend on time t are piecewise constant
on a grid

(0, a1], (a1, a2], . . . , (as−1, as], . . . , (at−1, at], (at,∞),

where at is the largest of all observed duration times ti, i = 1, . . . , n. This grid may be equidistant
or, for example, constructed according to quantiles of the observed survival times. The assumption
of a p.e.m. is quite convenient since estimation can be based on methodology for Poisson regression
models. For this purpose the data set has to be modified as described below.

Let δi be an indicator of non-censoring (i.e. δi = 1 if observation i is uncensored, 0 else) and
γ0s, s = 1, 2, . . . the piecewise constant log-baseline effect. We define an indicator variable yis as
well as an offset ∆is as follows:

yis =

{
1 ti ∈ (as−1, as], δi = 1
0 else.

∆′
is =


as − as−1, as < ti
ti − as−1, as−1 < ti ≤ as
0, as−1 ≥ ti

∆is = log∆′
is (∆is = −∞ if ∆′

is = 0).

The likelihood contribution of observation i in the interval (as−1, as] is

Lis = exp (yis(γ0s + ηis)− exp(∆is + γ0s + ηis)) .

As this likelihood is proportional to a Poisson likelihood with offset δis, estimation can be performed
using Poisson regression with response variable y, (log-)offset ∆ and a as a continuous covariate.
Due to the assumption of a piecewise constant hazard rate the estimated log-baseline is a step
function on the defined grid. To obtain a smooth step function, a random walk (corresponding to
a zero degree P-spline) is specified for the parameters γ0s.

In practice this means that the data set has to be modified in such a way that for every individual
i there is an observation row for each interval (as−1, as] between a0 and the final duration time ti.
Instead of the indicator of non-censoring δi the modified data set contains the indicator yis and
instead of duration time ti the variable as as well as the offset ∆is (covariates are duplicated). To
give a short example, consider an equidistant grid with interval width 0.1 and observations

t δ x1 x2

0.25 1 0 3

0.12 0 1 5
...

...
...

...

Then the data set has to be augmented to
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y indnr a δ ∆ x1 x2

0 1 0.1 1 log(0.1) 0 3
0 1 0.2 1 log(0.1) 0 3
1 1 0.3 1 log(0.05) 0 3

0 2 0.1 0 log(0.1) 1 5
0 2 0.2 0 log(0.02) 1 5
...

...
...

...
...

...
...

Now a Poisson model with offset ∆, response y, random walk prior for covariate a, and appropriate
priors for x1 and x2 can be estimated.

7.2.2 Specifying a P-spline prior for the log-baseline

The p.e.m. can be seen as a model where the log-baseline f0(t) in (46) is modelled by a P-spline (see
(4.1)) of degree 0, which is quite convenient as it simplifies the calculation of the likelihood, but
may be too restrictive since the baseline effect is estimated by a step-function. A more general way
of estimating the nonlinear shape of the baseline effect is to assume a P-spline prior of arbitrary
degree instead. Unlike the p.e.m. such a model can not be estimated within the context of GAMs,
but specific methods for extended Cox models are also implemented in BayesX (for bayesreg and
remlreg objects. The individual likelihood for continuous survival data is given by

Li = λi(ti)
δi · exp

(
−
∫ ti

0
λi(u)du

)
.

Inserting (46) yields

Li = exp(f0(ti) + ηiti)
δi · exp

(
−
∫ ti

0
exp(f0(u) + ηiu)du

)
.

If the degree of the P-spline prior for f0(t) is greater than one, the integral can no longer be calcu-
lated analytically. For linear P-splines the integral can still be solved but the formulae become quite
cumbersome. Therefore BayesX makes use of the trapezoidal rule for a numerical approximation.

