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1. Introduction

We are standing on the edge of great discoveries in particle physics. In spring this year (2010),
the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in
Geneva started to collide highly accelerated protons at world record energies. These amount to a
multiple of hitherto existing collision energies of recent particle accelerators, such as the Tevatron
at the Fermi National Accelerator Laboratory (Fermilab) near Chicago. Particle collisions at
such high energies have never been studied under controlled laboratory conditions before. They
promise to open a window to unexplored territory in our understanding of particle physics.

The history of elementary particle physics arguably started with the discovery of the electron
by Thomson in 1897 [1]. At that time, physicists believed that they had understood the funda-
mental principles of nature. However, there were some open questions concerning the spectrum
of the black-body radiation and the photoelectric effect, which could not be explained with the
current understanding of physics at that time. The solution to these problems lead Planck and
Einstein around 1900 to postulate energy quantization, which was the first step to the theory
of quantum physics. At the same time, both conceptual and empirical arguments guided Ein-
stein to the theory of special relativity. Both theories revolutionized the understanding of the
fundamental principles of nature and formed the pillars of modern particle physics.

In the following decades more and more new particles were discovered and postulated, so far
ending up with the discovery of the top quark in 1996 [2] and the tau neutrino in 2000 [3, 4]. An
effective interplay between theory and experiment lead to the current Standard Model (SM) of
Particle Physics. Herein, the elementary particles fit into a pattern formed by the symmetries
of nature. Due to its remarkable success in the description of particle physics phenomena, the
Standard Model is so far the most precise model of modern physics. The only SM particle which
is not yet discovered is the Higgs boson [5, 6, 7]. Its potential discovery is one major purpose of
the LHC.

Despite its enormous success, particle physicists are convinced that the SM is not the com-
plete theory of the fundamental forces of nature, since it does not incorporate gravity. While
this weakness only becomes important at very high energies, a related issue commonly known as
the hierarchy problem [8] engages the particle physics community. It asks why gravity is roughly
1032 times weaker than the weak force. This problem manifests in the fact, that the Higgs mass
is unstable under quantum corrections. Within the SM, this problem can only be resolved by
an unnatural fine-tuning of the model parameters, or by accepting the fact, that new physics
will appear at the TeV energy scale, which render a new solution to this problem. Besides the
hierarchy problem, there are other open issues which cannot be explained by the SM, such as
the nature of cold dark matter in the universe [9], the origin of neutrino masses [10] or the CP
asymmetry needed for baryogenesis [11].

Most of these problems can be solved by supersymmetry (SUSY), which is a space-time
symmetry between fermions and bosons. It predicts the existence of a yet undiscovered super-
partner for each SM particle, which differs in spin by 1/2, thus basically doubling the particle
spectrum of the SM. Furthermore, it may provide a connection to string theory, which is a
promising candidate for a fundamental theory of all fundamental interactions including gravity.
If supersymmetry is realized in nature, it will most likely be discovered at the LHC.
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1. Introduction

The supersymmetric extension of the Standard Model (SSM) introduces new particle in-
teractions and some of them lead to the rapid decay of the proton, which is not observed by
experiment. In order to prohibit these dangerous interactions, a discrete symmetry has to be
added, such as Proton-Hexality (or similarly R-Parity) or Baryon-Triality. With the first sym-
metry, Proton-Hexality, the lightest supersymmetric particle (LSP) is stable and therefore a cold
dark matter candidate. Cosmological considerations then restrict the LSP to be color, flavor and
charge neutral. The second symmetry, Baryon-Triality, allows lepton number violating (LNV)
interactions and provides an elegant mechanism to generate light neutrino masses. Here, the
LSP is unstable and thus not constrained by cosmology. Hence, in principle, every supersym-
metric particle can be the LSP. In this thesis, we study supersymmetric models which preserve
Baryon-Triality but violate Proton-Hexality (and R-Parity).

The SSM contains a large number of unknown parameters. A detailed phenomenological
study is thus only feasible for constrained models, where additional assumptions reduce the
number of free parameters to a few. In this thesis, we investigate the model of minimal super-
gravity (mSUGRA), where we account for the R-Parity violating interactions by one additional
LNV coupling at the grand unification scale, MGUT.

It has been shown in Ref. [12], that in this model there are only a few LSP candidates, which
naturally arise from the evolution of the renormalization group equations (RGEs). These are
the lightest neutralino, χ̃0

1, the lightest scalar tau (stau), τ̃1, the left-handed scalar neutrinos
(sneutrinos), ν̃i, and the right-handed scalar electron (selectron), ẽR, and scalar muon (smuon),
µ̃R. The typical collider signatures of supersymmetric models significantly depend on the nature
of the LSP, since usually all supersymmetric particles rapidly cascade decay down into the LSP.
It is therefore crucial to study all possible LSP candidates and their characteristic collider
signatures in order to be prepared for what experimentalists may find in the LHC data.

Scenarios with a neutralino LSP have been studied extensively in the literature, see e.g.
Ref. [13, 14, 15, 16]. Furthermore, the stau LSP [17, 18, 19, 20] and the sneutrino LSP [21] have
been investigated. In this thesis, we focus on the remaining part, namely the case of a selectron
or smuon LSP. We discuss in detail, how certain LNV couplings at MGUT reduce the selectron
or smuon mass via the RGE running, thus making them to possible LSP candidates. We then
present the possible supersymmetric parameter regions with a selectron or a smuon LSP.

We will further show, that these models typically lead to multi-leptonic final states at hadron
colliders. In general, these signatures are hard to achieve with the SM processes and should be
easy to identify at collider experiments. Moreover, selectron and smuon LSP scenarios with
a light mass spectrum could have been observed at the Tevatron experiments. Therefore, we
discuss in detail how the parameter space is already constrained by the SUSY trilepton search
performed by the DØ experiment at the Tevatron. We further provide an estimate of the
parameter region, which may be excluded by the DØ search using a larger (future) dataset.

The main goal of this thesis is to provide a search strategy of how to discover (or exclude)
these models at the LHC with early data. We therefore select three benchmark scenarios with a
selectron LSP, representing certain regions of the parameter space. We then perform a detailed
Monte Carlo (MC) study of the signal and SM background and design an inclusive search with
three final state leptons in order to improve the signal to background ratio. The analysis is then
extended to a larger supersymmetric parameter space. We present the discovery potential at
the LHC for early data at both 7 TeV and 14 TeV center-of-mass energies.

Once a discovery has been accomplished, the task will be to prove that the new physics
is really supersymmetry and to determine the model parameters, i.e. the supersymmetric par-
ticle masses and couplings. Therefore, we discuss how we can determine the masses of some
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1.1. Notation and Conventions

supersymmetric particles within these models. Hereby, we adapt a method using kinematic
endpoints of invariant mass distributions, which is widely used in R-Parity conserving scenarios.
We demonstrate, that this method enables the mass reconstruction of the right-handed squarks,
q̃R, the lightest top squark, t̃1, the lightest neutralino, χ̃0

1, and the ẽR (or µ̃R) LSP.

The thesis is organized as follows. After this introduction, we give an overview of the
Standard Model and its underlying principles in Chapter 2. In Chapter 3 we present the super-
symmetric extension of the Standard Model. Here, we discuss the possible discrete symmetries
which prohibit rapid proton decay, and introduce the R-Parity violating mSUGRA model. In
Chapter 4, we study the renormalization group evolution of the right-handed selectron and
smuon mass and discuss the selectron and smuon LSP parameter space. The hadron collider
phenomenology of these models is then presented in Chapter 5. Here, we first present the typical
collider signatures. Then, we discuss in detail the constraints from the SUSY trilepton search
performed by the DØ experiment at the Tevatron and provide an estimate of the sensitive pa-
rameter region for a larger (future) dataset. In the remaining part of the chapter, we study
the prospects for a discovery at the LHC. In Chapter 6 we discuss our approach for the mass
reconstruction. We summarize and conclude in Chapter 7.

In Appendix A we provide the SUSY particle mass spectra and branching ratios for the
selected benchmark models. Appendix B contains a discussion of the performance of the designed
event selection on the signal and SM background for the LHC at 14 TeV. For this work, some
three-body slepton decays had to be taken into account which were not investigated before. In
Appendix C we present the calculation of the squared matrix amplitude of these decays and
discuss their rôle in the supersymmetric parameter space.

1.1. Notation and Conventions

We use natural units throughout this thesis, i.e. ~ = c = 1. Also, the Einstein summation
convention is used, so repeated indices are summed over unless explicitly stated otherwise. All
other conventions are introduced when they are needed.
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2. The Standard Model

The Standard Model (SM) of particle physics is a quantum field theory which describes all
known fundamental forces of nature, except gravity. It was developed over the last decades by
an effective interplay between theory [22, 23, 24] and experiment [25, 26]. Nearly all known
particle physics phenomena1 of the electromagnetic, weak and strong interaction are extremely
well described2 by the SM.

In the present view of particle physics the symmetries of the theory play a central rôle. In
fact, the SM Lagrangian is usually obtained by specifying the particle content of the theory and
the symmetries it obeys. Given the symmetries and the requirement of renormalizability3, we
can write down the most general Lagrangian for the particle interactions, as we will demonstrate
in the following sections.

For the construction of the SM two types of symmetries have to be considered. Firstly, we
require the theory to be Lorentz invariant, i.e. it obeys the laws of special relativity. Lorentz
invariance is a space-time symmetry and all Lagrangians we will consider will obey this sym-
metry4. Secondly, we consider gauge symmetries which lead to gauge field theories. In these
theories the forces between the fundamental particles are mediated by the exchange of spin-1
gauge bosons. In the SM, the electromagnetic force between charged particles is mediated by the
photon, the weak force by the W and Z bosons, and the strong force between colored particles
by the gluons.

2.1. Quantum Electrodynamics (QED)

A simple example of a gauge theory is Quantum Electrodynamics (QED). The Dirac Lagrangian
for n free fermion fields is given by [39]

LDirac =

n
∑

i=1

ψ̄i(i∂µγ
µ −mi)ψi, (2.1)

where ψi are the fermionic fields, γµ the Dirac matrices and mi is the mass of the fermion i.
This Lagrangian is invariant under a global U(1) phase transformation

ψi → eiqiαψi, (2.2)

1In the SM neutrinos are taken to be massless. However, neutrino oscillations have been observed by experi-
ment [27, 28, 29, 30, 31, 32, 33, 34], which means that at least two neutrino-types have to be massive.

2Probably the most important discrepancy between a SM prediction and electroweak precision measurements
has been found for the anomalous magnetic moment of the muon [35, 36, 37, 38]. Here, a deviation of about 3σ
has been established.

3A theory is renormalizable if the ultraviolet divergencies involved in calculations beyond tree-level can be
absorbed into the bare parameters of the theory. Practically, this means that the Lagrangian of the theory involves
only terms with mass dimension ≤ 4.

4Strictly speaking, the Lagrangian L has to be invariant up to the addition of a total derivative under the
symmetry transformation. Actually, we are only interested in the invariance of the action, S =

∫

d4xL, and a
total derivative in L will lead to a surface term which will vanish provided the fields go to zero as x → ∞.
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2. The Standard Model

where α is the phase change and qi is an a priori arbitrary fermion flavor-dependent parameter.
This invariance means that the phase α has no physical meaning and can be chosen arbitrarily.
But then it should also be possible to choose different values for α at different points in space-time
without changing the physics. However, if we consider a local change of phase, α → α(x), the
Dirac Lagrangian in Eq. (2.1) is no longer invariant under this transformation. The invariance
of the Lagrangian under a local change of phase can be achieved by introducing a new vector
field, Aµ, which has the kinetic term

Lkinetic = −1

4
FµνFµν , (2.3)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor. Now we have to substitute

∂µ → Dµ = ∂µ + iQAµ, (2.4)

where Dµ is the gauge covariant derivative and Q is the charge operator defined by Qψi = qiψi.
Eq. (2.4) introduces interactions between the vector field and the fermions with the formerly
arbitrary constants qi now reinterpreted as the couplings of these interactions. If the vector field
transforms as

Aµ → Aµ − ∂µα(x) (2.5)

under a local change of phase, the Lagrangian

LQED =

n
∑

i=1

ψ̄i(iDµγ
µ −mi)ψi + Lkinetic (2.6)

is invariant under a local U(1) phase transformation. This Lagrangian gives the interactions of
the fermions, ψi, e.g. the electron, with the electromagnetic field, Aµ, and the couplings qi are
the electric charges of the fermions.

2.2. Non-Abelian gauge theories

The gauge theories of the SM are based on generalizations of the local gauge invariance shown
in Sect. 2.1 to non-Abelian5 gauge groups. The non-Abelian local gauge transformation for a
fermion field is

ψa(x) → ψ′
a(x) =

[

eiθA(x)tA
]

ab
ψb(x) ≡ Ωab(x)ψb(x), (2.7)

where θA(x) are the continuous parameters of the transformation and tA are the generators of
the non-Abelian gauge group in the adjoint representation. The generalized covariant derivative
has the form

Dµ
ab = δab∂

µ + igtAabA
µ
A, (2.8)

5Non-Abelian means that the local gauge transformations do not commute. In particular, the generators t
A

of the gauge group obey the Lie algebra [tA, tB ] = ifABC
t
C , where fABC ∈ R are the structure constants of the

group and the upper case indices A, B, C run over the adjoint representation.
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2.3. The Higgs mechanism

where Aµ
A are the spin-1 gauge fields in the adjoint representation of the gauge group and g is

the coupling of the fermion to the gauge field. The non-Abelian gauge transformation for the
gauge fields is

tAAA
µ → tAA′A

µ = Ω(x)tAAA
µΩ−1(x) +

i

g
(∂µΩ(x))Ω−1(x). (2.9)

Now, the Lagrangian of the non-Abelian gauge theory can be constructed,

L = Lgauge + Lfermion, (2.10)

where

Lgauge = −1

4
FA
µνF

µν
A , (2.11)

Lfermion = ψ̄a(iDµγ
µ −m)abψb. (2.12)

Here, the field strength tensor is generalized to

FA
µν = ∂µA

A
ν − ∂νA

A
µ − gfABCAB

µA
C
ν . (2.13)

The additional terms of the field strength tensor lead to self-interactions of the gauge bosons in
the non-Abelian gauge theories of the SM. The weak and the strong force are both described by
non-Abelian gauge theories.

