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Penalized LS (ML) estimators

Linear regression model

y = θ1 x.1 + . . . θk x.k + ε

response y ∈ Rn

regressors x.i ∈ Rn, 1 ≤ i ≤ k

errors ε ∈ Rn

(unknown) parameter vector θ = (θ1, . . . , θk)
′ ∈ Rk

A penalized least-squares (LS) estimator θ̂ for θ is given by

θ̂ = arg min
θ∈Rk

‖y − Xθ‖2︸ ︷︷ ︸
likelihood or LS -part

+ p(θ)︸︷︷︸
penalty

The penalty function p(θ) involves a tuning parameter λn (λn = 0

corresponds to unpenalized/ordinary LS).
X = [x.1, . . . , x.k ] the n × k regression matrix.

1 / 20



Penalized LS (ML) estimators

Linear regression model

y = θ1 x.1 + . . . θk x.k + ε

response y ∈ Rn

regressors x.i ∈ Rn, 1 ≤ i ≤ k

errors ε ∈ Rn

(unknown) parameter vector θ = (θ1, . . . , θk)
′ ∈ Rk

A penalized least-squares (LS) estimator θ̂ for θ is given by

θ̂ = arg min
θ∈Rk

‖y − Xθ‖2︸ ︷︷ ︸
likelihood or LS -part

+ p(θ)︸︷︷︸
penalty

The penalty function p(θ) involves a tuning parameter λn (λn = 0

corresponds to unpenalized/ordinary LS).
X = [x.1, . . . , x.k ] the n × k regression matrix.

1 / 20



Penalized LS (ML) Estimators (cont’d)

Clearly, different penalties give rise to different estimators.

General class of Bridge-estimators (Frank & Friedman, 1993)
using lγ - type penalties

p(θ) = λn

k∑
i=1

|θi |γ

γ = 2: Ridge-estimator (Hoerl & Kennard, 1970)
γ = 1: LASSO (Tibshirani, 1996).

Hard- and soft-thresholding estimators.

Smoothly clipped absolute deviation (SCAD) estimator (Fan
& Li, 2001).

Adaptive LASSO estimator (Zou, 2006).
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Relationship to classical PMS estimators

Brigde-estimators satisfy

min ‖y − Xθ‖2 + λn

k∑
i=1

|θi |γ (0 < γ < ∞)

For γ → 0, get

min ‖y − Xθ‖2 + λn card{i : θi 6= 0}

which yields a minimum Cp-type procedure such as AIC and BIC.
(lγ-type penalty with “γ = 0”)
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Relationship to classical PMS-estimators (cont’d)

For “γ = 0” procedures are computationally expensive.

For γ > 0 (Bridge) estimators are more computationally
tractable, especially for γ ≥ 1 (convex objective function).

For γ ≤ 1, estimators perform model selection

P(θ̂i = 0) > 0 if θi = 0

Same for SCAD, hard- and soft-thresholding. Phenomenon is
more pronounced for smaller γ.

γ = 1 (LASSO and adaptive LASSO) as compromise between
the wish to detect zeros and computational simplicity. (SCAD
leads to a non-convex optimization problem.)
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Orthogonal design

Linear regression model

y = θ1 x.1 + . . . θk x.k + ε

X is non-stochastic, n × k and rk(X ) = k.

ε ∼ Nn(0, σ2In)

σ2 is known (wlog σ2 = 1) and X ′X is diagonal, in particular
X ′X = nIk .

Again, wlog consider Gaussian location model y1, . . . , yn
iid∼ N(θ, 1).

Then θ̂OLS = θ̂MLE = ȳ and we want to choose between the restric-
ted model MR = {N(0, 1)} or the full model MU = {N(θ, 1) : θ ∈ R}.
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Hard-thresholding θ̂H

p(θ) = n
[
µ2

n − (|θ| − µn)
2 1(|θ| < µn)

]
θ̂H = ȳ 1(|ȳ | > µn)

Equivalent to a post-model estimator based on (eg) t-tests.
Estimator is not continuous.
Possesses an “oracle-property” if sparsely-tuned.
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Soft-thresholding θ̂L

p(θ) = 2nµn|θ|
θ̂L = sign(ȳ) (|ȳ | − µn)+

Equivalent to LASSO.

Bias problem! No “oracle-property”.
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Smoothly-clipped-absolute-deviation θ̂SCAD

p′(θ) = µn [ 1(θ ≤ µn) + (aµn − θ)+/((a− 1)µn) 1(θ > µn)],
where a > 2 is an additional tuning parameter.

θ̂SCAD =

 sign(ȳ)(|ȳ | − µn)+ if |ȳ | ≤ 2µn

[(a−1)ȳ − sign(ȳ)aµn] /(a−2) if 2µn < |ȳ | ≤ aµn

ȳ if |ȳ | > aµn

Non-convex optimization problem.
Possesses an “oracle-property” if sparsely-tuned.
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Adaptive LASSO θ̂AL

p(θ) = 2nµ2
n|θ|/|ȳ |

θ̂AL =

{
0 if |ȳ | ≤ µn

ȳ − µ2
n/ȳ if |ȳ | > µn

Equivalent to non-negative Garotte (Breiman, 1995)
Possesses an “oracle-property” if sparsely-tuned.
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Why moving-parameter asymptotics?

Let’s you see what’s really going on in large samples if the
convergence is not uniform with respect the underlying parameter.

The unpenalized LS estimator is θ̂OLS = ȳ in our model with
θ̂OLS ∼ N(θ, 1/n), so that

n1/2(θ̂OLS − θ) ∼ N(0, 1)

for each sample size n ∈ N, so the distribution is independent
of θ.