7.3 Continuous time survival analysis for interval censored survival times

Usually, the Cox model and extensions are developed for right-censored observations. More formally
spoken, if the true survival time is given by T and C is a censoring time, only T̃ = min(T,C) is
observed along with the censoring indicator δ = 1(T≤C). Many applications, however, confront
the analyst with more complicated data structures involving more general censoring schemes. For
example, interval censored survival times T are not observed exactly but are only known to fall
into an interval [Tlo, Tup]. If Tlo = 0 such survival times are also referred to as being left censored.
Furthermore, each of the censoring schemes may appear in combination with left truncation of the
corresponding observation, i.e. the survival time is only observed if it exceeds the truncation time
Ttr. Accordingly, some survival times are not observable and the likelihood has to be adjusted
appropriately. Figure 2 illustrates the different censoring schemes we will consider in the following:
The true survival time is given by T which is observed for individuals 1 and 2. While individual
1 is not truncated, individual 2 is left truncated at time Ttr. Similarly, individuals 3 and 4 are
right-censored at time C and individuals 5 and 6 are interval censored with interval [Tlo, Tup] and
the same pattern for left truncation.

In a general framework an observation can now be uniquely described by the quadruple
(Ttr, Tlo, Tup, δ), with
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Figure 2: Illustration of different censoring schemes.

Tlo = Tup = T , δ = 1 if the observation is uncensored,
Tlo = Tup = C, δ = 0 if the observation is right censored,
Tlo < Tup, δ = 0 if the observation is interval censored.

For left truncated observations we have Ttr > 0 while Ttr = 0 for observations which are not
truncated.

Based on these definitions we can now construct the likelihood contributions for the different
censoring schemes in terms of the hazard rate λ(t) and the survivor function S(t) = exp(

∫ t
0 λ(u)du).

Under the common assumption of noninformative censoring and conditional independence, the
likelihood is given by

L =

n∏
i=1

Li, (47)

where

Li = λ(Tup)S(Tup)/S(Ttr) = λ(Tup) exp

(
−
∫ Tup

Ttr

λ(t)dt

)
for an uncensored observation,

Li = S(Tup)/S(Ttr) = exp

(
−
∫ Tup

Ttr

λ(t)dt

)
for a right censored observation and

Li = (S(Tlo)− S(Tup))/S(Ttr) = exp

(
−
∫ Tlo

Ttr

λ(t)dt

)(
1− exp

(
−
∫ Tup

Tlo

λ(t)dt

))
for an interval censored observation. Note that for explicit evaluation of the likelihood (47) some
numerical integration technique has to be employed, since none of the integrals can in general be
solved analytically.

The above notation also allows for the easy inclusion of piecewise constant, time-varying covariates
via some data augmentation. Noting that∫ T

Ttr

λ(t)dt =

∫ t1

Ttr

λ(t)dt+

∫ t2

t1

λ(t)dt+ . . .+

∫ tp

tp−1

λ(t)dt+

∫ T

tp

λ(t)dt
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for Ttr < t1 < . . . < tq < T , we can replace an observation (Ttr, Tlo, Tup, δ) by a set of new observa-
tions (Ttr, t1, t1, 0), (t1, t2, t2, 0), . . . (tp−1, tp, tp, 0), (tp, Tlo, Tup, δ) without changing the likelihood.
Therefore, observations with time-varying covariates can be split up into several observations, where
the values t1 < . . . < tp are defined by the changepoints of the covariate and the covariate is now
time-constant on each of the intervals. In theory, other paths for a covariate x(t) than piecewise
constant ones are also possible, if x(t) is known for Ttr ≤ t ≤ Tlo. In this case the the likelihood (47)
can also be evaluated numerically but a general path x(t) may lead to complicated data structures.

Figure 3 illustrates the data augmentation step for a left truncated, uncensored observation and a
covariate x(t) that takes the three different values x1, x2 and x3 on the three intervals [Ttr, t1], [t1, t2]
and [t2, Tup]. Here, the original observation (Ttr, Tup, Tup, 1) has to be replaced by (Ttr, t1, t1, 0),
(t1, t2, t2, 0) and (t2, Tup, Tup, 1).

0 Ttr t1 t2 Tup

x1

x3

x2

Figure 3: Illustration of time-varying covariates.

Currently, interval censored survival times can only be handled with remlreg objects.