2.3. The Higgs mechanism

The W and Z gauge bosons of the weak force were observed to be massive [25, 26]. This seems
to be a problem because a mass term for a gauge boson,

Lboson
mass =

1

2
m2Aµ

AA
A
µ , (2.14)

is not gauge invariant and thus cannot be included in the Lagrangian. However, there is a way
of implementing a mass for the gauge bosons in a gauge-invariant manner. This is called the
Higgs mechanism [40, 41, 42, 43, 44]. We illustrate this mechanism by considering the simplest
example, i.e. a U(1) gauge field Aµ coupled to a complex scalar field φ with the Lagrangian

L = Lgauge
kinetic + Lscalar

kinetic − V (φ) = −1

4
FµνFµν + (Dµφ)∗(Dµφ) − V (φ), (2.15)

where Dµ is given by Eq. (2.4). Here, the charge operator Q in Dµ acts on the scalar field,
i.e. Qφ = qφ, where q is the coupling of the gauge field to the scalar field. The most general
renormalizable, gauge-invariant potential is

V (φ) = µ2φ∗φ+ λ(φ∗φ)2. (2.16)

The sign of µ2 determines the shape of the potential:

1. if µ2 > 0 then the minimum of the potential is at |φ| = 0;

2. if µ2 < 0 then the minimum of the potential is at |φ|2 = −µ2

2λ ≡ v2

2 , with v ∈ R.

7



2. The Standard Model

In the second case, µ2 < 0, the field φ acquires a non-zero vacuum expectation value (vev)
〈φ〉 = v/

√
2 and the U(1) global symmetry will be spontaneously broken. In other words, while

any point on the circle |φ| = v/
√

2 is equally likely to be the ground state, only one point gets
chosen. This breaks the symmetry.

Now we consider fluctuations around the ground state by rewriting the scalar field as

φ =
1√
2

(v + ρ)ei(ξ/v+θ), (2.17)

where ρ and ξ are real scalar fields and veiθ/
√

2 is the point on the circle |φ| = v/
√

2 about
which we are expanding the field. With this, the kinetic part of the Lagrangian for the scalar
field turns into

Lscalar
kinetic =

1

2

(

∂µρ− i(v + ρ)

[

qAµ +
1

v
∂µξ

])(

∂µρ+ i(v + ρ)

[

qAµ +
1

v
∂µξ

])

. (2.18)

By performing a gauge transformation on this Lagrangian,

Aµ → Aµ − 1

qv
∂µξ, (2.19)

we can eliminate all dependence on the field ξ. This gauge choice is called the unitary gauge.
With this gauge, the complete Lagrangian is

L = −1

4
FµνFµν +

1

2
q2v2AµA

µ +
1

2
∂µρ∂

µρ

+
1

2
(2vρ+ ρ2)q2AµA

µ − 1

4
µ2v2 + µ2ρ2 − λvρ3 − λ

4
ρ4. (2.20)

This Lagrangian now includes a mass term for the gauge boson with mass M2
A = q2v2, a

mass term for a real scalar field with mass m2
ρ = −2µ2, self-interactions of the scalar field

and interaction terms of the scalar field with the gauge boson. This mechanism introduces the
gauge boson mass term in a manifestly gauge-invariant way. The initial complex scalar field φ
possesses two degrees of freedom whereas the real scalar field ρ has only one degree of freedom.
The second degree of freedom has been “eaten” to provide the longitudinal polarization of the
massive gauge boson, which has three degrees of freedom rather than the two degrees of freedom
of a massless gauge boson.

This example describes a massive U(1) gauge boson, i.e. a massive photon. In the SM, the
photon is massless. However, we need this mechanism in its generalized form to non-Abelian
gauge theories to give masses the the W and Z gauge bosons of the weak force.

2.4. Renormalization and the running of physical quantities

Given the Lagrangian of a quantum field theory we can construct the Feynman rules for calculat-
ing elementary processes in pertubation theory. However, once we calculate diagrams containing
loops, we often encounter infinities which render the calculation meaningless. The theory of
renormalization is a prescription how to consistently isolate and remove all these infinities from
the physically measurable quantities. A detailed description of this theory can be found e.g. in
[45, 39, 46]. Here, we only want to review the idea and the main results that we will need in
this work.
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2.4. Renormalization and the running of physical quantities

e− e−
e−

e+

γ γ

Figure 2.1.: Emission and absorption of a virtual photon from an electron. The photon polar-
izes the vacuum by creating a virtual electron-positron pair. Due to these kind of
virtual corrections the initial electron is always surrounded by a cloud of virtual
electron-positron pairs. Thus we will only be able to measure the effective charge
of the electron and its electron-positron cloud.

The parameters which appear in the Lagrangian are not measurable. This can be illustrated
within QED as follows: Given a free electron, it will always be surrounded by a cloud of virtual
electron-positron-pairs due to the emission of virtual photons which polarize the vacuum, see
Fig. 2.1. If we now try to measure the electron charge, we would in fact measure the charge
of the complete system, i.e. of the electron and its surrounding electron-positron cloud. Since
we cannot switch off these interactions, the bare charge of the electron, which appears in the
Lagrangian in form of the coupling, cf. Eq. (2.6), is not measurable. Moreover, we also observe
a screening effect: The further we move away from the “bare” electron the smaller its charge
appears. Therefore, in QED the charge and thus the coupling decreases with distance, i.e. it
increases with energy. Due to this energy dependence we speak of a running coupling.

The main idea of renormalization is to shuffle all divergences appearing in loop-corrections
into the bare quantities such that we get finite renormalized quantities which we can measure.
There exist several renormalization schemes which we will not further review here, see e.g.
Ref. [45, 39, 46] for more details. There are basically two strategies:

1. The divergences arising from vertex-correction, self-energy and vacuum-polarization dia-
grams lead to the renormalization of the field strength, mass and charge, respectively (see
e.g. Ref [39]). The resulting effective quantities depend on the energy scale Q2 and on
boundary conditions (see below).

2. In renormalized pertubation theory, we split the Lagrangian into two parts:

L = L0(µ) + ∆L(µ). (2.21)

L0(µ) has the same structure as the original Lagrangian L but contains only finite physical
quantities, i.e. the renormalized parameters. The other part, ∆L(µ), contains counter-
terms which absorb the infinite but unobservable shifts between the bare parameters and
the physical parameters. This new Lagrangian, Eq. (2.21), gives rise to new Feynman rules
including those for the counterterms.

The precise relation between the renormalized and unrenormalized quantities depends on the
choice of renormalization conditions µ. Different choices of this reference point lead to different
definitions of the physical quantities. However, the physics should not depend on the choice of
the renormalization conditions. This idea leads to the renormalization group which is the set
of all transformations between renormalization conditions which leave the physical content of

9



2. The Standard Model

the theory invariant. In particle physics the renormalization group equations (RGEs) describe
how the physical quantities, i.e. the couplings, masses and field strengths, change as one varies
the energy at which the physical processes occur. For the simplest case of λφ4-theory6, the
Callan-Symanzik equation has the form [46]

[

µ
∂

∂µ
+ β(λ)

∂

∂λ
− γm(λ)m2 ∂

∂m2
− nγ(λ)

]

Γ(n)(p,m2, λ;µ2) = 0, (2.22)

and describes the evolution of the n-point correlation function Γ(n)(p,m2, λ;µ2) under variation
of the renormalization conditions µ. The finite dimensionless functions β, γm and γ are given
by

β(λ) = µ
∂

∂µ
λ, (2.23)

γm(λ) = −µ ∂

∂µ
lnm2, (2.24)

γ(λ) = −µ ∂

∂µ
lnφ, (2.25)

and describe the evolution of the coupling λ, mass m and field strength φ with µ, respec-
tively. They are related to renormalization constants which can be calculated perturbatively,
see Ref. [46] for more details. In SU(N) non-Abelian gauge theories with fermions in the fun-
damental representation, the 1-loop β-function is given by [39]

β(g) = − g3

(4π)2

(

11

3
N − 2

3
nf

)

, (2.26)

where g is the gauge coupling and nf the number of fermion species.

The renormalization group equations turn out to be of great importance. Once we know
the physical quantities at one energy scale, e.g. measured by experiment, the RGEs predict the
values of these parameters at any energy scale. The SM prediction for the running of the gauge
couplings has been experimentally verified [47, 48] at accessible energies.

Now we can discuss the two theories which form the SM in slightly more detail, i.e. Quantum
Chromodynamics which describes the strong force and the Glashow-Weinberg-Salam model
which describes the electroweak force.

2.5. Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) describes the color force between the quarks which is medi-
ated by the exchange of gluons. The Lagrangian is

LQCD = −1

4
FA
µνF

µν
A +

∑

i

q̄ia(iDµγ
µ −mi)abq

i
b, (2.27)

where the non-Abelian field strength tensor FA
µν is given by Eq. (2.13), qi are the quark fields

with mass mi and the covariant derivative Dµ
ab is given by Eq. (2.8). QCD is a SU(3) non-

6The λφ4-theory is given by the Lagrangian L = 1
2
(∂µφ)

2 − 1
2
m2φ2− 1

8
λ(φ2)2, where φ ≡ (φ1, φ2, . . . , φN) are

complex scalar fields with φ2 =
∑N

i=1 φ
2
i . Because of its simple structure, it is often used as a toy model to study

the phenomena of quantum field theories.
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2.6. Electroweak Theory

Abelian gauge theory and is thus based on the general non-Abelian theory discussed in Sect. 2.2.
The fermions, i.e. the quarks, are in the fundamental representation of SU(3) and the gauge
bosons, i.e. the gluons, in the adjoint representation. Note, that we have gluon self-interactions
due to the different structure of the field strength tensor, Eq. (2.13).

This theory has two important features which are related to the running of the gauge cou-
pling. As we have seen in Sect. 2.4 this is described by the β-function, Eq. (2.23). In QCD,
the β-function in Eq. (2.26) is negative for nf < 17 quark flavors. Six quark flavors have been
observed, so even at energy scales above the top quark mass the β-function is negative. This
has the following consequences:

1. Asymptotic freedom. The coupling decreases as the energy scale at which it is evaluated
increases. Thus, in high energy processes, we can make use of perturbation theory due
to the small coupling constant. In general, pertubation theory is only applicable if the
quantity we are calculating is infra-red safe, i.e. it does not receive large corrections due
to long-range physics.

2. Confinement. The coupling becomes large at low energies Q2 . O(1 GeV2) and we can
no longer use pertubation theory to perform calculations. At these energies, all quarks and
gluons are strongly bound together in hadrons. Experimentally, no free quarks and gluons
have been observed. Once free quarks or gluons are produced in high-energy-collisions
they will form color-singlet bound states in the hadronization process. These bound states,
which we then observe, either contain a valence quark-antiquark pair, a meson, or three
valence quarks, a baryon. Moreover, these bound states contain gluons which bind the
quarks together and a sea of virtual quark-antiquark pairs produced by gluon splitting.

2.6. Electroweak Theory

The unification of the electromagnetic and weak force into a single gauge theory is a major
success in theoretical particle physics and was achieved by Glashow, Weinberg and Salam7 in
the 1960’s [22, 23, 24]. It is based on the symmetry group SU(2)L × U(1)Y . Via the Higgs
mechanism, this symmetry is broken spontaneously into the U(1)em gauge symmetry of QED.
The Lagrangian is given by

Lelectroweak = LHiggs + Lgauge + Lfermions, (2.28)

where

LHiggs = (Dµφ)†(Dµφ) − µ2φ†φ− λ(φ†φ)2, (2.29)

Lgauge = −1

4
FA
µνF

µν
A − 1

4
BµνB

µν , (2.30)

Lfermions = Q̄Li /DQL + ūRi /DuR + d̄Ri /DdR + L̄Li /DLL + ēRi /DeR

−geL̄LφeR − guQ̄Lφ
cuR − gdQ̄LφdR + h.c., (2.31)

are the Lagrangians for the Higgs field, the gauge fields and the fermions, respectively. Here, we
have two type of gauge fields: The first is the SU(2)L field, AA

µ , with the field strength tensor,

FA
µν . It lives in the adjoint of SU(2)L, i.e. AA

µ is a SU(2)L triplet with gauge coupling g. The

associated charge is called weak isospin TA. The second is the U(1) field, Bµ, with field strength
tensor Bµν and gauge coupling g′. The associated U(1) charge is called hypercharge Y . The fields

7For this work, Glashow, Weinberg and Salam were awarded with the Nobel prize in 1979.
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2. The Standard Model

QL, LL (uR, dR, eR) are the left-handed (right-handed) components of the up and down quark
and lepton fields and are SU(2)L doublets (singlets). We distinguish between left- and right-
handed fields because experimentally the W bosons only couple to the left-handed fermions.
The Higgs field φ = (φ+ φ0) is a complex scalar isospin doublet with hypercharge Y = 1/2.
The second row of Eqn. (2.31) contains Yukawa interaction terms of the Higgs fields with the
leptons, up- and down-type quarks with Yukawa couplings ge, gu and gd, respectively. Here,
the up-type quarks couple to the charge conjugate Higgs field φc = −iτ2φ∗ with hypercharge
Y = −1/2. We introduced a short notation, /D = Dµγ

µ, where the covariant derivative is given
by

Dµ = ∂µ + igTAA
A
µ + ig′Y Bµ. (2.32)

We shall first discuss the Higgs part of the Lagrangian, LHiggs, Eq. (2.29). The Higgs potential
is similar to the U(1) case, Eq. (2.16), however, here φ is a SU(2) doublet. We expand the
Higgs field about the ground state 〈φ〉 = (0 v)/

√
2 in terms of one real field and three phases in

SU(2)L space to obtain the following mass terms for the gauge bosons:

Lmass
gauge =

1

8
g2v2

[

g2(A1
µ)2 + g2(A2

µ)2 + (−gA3
µ + g′Bµ)2

]

(2.33)

Thus, the interaction fields AA
µ , Bµ mix to form the mass eigenstates

W±
µ ≡ 1√

2
(A1

µ ∓ iA2
µ) with mass MW =

gv

2
, (2.34)

Z0
µ ≡ cos θWA

3
µ − sin θWBµ with mass MZ =

gv

2 cos θW
, (2.35)

and the massless eigenstate

Aµ ≡ sin θWA
3
µ + cos θWBµ with mass MA = 0, (2.36)

where the weak mixing angle is given by tan θW = g′/g. By using the Higgs mechanism,
we obtain two massive charged vector bosons, W±, and one massive neutral vector boson,
Z0, carrying the weak force, and a massless neutral vector boson, A, which is the photon of
electromagnetism.