For θ̂AL (and other PLSEs), the distribution of n1/2(θ̂AL − θ)
depends on θ in a complicated manner.

1(n1/2θ + x ≥ 0) Φ

(
−(n1/2θ − x)/2 +

√
((n1/2θ + x)/2)2 + nµ2

n

)
+ 1(n1/2θ + x < 0) Φ

(
−(n1/2θ − x)/2−

√
((n1/2θ + x)/2)2 + nµ2

n

)
Even for large n, the pointwise asymptotic distribution might
be “far” from the finite-sample distribution of interest if the
underlying convergence is not uniform, as we have seen
yesterday.
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θ̂OLS ∼ N(θ, 1/n), so that

n1/2(θ̂OLS − θ) ∼ N(0, 1)

for each sample size n ∈ N, so the distribution is independent
of θ.

For θ̂AL (and other PLSEs), the distribution of n1/2(θ̂AL − θ)
depends on θ in a complicated manner.

1(n1/2θ + x ≥ 0) Φ

(
−(n1/2θ − x)/2 +

√
((n1/2θ + x)/2)2 + nµ2

n

)
+ 1(n1/2θ + x < 0) Φ

(
−(n1/2θ − x)/2−

√
((n1/2θ + x)/2)2 + nµ2

n

)
Even for large n, the pointwise asymptotic distribution might
be “far” from the finite-sample distribution of interest if the
underlying convergence is not uniform, as we have seen
yesterday.

10 / 20



Why moving-parameter asymptotics?

Let’s you see what’s really going on in large samples if the
convergence is not uniform with respect the underlying parameter.

The unpenalized LS estimator is θ̂OLS = ȳ in our model with
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Asymptotic model selection probabilities

Probability of choosing the restricted model MR is given by

Pn,θ(θ̂ = 0) = Φ(−n1/2(θ + µn))− Φ(−n1/2(θ − µn)),

and clearly, the probability of choosing the unrestricted model MU

is
Pn,θ(θ̂ 6= 0) = 1− Pn,θ(θ̂ = 0)

(θ̂ any of the previous PLS estimators).
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Asymptotic model selection probabilities

n = 1, µn = n−1/3 (consistent case)
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n = 2, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 3, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 4, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 5, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 7, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 10, µn = n−1/3 (consistent case)

12 / 20



Asymptotic model selection probabilities

n = 20, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 50, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 70, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 100, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 200, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 500, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 1000, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 2000, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 5000, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = 10000, µn = n−1/3 (consistent case)
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Asymptotic model selection probabilities

n = ∞, µn = n−1/3 (consistent case)
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Model selection probabilities

1 Consistent case (µn → 0, n1/2µn →∞)

Assume θn/µn → ζ ∈ R ∪ {−∞,∞}. Then

lim
n→∞

Pn,θn(θ̂AL = 0) =
1 if |ζ| < 1

Φ(r) if |ζ| = 1, n1/2(µn − ζθn) → r ∈ R ∪ {−∞,∞}
0 if |ζ| > 1

Deviations of θn from 0 of order n−1/2 are not detected at all!

2 Conservative case (µn → 0, n1/2µn → m, 0 ≤ m < ∞)

Assume θn ∈ R satisfies n1/2θn → ν ∈ R ∪ {−∞,∞}. Then

lim
n→∞

Pn,θn(θ̂AL = 0) = Φ(−ν + m)− Φ(−ν −m).

Deviations of θn from 0 of order n−1/2 are detected with positive prob.
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Model selection probabilities - conclusions

Consistent procedures cannot uncover deviations from zero of
order n−1/2. This matters e.g. since usually n1/2(θ̂ − θ) is
considered.

Conservative procedures do detect such deviations with
positive probability.

Often the parameter space is assumed to be bounded away
from zero by a rate smaller than n−1/2.

Model selection is “hard” when the true parameter θ is close
to zero! (Yet this is an interesting case.)
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Why does LASSO perform model selection?

Rewrite minimization problem min
θ∈Rk

‖y − Xθ‖2 + λn

k∑
i=1

|θi | as

min
θ∈Rk

‖y − Xθ‖2

s.t.

k∑
i=1

|θi | ≤ s (for some s ≥ 0)

(Plot from Tibshirani (1996))
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Computational issues for (adaptive) LASSO

Clearly, the LASSO estimator θ̂L depends on the tuning
parameter λn.

The “solution paths” for each component θ̂L,i (λn) can be
shown to be piecewise linear in λn for each i = 1, . . . , k.
(Rosset and Zhu, 2007)

This property can be exploited to derive efficient algorithms to
compute θ̂L “easily” for all λn ≥ 0 “at once”.

There exist R-packages to do this, such as the lars package
by Efron et al. (2004).

The adaptive LASSO can be computed from the LASSO
solutions using an appropriately transformed regression matrix
X ∗
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solutions using an appropriately transformed regression matrix
X ∗
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Choosing the tuning parameter

λn is usually chosen after computing the solutions paths θ̂L(λn),
most often by

generalized cross-validation (minimizing prediction error)
generally leads to conservative model selection 1 or by using a

BIC-type criterion (after LASSO) leads to consistent model
selection 2
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Summary

Reviewed at PLS estimators and their connection to classical
PMS estimators. Some PLSEs coincide with certain PMS
estimators in a normal orthogonal linear regression model.

Discussed moving-parameter framework and that it is needed
if convergence is not uniform with respect to the underlying
parameter.

Presented results for model selection probabilities of PLEs.
Model selection is “difficult” when the true parameter is close
to zero. Conservative procedures “work better” than
consistent ones in detecting small parameters to be not equal
to zero.

Looked at computational issues for the (adaptive) LASSO.
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