7.4 Continuous-time multi-state models

Multi-state models are a flexible tool for the analysis of time-continuous phenomena that can be
characterized by a discrete set of states. Such data structures naturally arise when observing a
discrete response variable for several individuals or objects over time. Some common examples
are depicted in Figure 4 in terms of their reachability graph for illustration. For recurrent events
(Figure 4 (a)), the observations evolve through time moving repeatedly between a fixed set of states.
Other model classes involve absorbing states, for example disease progression models (Figure 4 (b)),
that are used to describe the chronological development of a certain disease. If the severity of this
disease can be grouped into q − 1 ordered stages of increasing severity, a reasonable model might
look like this: Starting from disease state ’j’, an individual can only move to contiguous states, i.e.
either the disease gets worse and the individual moves to state ’j+1’, or the disease attenuates and
the individual moves to state ’j − 1’. In addition, death is included as a further, absorbing state
’q’, which can be reached from any of the disease states. A model with several absorbing states is
the competing risks model (Figure 4 (c)) where, for example, different causes of death are analysed
simultaneously.

A multi-state model is fully described by a set of hazard rates λhi(t) where h, h = 1, . . . , k, indexes
the type of the transition and i, i = 1, . . . , n, indexes the individuals. Since the hazard rates describe
durations between transitions, we specify them in analogy to hazard rate models for continuous
time survival analysis. To be more specific, λhi(t) is modelled in a multiplicative Cox-type way as

λhi(t) = exp(ηhi(t)),

where

ηhi(t) = gh0(t) +
L∑
l=1

ghl(t)uil(t) +
J∑

j=1

fhj(xij(t)) + vi(t)
′γh + bhi (48)
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Figure 4: Reachability graphs of some common multi-state models.
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is an additive predictor consisting of the following components:

• A time-varying, nonparametric baseline effect gh0(t) common for all observations.

• Covariates uil(t) with time-varying effects ghl(t).

• Nonparametric effects fhj(xij(t)) of continuous covariates xij(t).

• Parametric effects γh of covariates vi(t).

• Frailty terms bhi to account for unobserved heterogeneity.

For each individual i, i = 1, . . . , n, the likelihood contribution in a multi-state model can be derived
from a counting process representation of the multi-state model. Let Nhi(t), h = 1, . . . , k be a set
of counting processes counting transitions of type h for individual i. Consequently, h = 1, . . . , k
indexes the observable transitions in the model under consideration and the jumps of the counting
processes Nhi(t) are defined by the transition times of the corresponding multi-state process for
individual i.

From classical counting process theory (see e.g. Andersen et al. (1993), Ch. VII.2), the intensity
processes αhi(t) of the counting processes Nhi(t) are defined as the product of the hazard rate for
type h transitions λhi(t) and a predictable at-risk indicator process Yhi(t), i.e.

αhi(t) = Yhi(t)λhi(t),

where the hazard rates are constructed in terms of covariates as in (48). The at-risk indicator Yhi(t)
takes the value one if individual i is at risk for a type h transition at time t and zero otherwise.
For example, in the multi-state model of Figure 4a), an individual in state 2 is at risk for both
transitions to state 1 and state 3. Hence, the at-risk indicators for both the transitions ’2 to 1’ and
’2 to 3’ will be equal to one as long as the individual remains in state 2.

Under mild regularity conditions, the individual log-likelihood contributions can now be obtained
from counting process theory as

li =

k∑
h=1

[∫ Ti

0
log(λhi(t))dNhi(t)−

∫ Ti

0
λhi(t)Yhi(t)dt

]
, (49)

where Ti denotes the time until which individual i has been observed. The likelihood contributions
can be interpreted similarly as with hazard rate models for survival times (and in fact coincide
with these in the case of a multi-state process with only one transition to an absorbing state). The
first term corresponds to contributions at the transition times since the integral with respect to
the counting process in fact equals a simple sum over the transition times. Each of the summands
is then given by the log-intensity for the observed transition evaluated at this particular time
point. In survival models this term simply equals the log-hazard evaluated at the survival time for
uncensored observations. The second term reflects cumulative intensities integrated over accordant
waiting periods between two successive transitions. The integral is evaluated for all transitions the
corresponding person is at risk at during the current period. In survival models there is only one
such transition (the transition from ’alive’ to ’dead’) and the integral is evaluated from the time of
entrance to the study to the survival or censoring time.