The second term in the Lagrangian, Lgauge, Eq. (2.30), contains the kinetic terms of the
gauge fields, which lead to interactions between the gauge bosons. Thus we obtain for example
interactions of the photon with the W± bosons.

Finally, Lfermions, Eq. (2.31), gives the interactions of the gauge and the Higgs boson with the
Standard Model fermions. Using the expressions for the mass eigenstates, Eq. (2.34) - (2.36),
we can express the couplings of the fermions to the photon and the Z boson in terms of their
hypercharge and isospin:

photon-coupling = (T 3 + Y )g sin θW ≡ Qe, (2.37)

Z-coupling = (T 3 cos2 θW − Y sin2 θW )
g

cos θW
. (2.38)

Here, T 3 is the third component of the weak isospin T , and e is the magnitude of the electric
charge of the electron, given by e = g cos θW . The electric charge, Q, of a fermion is related to
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2.6. Electroweak Theory

Fermion Isospin T T 3 Hypercharge Y Charge Q

dR 0 0 −1
3 −1

3

uR 0 0 +2
3 +2

3

QL =

(

u
d

)

L

1
2

+1
2 +1

6

+2
3

−1
2 −1

3

eR 0 0 −1 −1

LL =

(

νe
e

)

L

1
2

+1
2 −1

2

0

−1
2 −1

Table 2.1.: SU(2)L × U(1)Y gauge quantum numbers of the Standard Model fermions. All
fermions come in three generations. Here, only the first generation is shown.

its weak isospin and hypercharge via

Q = T 3 + Y. (2.39)

In Tab. 2.1 we give the gauge quantum numbers of the electroweak force for the Standard Model
fermions.

The last three terms in Lfermions, Eq. (2.31), couple the Higgs field and the fermions in a
gauge-invariant manner. This is necessary because a Dirac mass term, as in Eq. (2.1), violates
the SU(2) gauge invariance. Given in terms of the left- and right-handed fields, a Dirac mass
term would be

Lmass
Dirac = −mψ̄ψ = −m(ψ̄LψR + ψ̄RψL). (2.40)

Since the SU(2)L gauge transformation only acts upon the left-handed fields this term is not
gauge invariant. However, after electroweak symmetry breaking (EWSB) the last three terms
in Lfermions (and their hermitian conjugates) give fermion mass terms in a gauge invariant way,

Lmass
fermions = −gev(ēLeR + ēReL) − gdv(d̄LdR + d̄RdL) − guv(ūLuR + ūRuL), (2.41)

where the fermion mass is given by mf = gfv. Here, we have only considered one generation of
fermions. Note that we had to use both the Higgs field φ and its charge conjugate φc to give
masses to both the up- and down-type quarks.

In the Standard Model, the fermions given in Tab. 2.1 come in three generations. In general,
the mass eigenstates of the fermions and their weak interaction states can be different. By
writing down all possible terms in the Lagrangian which are renormalizable and invariant under
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2. The Standard Model

the symmetries, the masses of the quark sector are given by

Lmass
quarks = −v

(

d̄L s̄L b̄L
)





gdd gds gdb
gsd gss gsb
gbd gbs gbb









dR
sR
bR





−v
(

ūL c̄L t̄L
)





guu guc gut
gcu gcc gct
gtu gtc gtt









uR
cR
tR



 + h.c. (2.42)

≡ −D̄LMdDR − ŪLMuUR + h.c., (2.43)

where DL,R is a vector containing the three (left-/right-handed) down-type quark fields and UL,R

is a vector containing the three (left-/right-handed) up-type quark fields. Mu and Md are the
mass matrices for the up- and down-type quarks, respectively. We thus observe mixing between
the quark generations. The fields in Eq. (2.43) are the weak interaction eigenstates. By applying
separate rotations to the left- and right-handed components of the quark fields, we can express
Eq. (2.43) in terms of the mass eigenstates. If the left-handed (right-handed) components are
rotated by the unitary matrix L (R) we can obtain a diagonal mass matrix, M ′ = LMR†. We
need two different rotation matrices for the up- and down-quarks, which we will denote by the
subscripts u and d, respectively. This rotation of the quark fields has to be performed for the
complete SM Lagrangian. However, the neutral-current parts of the electroweak and the QCD
Lagrangians are flavor diagonal in terms of either their mass or weak interaction eigenstates8.
The only parts of the Lagrangian which are not flavor diagonal are those which involve the
coupling of the W boson to the quark fields. These terms involve the combination of fields

WŪLDL = WŪ ′
LLuL

†
dD

′
L ≡WŪ ′

LV D
′
L, (2.44)

where V = LuL
†
d is the Cabibbo-Kobayashi-Maskawa (CKM) matrix and U ′

L = LuUL (D′
L =

LdDL) are the up-type (down-type) quark mass eigenstates. Hence, we can work in a physical,
i.e. mass, basis for the quarks by simply including the relevant elements of the CKM matrix
at the vertex which couples the W boson to the quarks. Conventionally9, the rotation is only
applied to either the up- or the down-type quark sector, leaving the other sector flavor-diagonal.
The CKM matrix is given by three real mixing angles and one CP-violating complex phase.

2.7. Lepton- and Baryon-number conservation

In addition to the gauge and Lorentz symmetries, there are more symmetries in the Standard
Model. These symmetries are consequences of the gauge and Lorentz symmetries, the particle
content of the SM and the requirement of renormalizability. There are two global symmetries10

of particular interest for this thesis:

• Lepton Number. The mixing between weak interaction eigenstates and mass eigenstates,
which we observed in the quark sector in the previous section, does not appear in the
lepton-sector of the Standard Model11. This is due to an additional symmetry called

8Hence, flavor-changing neutral currents (FCNCs) are forbidden at tree-level within the SM.
9In supersymmetric theories with R-parity violation, which will be discussed in the next chapter, the choice

of the rotation basis can have phenomenological consequences, see Ref. [17].
10These symmetries are violated in the Standard Model by non-perturbative effects [49, 50].
11However, the observation of neutrino oscillations indicates the violation of lepton flavor [51]. The neutrino
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Lepton Number. Here, the lepton number is a quantum number assigned to the SM
fermions such that the lepton fields have lepton number +1, the antileptons have lepton
number −1 and all the other fields have lepton number zero. This symmetry is respected
by the electroweak Lagrangian, Eq. (2.28).

• Baryon Number. We assign the baryon number such that the quarks have baryon
number +1/3, the antiquarks have baryon number −1/3 and all other fields have baryon
number zero. This choice leads to the fact, that baryons have baryon number +1 and
mesons and all other fields have baryon number zero. Both the QCD Lagrangian, Eq.
(2.27), and the electroweak Lagrangian, Eq. (2.28), respect this symmetry.

We want to emphasize that we did not construct the Lagrangian to have these symmetries.
It is impossible to write down a term in the Lagrangian which is renormalizable, Lorentz and
gauge invariant, but violates one of these discrete symmetries given the particle content of the
Standard Model. This is important as in a supersymmetric theory it is possible to have such
terms in the Lagrangian.

mixing can then be parametrized by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. If we further assume
neutrinos to be Majorana particles, lepton-number is also violated [52].

15





3. Supersymmetry

Despite its great success the Standard Model is not considered as a complete theory of the
fundamental forces, if for no other reason than that it does not include gravity. It is rather
accepted to be a low-energy effective theory of some larger theory which may be

• a grand unified theory (GUT) in which the gauge group of the SM is unified as a part of
a larger gauge group, e.g. SU(5) or SO(10) [53, 54];

• a string theory, which would also include gravity. Here, we usually have more than four
space-time dimensions [55, 56].

This larger theory is hoped to explain some of the open questions of the SM, for example, why
there are three generations of fermions. Also it should predict some of the free parameters of
the SM, e.g. the particle masses.

Besides these rather deep theoretical questions, there are also experimental observations
which can not be explained by the SM, most importantly the observation of cold dark matter [9]
and dark energy [57], neutrino oscillations [10], and the matter-antimatter asymmetry of the
universe [11].

The theory of supersymmetry (SUSY) may provide an explanation for some of these phe-
nomena. Furthermore, it may elegantly solve the hierarchy problem, which we will discuss in
detail in the next section. Supersymmetry is considered as a promising intermediate theory on
the way to the Theory of Everything (TOE). And in fact, the most promising string theories are
based on supersymmetry.

A detailed introduction to supersymmetry is e.g. given in Ref. [58, 59, 60, 61, 55, 62, 63].
Here, we concentrate only on the main aspects relevant for this work.

3.1. Motivation for Supersymmetry

The hierarchy problem [8, 58, 64, 65, 66] is one of the most striking arguments that the SM is
not the complete story and supersymmetry provides a very natural solution to this problem.
Note, that other solutions exist for instance in technicolor models [67], little Higgs models [68]
or models with extra dimensions [69, 70, 71].

H H

f

f̄

Figure 3.1.: Fermionic one-loop contribution to the Higgs mass.
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H H

S

Figure 3.2.: One-loop contribution to the Higgs mass from an extra scalar field.

Consider the one-loop corrections from fermion loops to the Higgs mass1 of the SM, shown
in Fig. 3.1. From this diagram we get a contribution

δM2
H f = ΠH(M2

H), (3.1)

where

iΠH(p2) = −|λf |2
4

∫

d4k

(2π)4
tr[(/k + /p+mf )(/k +mf )]

[(k + p)2 −m2
f ][k2 −m2

f ]
(3.2)

and λf = mf/v is the coupling of the fermion f to the Higgs field H. Näıvely, from power
counting, this diagram is quadratically divergent. The divergence can be regulated by imposing
an ultraviolet momentum cut-off, Λ, yielding

δM2
H f =

|λf |2
16π2

[

−2Λ2 + 6M2
f ln(Λ/Mf )

]

. (3.3)

Here, we neglected terms which are finite in the limit Λ → ∞.

We see from Eq. (3.3), that the SM Higgs mass depends quadratically on the cut-off scale Λ,
which is understood to be the energy scale at which new physics enters to alter the high-energy
bahavior of the theory. Assuming the SM is valid up to typical GUT or string energy scales,
i.e. Λ ∼ MGUT ≃ 2 · 1016 GeV or Λ ∼ MP l ≃ 1019 GeV, the natural2 value of the Higgs mass
is 1014 − 1017 GeV rather than the upper limit of around 170 GeV suggested by electroweak
precision data [72, 73, 74, 75]. This huge discrepancy, which is directly related to the energy
scale of new physics, is known as the hierarchy problem.

To solve this problem, one might want to pick a Λ that is not too large. In this case, new
physics at the scale Λ still has to explain, why the loop integral cuts off at Λ. Moreover, new
particles that couple directly or indirectly to the Higgs field will give contributions similar to
Eq. (3.3) via virtual effects. Thus, the Higgs mass remains very sensitive to any new particles
entering at higher energies.

We can see how this problem is solved in supersymmetry by considering an additional scalar
field S which couples to the Higgs field via the Lagrangian term −λS|H|2|S|2. This gives an
extra one-loop contribution, Fig. 3.2, to the Higgs mass

δM2
H S =

|λS |2
16π2

[

Λ2 − 2M2
S ln(Λ/MS)

]

, (3.4)

1In fact, this argument counts for any scalar fields of a theory, which couple to fermions.
2Natural in the sense that the Higgs mass is not fine-tuned. Fine-tuning means, there is an accidental

cancellation between large quantities (here, the bare mass and the mass correction), that does not rely on any
known physical mechanism.
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where we have again neglected terms which are finite in the limit Λ → ∞. In supersymmetry,
we have two complex scalar fields for each Dirac fermion and hence the quadratic dependencies
on Λ in Eq. (3.3) and Eq. (3.4) will cancel provided that λS = |λf |2. This is the case if
supersymmetry is unbroken. In order to guarantee that supersymmetry breaking does not spoil
this solution to the hierarchy problem, the relationships between the dimensionless couplings
have to be maintained. This is the case if the supersymmetry breaking is “soft”, i.e. the effective
Lagrangian of the theory can be written in the form

L = LSUSY + Lsoft, (3.5)

where LSUSY preserves supersymmetry invariance and Lsoft violates supersymmetry but con-
tains only mass terms and coupling parameters of positive mass dimension. However, the mass
splittings between SM particles and their superpartners cannot be too large. The masses of the
(lighter) superpartners should be at most of about 1 TeV in order to derive a Higgs vev resulting
in MW , MZ = 80.4, 91.2 GeV without miraculous cancellations [58].

Apart from the solution of the hierarchy problem, there are further theoretical as well as
experimental facts pointing to a supersymmetric extension of the Standard Model (SSM):

• Supersymmetry is the only possible way to extend the Lorentz- (or Poincaré-) space-time
symmetry [76, 77]. This will be discussed in some detail in Sect. 3.2.

• We have seen in Sect. 2.3 that local gauge invariance requires the introduction of a gauge
boson. Similarly, local supersymmetry requires the introduction of a massless spin-2 field,
the graviton (and its spin-3/2 superpartner, the gravitino) which mediates gravitational
interactions. Thus we have a connection to general relativity [78, 79, 80, 81, 82, 83, 84].

• Realistic string theories are based on supersymmetry. However, this does not necessarily
imply weak-scale SUSY, see e.g. Ref [55, 56].

• In the Standard Model the gauge couplings do not unify. However, in the SSM the gauge
couplings will meet at a scale of O(1016 GeV) as long as the SUSY particle masses are of
O(100 GeV − 10 TeV) and there are no intermediate fields [85, 86, 87, 88, 89]. This gives
a connection to GUTs.

• The SSM provides a natural explanation for the origin of electroweak symmetry breaking
and the large difference between MZ and MP l. A positive Higgs mass parameter squared
of O(1002 GeV2) at a scale of O(1016 GeV) can run to a negative value at the electroweak
scale, MZ , which is needed for EWSB (see Sect. 2.3). This mechanism is called radiative
electroweak symmetry breaking (REWSB) [90]. Again, the superpartners of the SM fields
are required not to be heavier than a few TeV.

• The SSM contributions to the anomalous magnetic moment of the muon may explain the
3σ deviation between the SM prediction and the experimental observations [35, 36, 37, 38].

• In case both lepton-number and baryon-number are conserved, the SSM contains a good
cold dark matter candidate, the neutralino [91]. However, there also exist possible candi-
dates in case one of these symmetries is violated, cf. also Sect. 3.4.3.

• If lepton-number is violated, the SSM possesses an elegant mechanism to generate neutrino
masses [92, 93, 94, 95, 96]3. We briefly discuss this in Sect. 3.4.3.

Remarkably, there are several arguments for SUSY requiring that the masses of the super-
partners of the SM fields are of O(. 1 TeV). This is the reason for the optimism of particle

3We can also generate neutrino masses via the seesaw mechanism if we introduce right-handed neutrinos in
the SSM [97, 98, 99, 100, 101]. However, this introduces an additional scale in the theory, namely the Majorana
mass of the right-handed neutrinos.
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physicists that supersymmetry will be discovered at the Large Hadron Collider (LHC) [102, 103]
or even at Tevatron [104] if it is realized in nature.

3.2. Global Supersymmetry

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa.
The generator of the SUSY transformation, Q, must be an anticommuting spinor, with

Q | boson〉 =| fermion〉, Q | fermion〉 =| boson〉. (3.6)

Because the SUSY generators are fermionic operators, they carry spin 1/2. This means that
supersymmetry must be a space-time symmetry. For interacting quantum field theories the pos-
sible forms of such symmetries are highly restricted by the Haag- Lopuszanski-Sohnius extension
of the Coleman-Mandula theorem [76, 77]. This theorem states, that the only possibility to
extend the Poincaré algebra in a non-trivial way is to introduce N sets of fermionic generators
{Qi

α, Q̄
α̇
i }i=1...N which transform as (12 , 0) and (0, 12 ) representations of the proper orthochronous

Lorentz group. In general there can be up to N = 8 of these sets, however for realistic theories
that, like the Standard Model, have chiral fermions and thus allow for parity-violating interac-
tions, only N = 1 supersymmetric quantum field theories are suitable. The SUSY generators
have to satisfy the following algebra of anti-commutation and commutation relations4:

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ, (3.7)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (3.8)

[Qα, P
µ] = [Q̄α̇, P

µ] = 0, (3.9)

where Q (Q̄) is a left-handed (right-handed) two-component Weyl spinor with α, β (α̇, β̇) = 1, 2,
and σµ = (1, ~σ) with ~σ the Pauli matrices. Pµ is the momentum operator, i.e. the generator of
space-time translations.

In N = 1 SUSY, each SM particle has a superpartner with its spin differing by 1/2. Together
they form a supermultiplet, which is an irreducible representation of the SUSY algebra. One
can show by use of Eq. (3.9) that each supermultiplet contains an equal number of fermionic
and bosonic degrees of freedom [58]. The superpartners of the SM fields have the same gauge
quantum numbers, since Q commutes with the generators of the gauge interactions. From Eq.
(3.9) follows also that Q commutes with P 2 = M2. Thus, all fields in a supermultiplet possess
the same mass M . However, we have not observed any superpartners of SM particles yet, so
SUSY must be a broken symmetry, if it really exists in nature.

For the construction of a supersymmetric extension of the SM there are two relevant kinds
of supermultiplets: A chiral (or matter) supermultiplet, which contains a single two-component
Weyl fermion (spin 1/2) and a complex scalar field (spin 0), and a vector (or gauge) superfield
with a massless vector boson (spin 1) and a two-component Weyl fermion. In order to in-
clude gravity, we need an additional supermultiplet with the graviton (spin 2) and its fermionic
superpartner the gravitino (spin 3/2).

Moreover, each supermultiplet contains an auxiliary field which allows the SUSY algebra to
close off-shell, i.e. when the classical equations of motion are not satisfied. However, at the end

4We do not show the commutation relations involving rotation generators, because they are not important
for the further discussion.
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3.3. The Supersymmetric Extension of the Standard Model

of the day, these fields can be eliminated and expressed in terms of the physical fields by use of
their classical equations of motion.

It is most convenient to write the supermultiplets in a compact form using the so-called
superfield formalism. A detailed description of this formalism can be found in the literature, see
e.g. [59, 60, 61].

3.3. The Supersymmetric Extension of the Standard Model

3.3.1. Particle Content

The Supersymmetric Extension of the Standard Model with minimal particle content (SSM) is
given by the chiral and gauge supermultiplets shown in Tab. 3.1 and 3.2, respectively.

To understand the allocation of the SM fields to the supermultiplets it is important to
note that only chiral supermultiplets can accommodate fermions whose left-handed parts trans-
form differently under the gauge group than their right-handed parts. Hence, the left- and
right-handed SM fermions belong to different chiral supermultiplets and therefore have different
superpartners called sfermions. We have three generations, i = 1, 2, 3, of left-handed (right-
handed) squarks, ũLi, d̃Li (ũRi, d̃Ri), which are the spin-0 superpartners5 of the left-handed
(right-handed) up- and down-type quarks, respectively; the superpartners of the left-handed
(right-handed) charged leptons, the left-handed (right-handed) charged sleptons, ℓ̃Li (ℓ̃Ri); and
the sneutrinos, ν̃i, which are the superpartners of the neutrinos. It is conventional that all SM
fermions are described by left-handed Weyl spinors. Thus, we have given the conjugates of the
right-handed quarks and leptons in Tab. 3.1, which are left-handed spinors.

In Tab. 3.1 we observe, that we need at least two Higgs doublets to construct the SSM.
This is due to the fact, that the fermionic partner of a single Higgs doublet would lead to a
gauge anomaly of the electroweak symmetry [105]. With two Higgs doublets of opposite U(1)Y
charge, cf. Tab. 3.1, the contributions to this anomaly cancel. Moreover, SUSY requires the
superpotential (see below) to be an analytic function of the chiral superfield. Thus we need two
Higgs doublets to be able to give mass to both the up- and the down-type quarks via the Higgs
mechanism.

The SM gauge bosons and their fermionic superpartners, the gauginos, reside in gauge su-
permultiplets, cf. Tab. 3.2. We have the bino, B̃0, the superpartner of the U(1)Y gauge boson;
the neutral and charged winos, W̃ 0, W̃±, the superpartners of the SU(2) gauge bosons; and the
gluinos, g̃a, a = 1, . . . , 8, the superpartners of the SU(3)C gauge bosons.

After electroweak symmetry breaking (EWSB), some of the fields in Tab. 3.1 and Tab. 3.2
will have the same quantum numbers and thus they can mix. In the case of lepton-number
conservation, we will have the following mixings [63, 106]:

• The bino and the neutral winos and Higgsinos mix and their mass eigenstates are called
neutralinos, χ̃0

n, with n = 1, 2, 3, 4 denoting an increasing mass hierarchy (i.e. χ̃0
1 is the

lightest neutralino).

• From the mixing of the charged winos and higgsinos we get the charginos, χ̃±
l , with l = 1, 2.

Again, χ̃±
1 is the lighter mass eigenstate.

5Note, that the R and L chirality indices on scalar fields only distinguish between independent fields corre-
sponding to the superpartners of right- and left-handed fermion fields, respectively. In fact, since the sfermions
are spin-0 particles, they have no “handedness”.
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3. Supersymmetry

Field names superfield spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks

(×3 families)

Qi (ũLi d̃Li) (uLi dLi) (3, 2, +1/6)

Ūi ũ∗Ri u†Ri (3̄, 1, −2/3)

D̄i d̃∗Ri d†Ri (3̄, 1, +1/3)

sleptons, leptons Li (ν̃i ℓ̃Li) (νi ℓLi) (1, 2, −1/2)

(×3 families) Ēi ℓ̃∗Ri ℓ†Ri (1, 1, +1)

Higgs, higgsinos
H1 (H0

1 H
−
1 ) (H̃0

1 H̃
−
1 ) (1, 2, −1/2)

H2 (H+
2 H

0
2 ) (H̃+

2 H̃
0
2 ) (1, 2, +1/2)

Table 3.1.: Chiral supermultiplets (with their gauge representation) of the SSM. i = 1, 2, 3 is
the generation index.

Field names superfield spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

bino, B boson V1 B̃0 B0 (1, 1, 0)

winos, W bosons V2 W̃±, W̃ 0 W±, W 0 (1, 3, 0)

gluinos, gluons V3 g̃a ga (8, 1, 0)

Table 3.2.: Gauge supermultiplets (with their gauge representation) of the SSM.

• The squarks and sleptons in Tab. 3.1 are given in the flavor basis. These can mix between
different generations and between the left- and right-handed fields, leading in general to
6 × 6 mass matrices for each the sleptons, the down-type and the up-type squarks. How-
ever, the mixing between different generations of squarks and sleptons is highly restricted
by experimental bounds on flavor-changing-neutral-currents (FCNCs) [107, 108]. More-
over, the (squared) mass terms and trilinear scalar interactions6 which lead to the mixing
between the left- and right-handed states within one generation are usually assumed to be
proportional to the respective SM fermion mass and Yukawa couplings, respectively, see
also Sect. 3.4. Thus, we will only consider L-R mixing for the third generation squarks
and sleptons. There, we will denote the mass eigenstates by t̃l, b̃l and τ̃l, respectively, with
l = 1, 2 denoting the mass hierarchy as above.

In the SM, lepton number is accidentally conserved, i.e. lepton-number conservation is only
a consequence of gauge invariance and the SM particle content. However, as we will see in
Sect. 3.3.2, lepton-number is not protected by gauge invariance in the SSM and in fact can be
violated. In Tab. 3.1, we observe that the lepton and Higgs superfields have the same quantum
numbers after EWSB. Thus, if lepton-number is violated, the lepton and Higgs superfields can
mix. We will then have [17]

• Mixing between neutralinos and neutrinos given by a 7 × 7 mass matrix.

• Mixing between charginos and charged leptons. We will have a 5 × 5 mass matrix then.

• Mixing between charged sleptons and charged Higgs scalars by a 8 × 8 mass matrix. We
have one zero mass eigenstate which corresponds to a Goldstone boson of EWSB.

• Mixing between sneutrinos and neutral Higgs scalars. Assuming CP conservation, there
are two 5 × 5 mass matrices: One mixes the CP-even part of the sneutrino fields with

6These terms break supersymmetry explicitly. They will be discussed in Sect. 3.3.4.
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3.3. The Supersymmetric Extension of the Standard Model

the CP-even Higgs fields, and the other mixes the CP-odd part of the sneutrino fields
with the CP-odd Higgs fields. The latter mass matrix possesses again a zero mass eigen-
state, corresponding to a Goldstone boson. The CP-even sneutrinos can get non-zero
vacuum-expectation-values (vevs) after EWSB. However, in order to avoid unphysically
large neutrino masses, these vevs must be small [17].

3.3.2. Superpotential and Proton Decay

In a renormalizable supersymmetric field theory7, the interactions and masses of all particles are
determined just by their gauge transformation properties and by the superpotential W , which
is a holomorphic function of the chiral superfields. With the field content given in Tab. 3.1, the
most general gauge invariant and renormalizable superpotential of the SSM is [109, 110]

WSSM = WP6 +W 6P6 , (3.10)

WP6 = ǫab

[

(YE)ijL
a
iH

b
1Ēj + (YD)ijQ

ax
i H

b
1D̄jx + (YU )ijQ

ax
i H

b
2Ūjx + µHa

1H
b
2

]

, (3.11)

W 6P6 = ǫab

[

1

2
λijkL

a
iL

b
jĒk + λ′ijkL

a
iQ

bx
j D̄kx + κiL

a
iH

b
2

]

+
1

2
ǫxyzλ

′′
ijkŪ

x
i D̄

y
j D̄

z
k, (3.12)

where i, j, k = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices and x, y, z = 1, 2, 3 are
SU(3) color indices. We follow the notation of [17].

We divided the superpotential, Eq. (3.10), into two parts8. The first part, WP6 , involves
the 3 × 3 Yukawa matrices for the leptons, YE, down-quarks, YD, and up-quarks, YU . These
give masses to the leptons and quarks after EWSB. µ is the Higgs mixing parameter, which
contributes to the Higgs masses.

While these interactions conserve baryon- and lepton-number, the second part, W 6P6 , contains
baryon-number-violating (BNV) and lepton-number-violating (LNV) operators. Expanded in
standard four-component Dirac notation, the trilinear interaction terms associated with the λ,
λ′ and λ′′ couplings read, respectively

LLiLjĒk
= −1

2
λijk

(

ν̃iLℓ
j
Lℓ̄

k
R + ℓ̃jLℓ̄

k
Rν

i
L + (ℓ̃kR)∗(ν̄iL)cℓjL − (i↔ j)

)

+ h.c., (3.13)

LLiQjD̄k
= −λ′ijk

(

ν̃iLd
j
Ld̄

k
R + d̃jLd̄

k
Rν

i
L + (d̃kR)∗(νiL)cdjL

−ℓ̃iLujLd̄kR − ũjLd̄
k
Rℓ

i
L − (d̃kR)∗(ℓiL)cujL

)

+ h.c., (3.14)

LŪiD̄jD̄k
= −1

2
λ′′ijk

(

(ũiR)∗d̄jR(d̄kR)c + (d̃kR)∗ūiR(d̄jR)c + (d̃jR)∗ūiR(d̄kR)c
)

+ h.c.. (3.15)

Here, the superscript c denotes the charge conjugate of a spinor and the superscript ∗ the
complex conjugate of a scalar field. We suppressed the summation over gauge indices. The
terms proportional to λ′′, Eq. (3.15), violate baryon number, whereas the terms proportional to
λ, λ′ and κ, Eq. (3.13), Eq. (3.14) and the bilinear term in Eq. (3.12), violate lepton number.
In Fig. 3.3, we give some example Feynman diagrams, which arise from these interactions.

However, BNV and LNV terms can not be simultaneously present in the theory, otherwise
the proton will decay rapidly [111, 112, 113, 114, 115]. This is in contradiction with experiments

7Once we consider a broken supersymmetric field theory, the soft SUSY-breaking Lagrangian Lsoft must be
taken into account (see Sec. 3.3.4).