More details on multi-state models, including an exemplary analysis on human sleep, can be found
in Kneib & Hennerfeind (2006).
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8 Multilevel structured additive distributional and quantile regression

8.1 Distributional regression

Structured additive regression models assume that the distribution of the response variable y, given
covariates x and u, belongs to an exponential family. The conditional mean µi = E(yi|x,u) is linked
to a structured additive predictor

ηi = f1(xi1) + . . .+ fp(xip) + u′
iγ, i = 1, . . . , n,

by µi = h(ηi), see Chapter 2. In matrix notation we obtain for the predictor

η = X1β1 + . . .+Xpβp +Uγ,

see again Chapter 2 for details. For the most basic model with Gaussian responses and the identity
response function we have

yi ∼ N (ηi, σ
2) = N (f1(xi1) + . . .+ fp(xip) + u′

iγ, σ
2)

or

y = N (η, σ2I) = N (X1β1 + . . .+Xpβp +Uγ, σ2I).

Here and in other convential STAR models only the conditional mean is modeled in dependence of
covariates.

A more flexible approach is given by distributional regression as introduced in Klein et al. (2014b)
and Klein, Kneib & Lang (2014). On the one hand, the class of distributions that can be estimated
with distributional regression is no longer restricted to the exponential family. On the other hand,
distributional regression allows to model not only the conditional mean of the response variable
but the whole set of distribution parameters ϑ1, . . . ,ϑK , i.e. all K parameters of the response
distribution can be related to a set of predictor variables, which of course may vary between the
different parameters. Using response functions h1, . . . , hK each of these parameters can be linked
to a structured additive predictor via

ϑk = hk(ηk) = hk(X1kβ1k + . . .+Xpkβpk +Ukγk), k = 1, . . . ,K.

Usually, the response functions are chosen to ensure appropriate restrictions on the parameter
spaces. We use, for example, the exponential function to ensure positivity of the scale parameter.

Presumably the most simple distributional regression model is obtained with Gaussian responses
where both the mean µ and the variance σ2 is modeled in terms of covariates. Thus, we consider
a regression model with

µ = h1(η1) = η1,

σ2 = h2(η2) = exp(η2).

A possible generalization of the normal distribution is given by the three-parameter Student’s t
distribution with location parameter µ, scale parameter σ2 > 0 and degrees of freedom df > 0.
The probability density function is given by

f(y|µ, σ, df) =
Γ
(
df+1
2

)
σΓ
(
1
2

)
Γ
(
df
2

)√
df

·
(
1 +

(y − µ)2

σ2df

)− df+1
2

,
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where Γ(x) =
∫∞
0 ux−1 exp(−u)du for x > 0 is the gamma function. Similar to the normal distri-

bution the t distribution is symmetric and bell-shaped but it has heavier tails, offering a robust
alternative to the normal distribution. For df → ∞ it collapses to the normal distribution.

Regarding the positivity of σ2 and df we consider the model

µ = h1(η1) = η1,

σ2 = h2(η2) = exp(η2),

df = h3(η3) = exp(η3).

A popular two parameter distribution for modeling skewed distributions is the gamma distribution
with mean parameter µ > 0 and shape parameter σ > 0. The probability density function is given
by

f(yi|µi, σi) =
(
σi
µi

)σi

·
yσi−1
i

Γ(σi)
· exp

(
−σi
µi

· yi
)
,

The mean of the gamma distribution corresponds to µ, the variance is given by µ2/σ. Setting up a
regression model both the mean and the shape parameter are linked to a STAR predictor via the
exponential function due to the positivity constraints:

µ = h1(η1) = exp(η1),

σ = h2(η2) = exp(η2).

A comprehensive list of all distributional regression models available in BayesX can be found in
Tables 10.6 to 10.9 of the Reference Manual.

8.2 Quantile Regression

Distributional regression assumes a specific parametric probability distribution of the response
(like the normal, lognormal or gamma distribution) and models some or all of its parameters in
dependence of covariates. Quantile regression, in contrast, is a distribution-free approach, trying
to directly model the different quantiles of the response as a function of covariates.