8The terminology of P6 and 6 P6 will become clear in section 3.3.3.
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ℓ̃kR

νi

λijk

lj

(a)

d̃kR

li

λ′ijk

uj

(b)

×νi h̃02

κi

(c)

d̃kR

ui

λ′′ijk

dj

(d)

Figure 3.3.: Lepton-number violating (a,b,c) and baryon-number violating (d) interactions.
Diagram (a) corresponds to the third term in Eq. (3.13), (b) shows the sixth term
in Eq. (3.14), and (d) gives the third term in Eq. (3.15). The bilinear interaction
(c) is contained in the term κiL

a
iH

b
2 in Eq. (3.12).

s̃R

e+

ū

π0

P

uu

u

d
λ′′
112 λ′

112 s̃R

P s̄

χ̃0l

K+
uu

u

d τ̃R W

τ−

µ+
ν̄µ

ντ

ν̄e

λ′′
112

λ123

Figure 3.4.: Proton decay P → π0e+ via non-vanishing couplings λ′112 × λ′′112 (left figure) and
P → K+ντ ν̄eν̄µ via non-vanishing couplings λ123 × λ′′112 (right figure).

[116, 117] and the proton lifetime [118] puts strict bounds on the products of BNV and LNV
couplings. In Fig. 3.4 we give an example for the proton decays P → π0e+ (left figure) and
P → K+ντ ν̄eν̄µ (right figure), mediated by a non-vanishing product λ′112×λ′′112 and λ123×λ′′112,
respectively. Non-observation of proton decay yields the following bounds on these coupling
products [115]:

|λ′112λ′′112| . 2 × 10−27

(

Ms̃R

100 GeV

)2

, (3.16)

|λ123λ′′112| . 10−14. (3.17)

In Eq. (3.17) a common sparticle mass of 1 TeV was assumed. Hence, even for loop-suppressed
proton decays (e.g. right diagram in Fig. 3.4), the proton lifetime still puts a strict upper bound
on (all) products of LNV and BNV couplings. Since the Yukawa couplings λ, λ′ and λ′′ are
dimensionless parameters, it would be unnatural if they were extremely small but non-zero.
Thus we need a symmetry to prohibit either BNV or LNV.

3.3.3. Discrete Symmetries

One way to prohibit LNV or BNV, and thus protect the proton from its supersymmetric death,
is to introduce a discrete symmetry. The discrete symmetry has to be a remnant of a broken
gauge symmetry9, because otherwise, it will be broken by quantum gravity effects once gravity is
included [119]. Requiring the discrete symmetry to be consistent with an underlying anomaly-

9Discrete symmetries of this kind are called discrete gauge symmetries.
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3.3. The Supersymmetric Extension of the Standard Model

free10 U(1) gauge symmetry and to allow a Majorana neutrino mass term11 LLH2H2, only
three possibilities are left [113, 122, 123, 124, 125]: R-parity (Rp), baryon-triality (B3), and
proton-hexality (P6). The most popular choice is the Z2-symmetry Rp, usually defined as:

Rp = (−1)2S+3B+L =

{

+1 for SM particles
−1 for SUSY particles

(3.18)

Here, S, B and L denote the spin, baryon number and lepton number of a particle, respectively.
Consequently, all SM (SUSY) particles are even (odd) under R-parity. An equivalent symmetry
is matter-parity M2

{H1,H2} → {H1,H2},
{Li, Ēi, Qi, Ūi, D̄i} → e2πi/2{Li, Ēi, Qi, Ūi, D̄i}. (3.19)

Both symmetries forbid all terms in W 6P6 , Eq. (3.12). The minimal supersymmetric extension of
the Standard Model (MSSM) is given by the particle content of Sec. 3.3.1 and the assumption
of Rp (or M2). In the MSSM, an important phenomenological feature is that SUSY particles
can only be produced (and annihilated) pairwise. Once SUSY particles are produced, they will
decay into the lightest supersymmetric particle (LSP), which cannot further decay due to the
symmetry. Thus, it is a promising dark matter candidate. However, the latter requires the LSP
to be charge-, flavor- and color-neutral. Therefore, SUSY models with R-parity conservation
generally assume the lightest neutralino χ̃0

1 to be the LSP [91].

However, while these symmetries forbid all dimension-4 proton decay operators, the dimension-
5 proton decay operators QQQL and Ū ŪD̄Ē, both violating baryon- and lepton number, are
still allowed [17]. These operators lead to suppressed proton decay.

The second possible discrete gauge symmetry, baryon triality B3, is defined by the following
Z3-transformation of the left-chiral superfields:

Qi → Qi,

{H2, D̄i} → e2πi/3{H2, D̄i},
{H1, Ūi, Li, Ēi} → e4πi/3{H1, Ūi, Li, Ēi}. (3.20)

This symmetry prohibits the BNV operator Ū ŪD̄ but allows the LNV terms in W 6P6 , Eq. (3.12).
In addition, the dangerous dimension-5 proton decay operators, which were allowed by R-parity,
are forbidden by baryon triality.

Finally, we have the Z6-symmetry proton-hexality, which is isomorphic to the direct product
of matter parity and baryon triality, P6

∼= M2 × B3:

Qi → Qi,

{H1, Ūi, Ēi} → e2πi/6{H1, Ūi, Ēi},
Li → e8πi/6Li,

{H2, D̄i} → e10πi/6{H2, D̄i} (3.21)

10Note, that anomalies can be cancelled by the introduction of new fields, see e.g. [120, 121]. We shall not
consider this possibility here.

11The non-renormalizable five-dimensional operator LLH2H2 violates lepton-number by ∆L = 2. It is neces-
sary for the generation of neutrino masses in models, which prohibit lepton number violation at the renormalizable
level.
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Proton hexality has the same phenomenological consequences as R-parity, but forbids the dan-
gerous dimension-5 proton decay operators.

In order to forbid proton decay, one might want to only forbid the LNV terms and allow the
BNV term ŪD̄D̄ in the superpotential via a discrete symmetry called lepton parity. However, it
turned out that this discrete symmetry is not consistent with the requirement that it has to be
a remnant of a broken anomaly-free gauge symmetry [17]. Thus, from this point of view, lepton
number violation seems to be favored over baryon number violation.

Finally, we want to note that both B3 and P6 treat quark and lepton superfields differently.
In grand unified theories (GUTs) this is unnatural12. However, there are string models which
can successfully incorporate both lepton- and baryon-number violation [126]. Concerning proton
decay, there is no preference between P6 and B3. However, lepton-number-violation will have
some important phenomenological consequences, as discussed in Sec. 3.4.3.

3.3.4. Supersymmetry breaking

A realistic phenomenological model must contain supersymmetry breaking, since SUSY particles
with equal mass as their SM partners are ruled out by experiment. We expect supersymmetry
to be spontaneously broken. In this way, supersymmetry is hidden at low energies analogous
to the electroweak symmetry in the SM. However, there is no consensus on exactly how the
SUSY breaking should be done and many models of spontaneous symmetry breaking have been
proposed. For phenomenological studies, it is very useful to parametrize our ignorance of these
issues by adding extra interaction terms to the supersymmetrized SM Lagrangian, which break
supersymmetry explicitly. The SUSY-breaking couplings should be soft (i.e. of positive mass
dimension) in order not to reintroduce quadratic divergencies in quantum corrections to scalar
masses, which would spoil the natural solution of the hierarchy problem. The most general form
of explicit SUSY-breaking consistent with P6 and the minimal particle content of the SSM is13

[127, 128]

−LP6
soft =

(

1

2
M1B̃B̃ +

1

2
M2W̃ W̃ +

1

2
M3g̃g̃ + h.c.

)

+m2
H1
H†

1H1 +m2
H2
H†

2H2

+L̃†
i (m

2

L̃
)ijL̃j + ˜̄E†

i (m2

Ẽ
)ij

˜̄Ej + Q̃†
i (m

2

Q̃
)ijQ̃j + ˜̄U †

i (m2

Ũ
)ij

˜̄Uj + ˜̄D†
i (m

2

D̃
)ij

˜̄Dj
[

−B̃H1H2 + (hE)ijL̃iH1
˜̄Ej + (hD)ijQ̃iH1

˜̄Dj + (hU )ijQ̃iH2
˜̄Uj + h.c.

]

. (3.22)

Here, F̃ ∈ {Q̃, ˜̄U, ˜̄D, ˜̄E, L̃} denotes the scalar component of the corresponding chiral superfield,
cf. Tab. 3.1. We sum over repeated (generation) indices while we have suppressed the summation
over the gauge indices.

In the first row we have the mass terms for the gauginos and the Higgs scalars. M1, M2 and
M3 refer to the masses of the bino, the three winos and the eight gluinos, respectively. In the
second row, we have the soft breaking scalar masses, m

F̃
2, of the corresponding scalar fields F̃ .

The last row contains the scalar interactions that correspond to the Yukawa couplings in the
superpotential, Eq. (3.11). The first (bilinear) interaction contributes to the Higgs masses while
the three trilinear scalar interaction terms contribute to the slepton and squark masses. After

12See e.g. Ref. [17] for a discussion of the GUT gauge groups SU(5) and SO(10).
13It is clear by looking at Eq. (3.22), that LP6

soft breaks supersymmetry, since it involves only fields without
their superpartners.
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3.4. Minimal Supergravity (mSUGRA)

EWSB, these terms mix the left- and right-handed sleptons and squarks. The soft-breaking
scalar masses as well as the trilinear scalar interactions are 3 × 3 matrices in generation space.

With the supersymmetrization of the SM, there are (except for extending the Higgs sector)
no additional parameters introduced. However, LP6

soft, Eq. (3.22), comes along with 105 new
parameters, which have no counterpart in the SM. Thus, the P6-SSM contains 124 independent
parameters (including the SM parameters) [128]. In this extensive parameter space, phenomeno-
logical studies are very difficult. Thus we will need a guiding principle to reduce the amount of
free parameters. We will address this issue in Sect. 3.4.

If the baryon- and lepton-number violating terms in Eq. (3.12) are allowed, we also need to
add the following bilinear and trilinear interactions to the soft-breaking Lagrangian, Eq. (3.22),
[17]:

−L 6P6
soft =

[

−D̃iL̃iH2 + (hEk)ijL̃iL̃j
˜̄Ek + (hDk)ijL̃iQ̃j

˜̄Dk + (hU i)jk
˜̄Ui

˜̄Dj
˜̄Dk + h.c.

]

+L̃†
i (m

2
L̃iH1

)H1 +H†
1(m2

H1L̃i
)L̃i (3.23)

In the first row, we have the mass dimension two bilinear couplings D̃i and the mass dimension
one trilinear couplings (hEk)ij , (hDk)ij and (hU i)jk, which are the soft-breaking analogue of
the bilinear and trilinear couplings κi, λijk, λ′ijk and λ′′ijk of the superpotential, Eq. (3.12),
respectively. The terms in the second row are mass terms, which contribute to the slepton-
Higgs mass matrices.

If baryon- and lepton-number violation are allowed, we get 48 new parameters in the su-
perpotential W 6P6 , Eq. (3.12), and again more than 100 new parameters from the soft-breaking
terms in Eq. (3.23) in addition to those of the P6-SSM.

3.4. Minimal Supergravity (mSUGRA)

3.4.1. Phenomenological motivation

Fortunately, there exists already experimental evidence for an underlying organizing principle
that governs the soft SUSY breaking. Following this principle, the overwhelming amount of free
parameters introduced in Eq. (3.22) can be significantly reduced.

In order to have a real Lagrangian, the slepton and squark mass matrices in Eq. (3.22) need
to be hermitian. We might generically assume that the generational diagonal and off-diagonal
matrix elements in Eq. (3.22) have the same order of magnitude. However, assuming that the
SUSY breaking is . O(1 TeV), the large generational off-diagonal matrix elements would lead to
large flavor-changing-neutral-currents (FCNCs). These are in contradiction with experimental
observations [107, 108], and thus, the low-scale SSM would be phenomenologically excluded. For
instance, the matrix elements which couple the scalar electron (selectron) to the scalar muon
(smuon) are strongly constrained by the non-observation of the process µ→ eγ [107, 129, 130].
In the squark sector, experimental constraints from meson-antimeson mixing like K0 − K̄0,
D0 − D̄0 and B0 − B̄0 mixing and rare processes like b → sγ strongly restrict the magnitude
of the generational off-diagonal masses [107, 131, 132, 133, 134]. Note that bounds involving
third-generation fields are in general less restrictive than those involving only fields of the first
and second generation.

In principle, the P6 SSM may also introduce 40 additional physical phases [135], which all
introduce CP-violating effects. Again, these phases are strongly restricted by experimental
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3. Supersymmetry

observations, mainly from electric dipole moments (EDMs) [118, 107, 132, 134, 136, 137, 138,
139, 140, 141, 142].

All of these potentially dangerous flavor-changing and CP violating effects in the SSM can be
avoided by assuming that supersymmetry breaking is universal, i.e. we assume that at the weak
scale, MZ , the squark and slepton squared-mass matrices are flavor-blind, each proportional to
the 3 × 3 identity matrix in family space:

m2
L̃

= m2
L̃
× 1, m2

Ẽ
= m2

Ẽ
× 1, m2

Q̃
= m2

Q̃
× 1, m2

Ũ
= m2

Ũ
× 1, m2

D̃
= m2

D̃
× 1. (3.24)

Note that also other solutions exist [143, 144, 145, 146, 147, 148].

The trilinear scalar couplings hE, hD and hU in Eq. (3.22) couple left- and right-handed
fields to each other. Thus, after EWSB, they will also contribute to the squark and slepton
mass matrices and may induce large FCNCs. This can be avoided if we choose

hE = AE ×YE , hD = AD ×YD, hU = AU ×YU , (3.25)

i.e. we assume that the trilinear couplings are proportional to the respective Yukawa coupling
matrix at MZ . In this way, their contributions are only significant for the third generation.

3.4.2. The P6 mSUGRA model and its mass spectrum

As already mentioned in Sect. 3.1, a strong motivation for SUSY is the gauge coupling unification
at a scale of O(1016 GeV). Assuming the SSM is embedded into a grand unification theory
(GUT), the gauginos can naturally have equal masses at the GUT scale, MGUT, cf. Eq. (3.22),
because they are all in the same representation of the unified simple gauge group [54, 149, 150].
We thus have

M1 = M2 = M3 ≡M1/2 at MGUT. (3.26)

In this context, it seems natural to rather assume the boundary conditions, Eq. (3.24) and
Eq. (3.25), at MGUT. Furthermore, we can simplify the model by assuming14 an universal
soft breaking scalar mass, M0, for all the sfermions and Higgs fields and an universal trilinear
interaction, A0, i.e.

m2
L̃

= m2
Ẽ

= m2
Q̃

= m2
D̃

= m2
Ũ

= m2
H1

= m2
H2

≡M0 at MGUT, (3.27)

AE = AD = AU ≡ A0 at MGUT. (3.28)

The only missing ingredient for a complete model is the parametrization of the Higgs sector.
A convenient choice are the parameters tan β and sgn(µ), where tan β = 〈H2〉/〈H1〉 is the ratio
of the vevs of the two Higgs doublets and sgn(µ) is the sign of the Higgs mixing parameter µ,
cf. Eq. (3.11). The magnitude of µ and the corresponding soft breaking coupling B̃, cf. Eq. (3.22),
are derived from EWSB, i.e. from the minimization of the scalar potential [152].

With these simple assumptions at the GUT scale, we reduced the more than 100 parameters

14Note that, due to the RGE running, the scalar masses and trilinear interaction are in general not universal
at MZ , which can lead again to FCNCs. However, these are small and consistent with experimental observations
as long as P6 is conserved [151]. If P6 is violated, we need to make sure that the FCNCs are not too large. This
will be done throughout this thesis.
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Figure 3.5.: RGE running of the slepton (red lines), squark (blue lines) and gaugino (black
lines) soft-breaking masses from MGUT to MZ . Also shown is the running of the
quantities (µ2 +m2
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)1/2 and (µ2 +m2

H2
)1/2. The latter runs negative, provoking

electroweak symmetry breaking. This figure is taken from Ref. [58]. Note the
slightly different notation, where Hd ≡ H1 and Hu ≡ H2.

of the P6 SSM to only five:

M0, M1/2, A0, tan β, sgn(µ). (3.29)

This well-motivated and strongly restricted model for the SSM is known as the minimal super-
gravity (mSUGRA) model15. In the class of supergravity models [78, 79, 80, 81, 82, 83, 84], SUSY
is a local symmetry and the theory can thus incorporate gravity. By imposing certain simpli-
fying assumptions about the supergravity Lagrangian, we also obtain the minimal supergravity
model [153, 154, 155, 156]. Thus, this model is also well motivated from a purely theoretical
side.

We obtain the (experimentally accessible) particle mass spectrum at MZ by evolution of the
RGEs, cf. also Sect. 2.4. This is demonstrated in Fig. 3.5, where we show the running of the
scalar and gaugino soft breaking masses from MGUT to MZ for a typical mSUGRA model. The
input parameters at MGUT are M0 = 80 GeV, M1/2 = 250 GeV, A0 = −500 GeV, tan β = 10
and sgn(µ) = +. The running gaugino masses (black solid lines) are labeled by M1, M2 and
M3. For the squarks (blue lines) and sleptons (red lines), the dashed lines give the third family
soft breaking masses while the solid lines correspond to those of the first and second family.
Furthermore, the figure shows the running of the quantities (µ2 + m2

H1
)1/2 and (µ2 + m2

H2
)1/2,

labeled by Hd and Hu, respectively, which appear in the Higgs potential. The figure is taken
from Ref. [58].

We observe in Fig. 3.5, that the squarks and sleptons evolve very differently, i.e. although
they have the same mass at MGUT, the squarks are much heavier than the sleptons at MZ .
This can be understood, if we look at the dominant one-loop contributions to the RGEs for the

15This model is sometimes also denoted as the constrained minimal supersymmetric standard model (CMSSM),
since the SUSY breaking does not necessarily have to be mediated by gravity.
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3. Supersymmetry

squared slepton and squark soft breaking masses of the first two generations (i = 1, 2) [17]

16π2
d(m

Ẽ
2)ii

dt
= −

(

24

5
g21 |M1|2 −

6

5
g21S

)

, (3.30)

16π2
d(m

L̃
2)ii

dt
= −

(

24

5
g21 |M1|2 + 6g22 |M2|2 +

3

5
g21S

)

, (3.31)

16π2
d(m

Ũ
2)ii

dt
= −

(

32

15
g21 |M1|2 +

32

3
g23 |M3|2 +

4

5
g21S

)

, (3.32)

16π2
d(m

D̃
2)ii

dt
= −

(

8

15
g21 |M1|2 +

32

3
g23 |M3|2 −

2

5
g21S

)

, (3.33)

16π2
d(m

Q̃
2)ii

dt
= −

(

2

15
g21 |M1|2 + 6g22 |M2|2 +

32

3
g23 |M3|2 −

1

5
g21S

)

, (3.34)

with

S = Tr[m
Q̃
2 −m

L̃
2 − 2m

Ũ
2 + m

D̃
2 + m

Ẽ
2] −m2

H1
+m2

H2
. (3.35)

Here, g1, g2 and g3 are the U(1)Y , SU(2) and SU(3)C gauge couplings, respectively, and t = lnQ
with Q the renormalization scale. For universal scalar masses, S is identical to zero at MGUT.
Furthermore, the coefficient of the S term is smaller compared to the M2

1 , M2
2 and M2

3 terms.
Thus, the main contributions come from the terms proportional to the gaugino mass squared,
M2

1 , M2
2 and M2

3 , and the right hand side of Eqs. (3.30)-(3.34) is negative at every scale.

Evolving the RGEs from MGUT down to MZ , the negative slope in the RGEs increases the
slepton and squark masses, as we can observe in Fig. 3.5. The proportionality to different gauge
charges in Eqs. (3.30)-(3.34) leads to the various magnitudes of the slopes. They are largest for
the strongly interacting sparticles and therefore, the squarks are much heavier then the sleptons.
There is also a mass splitting between left- and right-handed sleptons, which can be explained in
a similar way: The right-handed sleptons only couple via their U(1)Y gauge charges whereas the
left-handed sleptons also couple via their SU(2) gauge charges and thus get larger contributions
from the gaugino masses. Therefore, the left-handed sleptons are heavier than the right-handed
sleptons.

The third generation squarks and sleptons are generally lighter then the first and second
generation masses. This has the following reason: The Higgs-Yukawa interactions for the third
generation are roughly as strong as the gauge interactions. Therefore, they significantly con-
tribute to the RGEs of the third generation sparticles. For instance, the dominant contribution
to the RGE of the right-handed (soft breaking) stop mass squared is [17]

16π2
d(m

Ũ
2)33

dt
= −

(

32

15
g21 |M1|2 +

32

3
g23 |M3|2 +

4

5
g21S

)

+ (YU )233

[

4(m
Ũ

2)33 + 4(m
Q̃
2)33 + 4m2

H2

]

+ 4(hU )233, (3.36)

with (hU )33 = (YU )33 ×A0 at MGUT. In contrast to Eq. (3.32), the large top-Yukawa coupling,
(YU )33, and the corresponding trilinear scalar interaction, (hU )33, additionally affect the running
of the right-handed stop mass. These new terms in Eq. (3.36) are always positive and therefore
tend to decrease the stop mass going from MGUT toMZ . Thus, the third generation sfermions are
in general lighter than those of the first and second generation. Furthermore, we can have large
mixing between left- and right-handed eigenstates for the third generation, which additionally
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3.4. Minimal Supergravity (mSUGRA)

decreases the mass of the lighter mass eigenstate.

The up-type Higgs doublet H2 also couples directly to the top-Yukawa sector. This leads
to a large decrease of the up-type Higgs mass parameter, mH2 , going from MGUT to MZ ,
cf. Fig. 3.5. The quantity (µ2 + m2

H2
) even runs to negative values at the electroweak scale

O(102 GeV). This effect leads to radiative electroweak symmetry breaking [90]. Thus, the large
top-Yukawa coupling induces a dynamical breakdown of the electroweak symmetry. By fixing
tan β, Eq. (3.29), the magnitude of the Higgs mixing parameter µ and the corresponding soft
breaking coupling B̃ are obtained from the minimization of the scalar Higgs potential [152].

In Fig. 3.5 we observe the mass ordering of the gauginos, M1 < M2 < M3 at MZ . This is
because the RGEs for the three gaugino mass parameters are determined by the same coefficients
bi, which describe the running of the gauge couplings [157]:

16π2
dMi

dt
= 2big

2
iMi, with bi = {33/5, 1,−3}, (3.37)

for the gauge group index i = 1, 2, 3. As for the gauge coupling g3, cf. Sect. 2.5, the mass of
the SU(3)C gaugino, M3, increases due to the negative coefficient b3 when going from MGUT

to MZ . In contrast, the masses of the bino, M1, and winos, M2, decrease. At every scale, the
gaugino masses are related (up to small two-loop effects) by [157]

M1

g21
=
M2

g22
=
M3

g23
=
M1/2

g2GUT

, (3.38)

with the universal gauge coupling gGUT ≃ 0.71 at MGUT. This relation directly implies M3 :
M2 : M1 ≃ 7 : 2 : 1 at MZ .

From Fig. 3.5, we expect the LSP to be the lightest neutralino, χ̃0
1. For the mSUGRA

parameters of Fig. 3.5, we obtain M1 = 95 GeV, M2 = 190 GeV and µ = 440 GeV at MZ .
Thus, the mixing between the bino with the wino and the Higgsinos is small [106]. For many
mSUGRA models we can approximate the gaugino masses in terms of the universal gaugino
mass M1/2 [158, 159],

mχ̃0
1
≃M1 = 0.41M1/2, (3.39)

mχ̃0
2
≃M2 = 0.84M1/2, (3.40)

i.e. the (second) lightest neutralino, χ̃0
1 (χ̃0

2), is bino-like (wino-like) and its mass is approximated
by the bino (wino) mass parameter M1 (M2) at the weak scale.

The next-to-LSP (NLSP) is a slepton. This must be the lighter (mostly right-handed) scalar
tau (stau), τ̃1, due to influence of the tau-Yukawa coupling and the L-R stau mixing. However,
by increasing M1/2, the mass of the (bino-like) χ̃0

1 increases faster than the (mostly right-handed)
τ̃1 mass [158, 159]. Thus, at some point, the τ̃1 becomes the LSP instead of the χ̃0

1. Note, that
increasing the value of tan β can also lead to a τ̃1 LSP, since it both increases the magnitude of
the tau-Yukawa coupling and the L-R mixing [158, 21, 12, 20]. In P6 conserving supersymmetric
models, scenarios with a τ̃1 LSP are usually ignored, because the LSP is stable and thus needs
to be charge and color neutral for cosmological reasons [91]. In this case, searches at the Large
Electron-Positron Collider (LEP) at CERN restrict the LSP to be the lightest neutralino [160].
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3.4.3. The P6 violating mSUGRA model

In Sect. 3.4.1 and 3.4.2 we discussed the mSUGRA model and its sparticle mass spectrum at MZ

in the case of conserved P6. We now want to extend our discussion to the P6 violating mSUGRA
model16, which incorporates lepton or baryon number violating interactions, Eq. (3.12) and
Eq. (3.23). This model was proposed in Ref. [17]. It contains the six parameters

M0, M1/2, A0, tan β, sgn(µ), Λ, (3.41)

with

Λ ∈ {λijk, λ′ijk, λ′′ijk} at MGUT, (3.42)

i.e. we assume one additional (real) trilinear coupling at MGUT. Analogous to Eq. (3.25) and
Eq. (3.28), we also have one non-vanishing 6P6 term in the soft-breaking Lagrangian, Eq. (3.23),
namely hΛ = A0 × Λ at MGUT. In this model, the more than 200 parameters of the 6P6 SSM
are reduced to only six, which allows for detailed phenomenological studies.

In this model, the bilinear 6P6 operators, cf. Eq. (3.12), are naturally rotated away at MGUT

by a redefinition of the lepton doublet superfields Li and the down-type Higgs doublet H1 [17].
However, given a non-zero λ or λ′ together with µ 6= 0 at MGUT, non-zero bilinear terms
κi are generated at MZ [161, 162, 163]. These terms lead to mixing between the neutrinos
and neutralinos resulting in one non-zero neutrino mass at tree-level [92, 164, 165]. The other
neutrino masses are generated at loop-level [94, 96, 166]. Note, that the upper cosmological
bound on the sum of neutrino masses, i.e.

∑

mνi < 0.40 eV at 99.9% confidence level (C.L.),
determined by the Wilkinson Mircowave Anisotropy Probe (WMAP) [167] and Large Scale
Structure (LSS) data [168], implies upper bounds on the λ and λ′ couplings [17, 166].

In general, experimental bounds on products of two different 6P6 couplings are stronger than
bounds on single couplings [115, 169, 170]. Therefore, a single dominating Λ coupling is phe-
nomenologically well motivated17. However, through the coupled RGEs, one 6P6 coupling at
MGUT will generate additional 6P6 couplings at MZ [17, 161, 162, 163, 171, 172, 173].