In linear quantile regression (see Koenker (2005)), we assume

qφ,i = βφ,0 + βφ,1xi1 + . . .+ βφ,pxip

where qφ, for φ ∈ (0, 1), is the φ-quantile of the response distribution. Estimation of the quantile-
specific regression coefficients βφ relies on minimizing the asymmetrically weighted error (AWE)
criterion

β̂φ = argminβφ

{
n∑

i=1

ρφ(yi − x′
iβφ)

}
, (50)

with the loss function ρφ defined by

ρφ(u) =

{
uφ if u ≥ 0

u(φ− 1) if u < 0,

which is also known as the check function. Since there exists no closed form solution for this mini-
mization problem, estimates are typically obtained based on linear programming and modifications
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of the simplex algorithm, see Koenker (2005) for details. The distribution of the response is implic-
itly determined by the estimated quantiles qφ provided that quantiles for a reasonable dense grid of
φ-values are estimated. Generalizations to structured additive predictors are conceptually straight-
forward. However, estimation is highly challenging and almost impossible for complex hierarchical
models, revealing the limits of frequentist quantile regression.

Bayesian structured quantile regression requires a distributional assumption for the responses to
be able to set up a likelihood. Following Waldmann et al. (2013) we will assume independent
and identically distributed observations following an asymmetric Laplace distribution with location
parameter ηi,φ (specified in the usual structured additive fashion), scale parameter σ2 and skewness
parameter φ,

yi|ηi,φ, σ2, φ
iid∼ ALD(ηi,φ, σ

2, φ).

Then, the density of the responses is given by

p(yi|ηi,φ, σ2, φ) =
φ(1− φ)

σ2
exp

(
−ρφ(yi − ηiφ)

σ2

)
.

Maximizing the corresponding posterior (for fixed σ2 and φ) obviously is equivalent to minimizing
the AWE criterion (50) in case of a linear predictor. However, in contrast to frequentist quan-
tile regression the linear predictor can be replaced by a hierarchical structured additive predictor
without any further difficulties, see Waldmann et al. (2013) for details.

Since the check function ρφ is non-differentiable, inference based on Markov chain Monte Carlo
(MCMC) simulations at a first glance seems to be complicated. However, the asymmetric Laplace
distribution can be represented as a scaled mixture of normals

Yi = ηi + ξWi + δZi

√
σ2Wi

with ξ = 1−2φ
φ(1−φ) and δ2 = 2

φ(1−φ) . Wi ∼ Exp( 1
σ2 ) and Zi ∼ N (0, 1) are independent random

variables following an exponential distribution with mean σ2 and a standard normal distribution,
respectively. Thus, using offsets ξWi and weights δ

√
σ2Wi the Bayesian quantile regression problem

can be interpreted as a conditionally Gaussian regression model after imputing Wi as a part of the
MCMC sampler.

8.3 Multilevel models

Recently Lang et al. (2014) have proposed a multilevel version of STAR models to cope with the
hierarchical nature of many data sets. Suppose that covariate xj ∈ {1, . . . ,K} is a unit- or cluster
index and xij indicates the cluster observation i pertains to. Then the design matrix Xj is a
n×K incidence matrix with Xj [i, k] = 1 if the i-th observation belongs to cluster k and zero else.
The K × 1 parameter vector βj is the vector of regression parameters, i.e. the k-th element in βj

corresponds to the regression coefficient of the k-th cluster. We now define a second level equation

βj = ηj + εj = Xj1βj1 + . . .+Xjpjβjpj +Ujγj + εj , (51)

where the termsXj1βj1, . . . ,Xjpjβjpj correspond to additional nonlinear functions fj1, . . . , fjpj and

Ujγj comprises additional linear effects of cluster level covariates. The “errors” εj ∼ N(0, τ2j I)
comprise a vector of i.i.d. Gaussian random effects. Using the compound prior (51) we obtain an
additive decomposition of the cluster specific effect. By allowing a full STAR predictor (as in the
level-1 equation), a rather complex decomposition of the cluster effect βj including interactions is
possible. A special case arises if cluster specific covariates are not available. Then the prior for βj
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collapses to βj = εj ∼ N(0, τ2j I) and we obtain a simple i.i.d. Gaussian cluster specific random

effect with variance parameter τ2j .

A third or fourth level in the hierarchy is possible by assuming that the second or third level
regressions contain additional cluster-specific random effects whose parameters are again modeled
through STAR predictors of cluster level covariates.
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