In contrast to the P6 SSM, the additional LNV and BNV interactions in the 6P6 SSM,
Eq. (3.12), generally allow for the single (resonant) production of sparticles at lepton collid-
ers [174] as well as hadron colliders [15, 175, 176, 19]. Furthermore, the LSP decays into SM
particles18. Thus, in principle, every sparticle is allowed to be the LSP, i.e. a τ̃1 LSP is equally
well motivated as a χ̃0

1 LSP [17, 18]. In addition, the RGEs get new 6P6 contributions which can
affect the running of the sparticle masses in a significant way [17, 21], cf. also Sect. 4.1. Thus,
other LSP candidates exist besides the τ̃1 and the χ̃0

1. Restricting ourselves to the B3 mSUGRA
model, the possible LSP candidates are [12]

χ̃0
1, ẽR, µ̃R, τ̃1, ν̃i, (3.43)

where ẽR and µ̃R denote the right-handed scalar electron (selectron) and scalar muon (smuon),
respectively. At colliders, supersymmetric particles, once they are produced, will typically decay
instantaneously on collider time scales down to the LSP. Therefore, the nature and possible decay

16If only lepton number is violated, we also denote the model as B3 mSUGRA, cf. Sect. 3.3.3.
17Note, that the SM also has a strong hierarchy of the Higgs Yukawa couplings.
18Thus, the LSP is not a dark matter candidate in the P6 violating SSM. In order to account for dark matter,

other candidates, such as the axino [177, 178, 179, 180, 181], gravitino [182, 183] or the lightest U-parity particle
[184, 185], have to be considered.
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3.4. Minimal Supergravity (mSUGRA)

properties of the LSP are an essential ingredient for all SUSY signatures [17, 186, 187]. Scenarios
with a neutralino LSP have been studied extensively, see e.g. Ref. [13, 14, 15, 16]. More recently,
the stau LSP [17, 18, 19, 20] and the sneutrino LSP [21] have been considered. In this thesis,
we investigate in detail the case of a ẽR or µ̃R LSP.
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4. Selectron and Smuon as the lightest
supersymmetric particle (LSP)

In this chapter, we investigate the conditions which lead to a selectron or smuon LSP within the
B3 mSUGRA model. For this, we study the RGE running of the right-handed slepton mass of
the first and second generation. We find a strong A0 dependence in the running, which we study
in detail. Then, we discuss the selectron and smuon LSP parameter space, the corresponding
experimental constraints and possible mass hierarchies of the supersymmetric particles.

4.1. Renormalization group evolution of the right-handed
slepton mass

In order to understand the dependence of the ℓ̃R mass1 at MZ on the boundary conditions at
MGUT, we take a closer look at the relevant RGEs. As mentioned in Sect. 3.4.3, the RGEs in
B3 mSUGRA receive additional contributions from the LNV terms in Eq. (3.12). The dominant
one-loop contributions to the running of the right-handed slepton mass are [17]

16π2
d(m2

ℓ̃kR
)

dt
= −24

5
g21 |M1|2 +

6

5
g21S + 2λ2ijk

[

2(m
L̃
2)ii + 2(m

L̃
2)jj + (m

Ẽ
2)kk

]

+ 2(hEk)2ij

(4.1)

with

(hEk)ij ≡ λijk ×A0 at MGUT. (4.2)

Here, (hEk)ij is the trilinear scalar soft breaking coupling corresponding to λijk, cf. Eq. (3.23).
We neglected the contributions from the Higg-Yukawa couplings, since these are only important
for the third generation sfermions, cf. Sect. 3.4.2.

The first two terms on the right-hand side in Eq. (4.1) are also present in the P6 conserving
mSUGRA model, cf. Eq. (3.30). As discussed in Sect. 3.4.2, the sum of these two terms is
negative at any scale and thus leads to an increase in mℓ̃R

while running from MGUT to MZ .

The remaining contributions are proportional to λ2ijk and (hEk)ij ; the latter implies also a

proportionality to λ2ijk at MGUT, cf. Eq. (4.2). These terms are positive and will therefore reduce
mℓ̃R

, when going from MGUT to MZ . They are new to the B3 mSUGRA model compared to
P6 conserving mSUGRA. We can see from Eq. (4.1), that if the LNV coupling is roughly of the
order of the gauge coupling g1, i.e. λijk & O(10−2), these terms contribute substantially. Then,
the ℓ̃R mass may become lower than the χ̃0

1 and τ̃1 mass at MZ , leading to a ℓ̃R LSP scenario.

1We consider only the first two generations of sleptons, i.e. ℓ̃R ∈ {ẽR, µ̃R}.
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4. Selectron and Smuon as the lightest supersymmetric particle (LSP)

LiLjĒk coupling Λ LSP candidate 2σ bound (at MZ)

λ121 ẽR 0.03 · (MẽR/100 GeV)
λ131, λ231 ẽR 0.05 · (MẽR/100 GeV)
λ132 µ̃R 0.05 · (Mµ̃R

/100 GeV)

Table 4.1.: List of LiLjĒk couplings needed to generate a ẽR or µ̃R LSP. The third column
gives the most recent experimental bounds (95% C.L.) on Λ, taken from Ref. [170].
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Figure 4.1.: Masses of ẽR, χ̃0
1, τ̃1, τ̃2, ν̃τ , µ̃L and ν̃µ at MZ as a function of λ231 at MGUT.

The other mSUGRA parameters are M0 = 150 GeV, M1/2 = 500 GeV, A0 =
−1000 GeV, tan β = 5 and µ > 0. The yellow region corresponds to valid ẽR LSP
scenarios. The gray patterned region is excluded by the experimental bound on
λ231, cf. Tab. 4.1.

The respective LiLjĒk couplings Λ, which can lead2 to a ẽR or a µ̃R LSP, are given in
Tab. 4.1 with their most recent experimental 2σ upper bounds [170]. These bounds scale with
the mass of the respective right-handed slepton mass and apply at the weak scale, where the
physical process occurs. Due to its RGE running, Λ at MZ is roughly 1.5 times larger than Λ
at MGUT [161, 171].

In Fig. 4.1 we demonstrate the impact of a non-vanishing coupling λ231|GUT on the running
of the ẽR mass. We employ SOFTSUSY 3.0.13 [188, 189] for the evolution of the RGEs. We
have chosen a fairly large value of A0 = −1000 GeV. The other mSUGRA parameters are
M0 = 150 GeV, M1/2 = 500 GeV, tan β = 5 and µ > 0. In the R-parity conserving case,
corresponding here to λ231 = 0, the χ̃0

1 is the LSP and the τ̃1 is the NLSP. The ẽR mass
decreases for increasing λ231, as described by Eq. (4.1). Furthermore, the masses of the left-
handed3 second and third generation sleptons, µ̃L, τ̃2, and sneutrinos, ν̃µ, ν̃τ , decrease, since

2In principle, λ212 and λ232 could also lead to a µ̃R LSP. In general, these couplings generate tree-level neutrino
masses that violate the neutrino mass bounds [167] in the case Λ & O(10−2). Note however, that at certain A0

values, the corresponding tree-level neutrino mass can vanish [166], which reopens the possibility of a µ̃R LSP
generated via these couplings.

3In most mSUGRA scenarios, the heavier stau, τ̃2, contains a large left-handed component.
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these SU(2) doublets couple directly via λ231. Hence, λ231 contributes substantially4 in their
RGEs. In contrast, the mass of the χ̃0

1 is not changed, since it does not couple to the λ231
operator at one loop level. Also, the impact on the mass of the τ̃1, which is mostly right-handed,
is small. We therefore obtain for this mSUGRA parameter set with λ231|GUT & 0.05 a new LSP
candidate, namely the right-handed selectron. Due to the experimental upper bound on λ231,
cf. Tab. 4.1, the gray pattered region with λ231|GUT > 0.064 is excluded at 95% C.L.. In Fig. 4.1,
the allowed ẽR LSP region is marked in yellow. Note, that the valid parameter region with a ẽR
LSP becomes larger once we consider scenarios with heavier sparticle masses. Moreover, once
we go beyond the mSUGRA model and consider non-universal masses, a ẽR LSP can also be
obtained without the RGE running effect discussed here. Then, ẽR LSP scenarios can exist with
much smaller R-parity violating couplings. Basically, the collider study we present in this thesis,
cf. Chapter 5, also applies to these more general ℓ̃R LSP models, provided that we still have a
dominant LiLjĒk coupling.

We can obtain a ẽR LSP (µ̃R LSP) with a non-zero coupling λ121 or λ131 (λ132) at MGUT

in a completely analogous way. We conclude this discussion by pointing out, that we need a
LiLjĒk coupling Λ & O(10−2) to obtain a ℓ̃R LSP (of flavor k). In the following, we investigate
which other conditions at the GUT scale allow a ℓ̃R LSP within B3 mSUGRA. Therefore, we
study in the next section in detail the A0 dependence of the running ℓ̃R mass. Then, we present
two dimensional B3 mSUGRA parameter scans with ℓ̃R LSP regions in Sect. 4.3.

4.2. A0 dependence

We now show that a large magnitude of a (negative) A0 enhances the negative contribution to
the mℓ̃R

mass, which originates from a non-vanishing λijk|GUT coupling, as shown in the last
section. The discussion is similar to the case of a sneutrino LSP, see Ref. [21].

According to Eqs. (4.1) and (4.2), A0 enters the running of mℓ̃R
via the B3 soft-breaking

trilinear scalar coupling (hEk)ij. As t is decreased, the (hEk)ij-term gives a negative contribution
to mℓ̃R

. Its full contribution is proportional to the integral of (hEk)2ij over t, from tmin = ln(MZ)
to tmax = ln(MGUT).

In Fig. 4.2 we show the running of the trilinear coupling (hEk)ij [Fig. 4.2(a)] and the resulting
running for (hEk)2ij [Fig. 4.2(b)]. We assume a non-vanishing coupling λijk|GUT = 0.1 and a
universal gaugino mass M1/2 = 1000 GeV. Different lines correspond to different values of A0.
The dominant contributions to the RGE of (hEk)ij are given by [17]

16π2
d(hEk)ij

dt
= −(hEk)ij

[

9

5
g21 + 3g22

]

+ λijk

[

18

5
g21M1 + 6g22M2

]

. (4.3)

The running is governed by two terms with opposite sign in Eq. (4.3), one proportional to (hEk)ij
and one proportional to λijk. In contrast to the sneutrino LSP case, cf. Ref. [21], the running is
independent of the strong coupling g3 and the gluino mass M3.

According to Eq. (4.2), the sign of the term proportional to (hEk)ij in Eq. (4.3) depends on
the sign of A0. At MGUT, this term is positive (negative) for negative (positive) A0. Hence, for
positive A0, the term proportional to (hEk)ij increases (hEk)ij when we run from MGUT to MZ .
Note, that the gauge couplings g1 and g2 decrease when going from MGUT to MZ .

4However, these contributions are always smaller than those to the right-handed slepton mass [17]. Thus, the
left-handed sleptons and sneutrinos cannot become the LSP within B3 mSUGRA with a non-zero λijk coupling.
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Figure 4.2.: Running of (hEk)ij (left) and (hEk)2ij (right) from MGUT to MZ for different values
of A0, given by the legend in Fig. 4.2(b). At MGUT, we choose M1/2 = 1000 GeV
and λijk = 0.1.

Assuming λijk to be positive, the second term is always positive and thus decreases (hEk)ij
when running from MGUT to MZ . The λijk coupling increases by roughly a factor of 1.5 when
we run from MGUT to MZ . However, at the same time, the gaugino masses M1 and M2 as well
as the gauge couplings g1 and g2 decrease. Therefore, this term gets relatively less important
towards lower scales.

Now, we can understand the running of (hEk)ij in Fig. 4.2(a). Given a positive A0 (red
lines), both terms in Eq. (4.3) have opposite signs and are thus competing with each other,
leading only to a small change in (hEk)ij during the running. Moreover, due to the running of
the gauge couplings and gaugino masses5 both terms decrease when we run from MGUT to MZ .
In contrast, if we start with a negative A0 (black lines), both terms give negative contributions
to the running of (hEk)ij . Still, the contribution from the λijk term in Eq. (4.3) decreases,
however, the contribution from the term proportional to (hEk)ij does not necessarily decrease
when running from MGUT to MZ . Thus, for negative A0, (hEk)ij decreases with a large slope.

Recall from Eq. (4.1), that m2
ℓ̃R

is reduced proportional to the integral of (hEk)2ij over t.

Thus, according to Fig. 4.2(b), a negative value of A0 leads to a smaller mℓ̃R
compared to a

positive A0 with the same magnitude.

4.3. Selectron and Smuon LSP parameter space

In this section, we present two dimensional B3 mSUGRA parameter regions which exhibit a ℓ̃R
LSP. As we have seen in Sect. 4.1, the running of the ℓ̃R mass is analogous for the first and second
generation, i.e. the only difference in the running of the ẽR and µ̃R mass is the dependence on
the specific choice of the dominant LiLjĒk operator. Therefore, we only study here the case of

5In the term proportional to (hEk)ij , the factor including the gauge couplings generally decreases faster than
(h

Ek)ij can grow, assuming a physical parameter point with positive A0.
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Figure 4.3.: Mass difference, ∆M , between the NLSP and LSP in the M1/2 −M0 plane. The
other B3 mSUGRA parameters are A0 = −1250 GeV, tan β = 5, sgn(µ) = +
and λ231|GUT = 0.045. The LSP candidates are explicitly mentioned and their
LSP regions are separated by the white dotted lines. The solid gray region on
the bottom left corresponds to models which are excluded due to the bound on
λ231, cf. Tab. 4.1. The green contour line indicates the SUSY contribution to the
anomalous magnetic moment of the muon, δaSUSY

µ . Models left of this contour

line lie within the 2σ window for δaSUSY
µ , cf. Eq. (4.4).

a ẽR LSP with a dominant coupling λ231. We can obtain the µ̃R LSP region by the exchange of
the couplings λ231 → λ132.

In Fig. 4.3 we show a typical B3 mSUGRA parameter region with a ẽR LSP in the M1/2−M0

plane. We have chosen a negative value of A0 with a fairly large magnitude, A0 = −1250 GeV.
The other parameters are tan β = 5, sgn(µ) = + as well as λ231 = 0.045 at the GUT scale.
We observe that the ẽR LSP lives in an extended region in the B3 mSUGRA parameter space.
Competing LSP candidates are the lightest stau, τ̃1, and the lightest neutralino, χ̃0

1. The solid
gray region at low values of M1/2 and M0 corresponds to scenarios with ẽR masses < 135 GeV.
These models are excluded by the experimental upper bound on the λ231 coupling, cf. Tab. (4.1).
The green contour line indicates the lower value of the 2σ window of the SUSY contribution to
the anomalous magnetic moment of the muon [37, 38],

11.9 × 10−10 < δaSUSY
µ < 47.1 × 10−10, (4.4)

i.e. parameter points left to the green line lie within the 2σ window and thus may explain the
discrepancy between the SM prediction and the observed value of aµ.

Furthermore, the entire displayed region fulfills the 2σ constraint from the branching ratios
of the flavor-changing-neutral-current (FCNC) decay b→ sγ [190],

3.03 × 10−4 < B(b→ sγ) < 4.07 × 10−4, (4.5)
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Figure 4.4.: Mass difference, ∆M , between the NLSP and LSP in the A0 −M1/2 plane with
B3 mSUGRA parameters M0 = 90 GeV, tan β = 4, sgn(µ) = + and λ231|GUT =
0.045. The patterned regions are excluded by the LEP Higgs bound, Eq. (4.7).
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and the 95% C.L. upper limit for the FCNC decay B0
s → µ+µ− [191],

B(B0
s → µ+µ−) < 3.6 × 10−8. (4.6)

We employ micrOMEGAs2.2 [192] to calculate δaSUSY
µ , B(b → sγ) and B(B0

s → µ+µ−). Also,
we employ the 95% C.L. lower LEP exclusion bound on the light Higgs mass mh0 [193],

mh0 ≥ 114.4 GeV. (4.7)

However, we reduce this bound by 3 GeV to account for numerical uncertainties of SOFTSUSY
3.0.13 [188, 189] which we use to calculate the SUSY and Higgs mass spectrum.

In Fig. 4.3 the ẽR is nearly mass degenerate with the τ̃1. However, the mass difference
between the τ̃1 and the ẽR depends on M1/2. We observe a τ̃1 LSP at small values M1/2 ≤
370 GeV, while the ẽR is the LSP for larger values of M1/2. Increasing M1/2 enhances the
(hEk)2ij contribution in the running ẽR mass since the gaugino masses M1 and M2 enter the
RGE of (hEk)ij , cf. Eq. (4.3). Furthermore, the τ̃1 mass receives larger contributions from M1/2

due to its left-handed component, cf. Eq. (3.30)-(3.31). Thus, at larger values of M1/2, the
mass difference between the τ̃1 and the ẽR is larger6. The masses of the scalar particles strongly
increase with M0, while the mass of the (bino-like) neutralino is nearly unaffected by M0. Thus,
a large value of M0 leads to a χ̃0

1 LSP.

The parameter region in Fig. 4.3 is particularly interesting, because it contains ẽR LSP
models with a significant contribution to the anomalous magnetic moment of the muon, aµ.
These models have a light sparticle mass spectrum with ẽR masses of about 140− 150 GeV and
can be already tested with existing data from the Tevatron experiments, as we will show in

6A larger mass difference between τ̃1 and the ẽR can also be obtained by increasing Λ. However, larger values
of Λ translate into a requirement of larger ẽR masses due to the experimental upper bound, cf. Tab. 4.1.
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Sect. 5.2.

We give the mass difference, ∆M , between the NLSP and LSP in the A0 − M1/2 plane
and M0 − tan β plane in Fig. 4.4 and Fig. 4.5, respectively. Again, we choose the coupling
λ231 = 0.045 at MGUT. The gray pattered regions correspond to models which are excluded
by the LEP bound on the light Higgs mass, Eq. (4.7). The entire displayed region fulfills the
constraints from B(b → sγ) and B(B0

s → µ+µ−). However, the sparticle mass spectra of these
scenarios are too heavy to give a significant contribution to aµ.

In the A0 −M1/2 plane [Fig. 4.4], we find a ẽR LSP for larger values of M1/2, because M1/2

increases the mass of the χ̃0
1 faster than the mass of the sleptons, cf. Sect. 3.4. As discussed in

Sect. 4.2, the mass of the ẽR decreases for a large magnitude of a (negative) A0, thus leading
to an enhanced ẽR LSP region. Furthermore, the mass difference between the τ̃1 and the ẽR
increases with |A0|. In principle, there is also a ẽR region for large positive A0, cf. Fig. 4.2(b),
however, in this region the light Higgs mass is smaller as for negative A0 [158]. Thus, this region
is disfavored by the LEP Higgs mass constraint. Note, that at negative A0 values with large
magnitude, we also obtain a light top squark, t̃1, since the top Yukawa coupling enters the RGE
running of the t̃1 mass in a similar way as the λijk Yukawa coupling does for the ℓ̃R mass.

In the M0 − tan β plane [Fig. 4.5], we find a ẽR LSP for tan β . 5.2 and M0 . 95 GeV. As
discussed at the end of Sect. 3.4, the mass of the τ̃1 decreases with increasing tan β, while the
mass of the ẽR is unaffected by tan β. Thus, tan β is a handle for the mass difference of the τ̃1
and the ẽR. As in Fig. 4.3, we obtain a χ̃0

1 LSP at large values of M0.

We find basically two possible mass hierarchies for the ẽR LSP parameter space, indicated
by the white dotted line in Fig. 4.4 and Fig. 4.5. Close to the χ̃0

1 LSP region, we observe a χ̃0
1

NLSP and a τ̃1 next-to-NLSP (NNLSP), i.e.

MẽR < Mχ̃0
1
< Mτ̃1 . (4.8)
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4. Selectron and Smuon as the lightest supersymmetric particle (LSP)

However, for most of the parameter space, we have

MẽR < Mτ̃1 < Mχ̃0
1
, (4.9)

i.e. the τ̃1 is the NLSP and the χ̃0
1 is the NNLSP. These mass hierarchies lead to different

collider phenomenology and will be our guideline in the selection of benchmark scenarios. For
some regions with a large mass difference between the χ̃0

1 and the ẽR, the µ̃R can even be the
next-to-NLSP (NNLSP), i.e. we have

MẽR < Mτ̃1 < Mµ̃R
< Mχ̃0

1
, (4.10)

where the χ̃0
1 is the next-to-NNLSP (NNNLSP).
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5. Probing Selectron and Smuon LSP
models at hadron colliders

In this chapter we study B3 mSUGRA models with a ℓ̃R LSP at hadron colliders. We first
discuss the characteristic collider signatures of these models. As we will see, ℓ̃R LSP scenarios
generally lead to multi-lepton final states. Therefore, we test these models in Sect. 5.2 in detail
against a trilepton SUSY search, performed at the DØ experiment at the Tevatron. We present
the ℓ̃R LSP parameter region, which is excluded by the current results of the DØ analysis. We
also show the regions of the parameter space, that can be probed with future Tevatron data.

In the main part of this chapter, Sect. 5.3, we discuss the prospects of a discovery of ℓ̃R
LSP models with early data at the LHC. Guided by the properties of three selected benchmark
points with a ẽR LSP, we design an inclusive analysis with three final state leptons and perform a
detailed Monte-Carlo (MC) study of the signal and SM backgrounds at both LHC center-of-mass
energies of 7 TeV and 14 TeV. Finally, we apply the analysis to an extended supersymmetric
parameter space and present the SUSY discovery potential in the M1/2 −M0 plane.

5.1. Selectron and Smuon LSP signatures at hadron colliders

In this section, we classify the hadron collider signatures of ẽR and µ̃R LSP models. We assume
that the LSP decay is dominated1 by only one P6 violating operator Λ, cf. Tab. 4.1. At the
LHC the production of colored sparticles will be dominant for SUSY models with squark and
gluino masses . O(1 TeV) [194]. For simplicity we here focus on squark pair production with
the following cascade process

qq/gg → q̃q̃ → jjχ̃0
1χ̃

0
1 → jjℓℓℓ̃R ℓ̃R, (5.1)

where q̃ is a squark and j denotes a jet. Here, ℓ̃R ∈ {ẽR, µ̃R} is the LSP and the two leptons ℓ
are of the same flavor as the LSP. The ℓ̃R will promptly decay via the R-parity violating LiLjĒk

operator Λ into a lepton and a neutrino. The collider signatures are classified in Tab. 5.1
according to the possible ℓ̃R LSP decays. Here we assume that always only one Λ coupling is
dominant. Assuming the SUSY cascade in Eq. (5.1), the resulting collider signatures involve
two jets from the squark decays, two leptons of the same flavor as the LSP coming from the
neutralino decay into the LSP, additional leptons from the LSP decay and missing transverse
energy, /ET , due to the neutrinos. The pT spectrum of the leptons from the decay χ̃0

1 → ℓℓ̃R will
depend on the mass difference between the ℓ̃R LSP and the χ̃0

1. Note, that due to the Majorana
nature of the χ̃0

1, every charge combination of the two ℓ̃R LSPs is possible. Since Λ necessarily
couples directly to the ℓ̃R LSP, it will always decay via a 2-body decay.

In general, more complicated SUSY production and decay processes than Eq. (5.1) can occur.
Fig. 5.1 gives an example, namely squark-gluino production followed by a lengthy decay cascade.

1In general, the 6P6 couplings which are generated at MZ by the coupled RGEs do not play a rôle. They lead
to 2-body decays of the LSP with much smaller branching ratios (BRs).
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Λ coupling LSP decay Hadron collider signature

λ121 ẽR →
{

e νµ
µ νe

2j + 2e+ /ET +

{

2e
eµ
2µ

λ131 ẽR →
{

e ντ
τ νe

2j + 2e+ /ET +

{

2e
eτ
2τ

λ231 ẽR →
{

µ ντ
τ νµ

2j + 2e+ /ET +

{

2µ
µτ
2τ

λ132 µ̃R →
{

e ντ
τ νe

2j + 2µ + /ET +

{

2e
eτ
2τ

Table 5.1.: Hadron collider signatures for selectron and smuon LSP scenarios assuming one
dominant LiLjĒk operator Λ and the pair production of strongly interacting spar-
ticles. The left column denotes the dominant Λ coupling, the middle column shows
the possible LSP candidate and its decays and the right column gives the resulting
collider signatures, assuming the SUSY cascade in Eq. (5.1).

Typically, these processes lead to additional final state particles, most notably

• additional jets from the production of gluinos and their subsequent decays into squarks
and quarks,

• additional leptons from the decays of heavier neutralinos and charginos, which may come
from the decay of left-handed squarks, and

• additional leptons from a χ̃0
1 decay into a non-LSP right-handed slepton ℓ̃R (or lightest

stau τ̃1), i.e. for example χ̃0
1 → ℓ−ℓ̃+R, followed by a three-body decay ℓ̃+R → ℓ+ℓ′±ℓ̃′∓R . Here,

ℓ̃′R denotes the LSP.

The three-body slepton decays in the last point are special to ẽR and µ̃R LSP scenarios. The
corresponding decay rates are calculated in the Appendix C and are taken into account for the
following collider analysis. However, these decays play only a rôle in certain regions of the B3

mSUGRA parameter space, cf. Fig. C.5.

As we discussed in Sect. 4.1, the Λ coupling is of similar size as the gauge couplings for
ℓ̃R LSP scenarios. This large coupling enables also P6 violating decays of sparticles, which are
not the LSP. Thus, not every SUSY decay cascade necessarily involves the LSP. Of particular
importance are the P6 violating decays of the τ̃1 [176], especially in the case when the τ̃1 NLSP
is nearly mass degenerate with the ℓ̃R LSP. Furthermore, the sneutrinos may decay into two
leptons if they couple directly to Λ. This leads to sharp sneutrino mass peaks in dilepton
invariant mass distributions, as we will see in Sect. 6.3.1. However, all these P6 violating decays
of non-LSP sparticles also yield final state leptons. Thus, even though the LSP might not be
involved in some decay cascades, a multi-lepton analysis is the best search strategy for ℓ̃R LSP
scenarios.

In most ℓ̃R LSP scenarios within the B3 mSUGRA model, the lightest top squark, t̃1, is
much lighter than the other squarks. Thus, t̃1 pair production forms a sizable fraction of all
SUSY production processes. The decay of each t̃1 yields a b quark (either directly from the
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Figure 5.1.: Example for squark-gluino production with successive cascade decay into the two
ẽR LSPs. Here, the LSP decays via the 6P6 coupling λ231 (marked by red dots).
In the upper decay chain, we get an additional t quark from the gluino decay
into the t̃1. Furthermore, the µ̃R decays into the ẽR LSP via a virtual neutralino,
yielding additional leptons. The lower decay cascade involves a chargino, χ̃±

1 , and
a left-handed smuon, µ̃L.

decay t̃1 → χ̃+
1 b or from the top quark decay after t̃1 → χ̃0

1t), thus we expect an enhanced b
quark multiplicity for these scenarios. We will use the b quark multiplicity to discriminate signal
events stemming from t̃1 pair production in Sect. 6.

At the LHC, the multi charged lepton final states (especially electrons and muons) are the
most promising signatures to be tested with early data. Electrons and muons in the detector
can be efficiently identified and the SM background for high lepton multiplicities is very low
[195]. In Sect. 5.3, we therefore investigate the discovery potential of ℓ̃R LSP scenarios at the
LHC with an inclusive three lepton search analysis.

Due to their striking multi-leptonic signatures, light ℓ̃R LSP models might also be observable
at the Tevatron. In the next section, we therefore study in detail how ℓ̃R LSP models are
constrained by the trilepton SUSY search analysis performed by the DØ experiment [196]. Due
to the lower center-of-mass energy of the Tevatron compared to the LHC, the cross section for
the production of (heavy) colored sparticles is not always dominant. Gaugino and slepton pair
production usually comprise a sizable fraction of the total SUSY cross section, leading to events
without hard jets, cf. Tab. 5.4.
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5.2. Constraints from SUSY searches at the Tevatron

At the Tevatron at Fermilab both experiments DØ [196] and CDF [197, 198] have searched2 for
supersymmetry with final states containing three charged leptons, using the collected data of
proton-antiproton (pp) collisions at a center-of-mass energy

√
s = 1.96 TeV, corresponding to an

integrated luminosity of 2.3 fb−1 and 3.2 fb−1, respectively. These analyses were designed for the
measurement of associated production of charginos and neutralinos [203] within P6 conserving
mSUGRA, using exclusive trilepton search channels [204, 205, 206, 207, 208]. Some of our lighter
models could have led to an observable excess of events in these searches. Here we investigate
quantitatively how these experimental analyses constrain the ẽR and µ̃R LSP parameter space.

We follow the DØ analysis to test the exclusion of ẽR and µ̃R LSP models. CDF uses a jet
veto in the event selection, which is expected to lead to a reduced signal efficiency for many ℓ̃R
LSP models3. DØ distinguishes their search channels by the flavor of the final state leptons.
Since the final state lepton flavor multiplicity depends on the choice of the Λ coupling, we expect
different sensitivities of the DØ search channels for different choices of Λ.

In the next section we describe how we emulate the DØ analysis and discuss the major
changes to the original analysis. We test two benchmark points with a light ẽR LSP against our
analysis in Sect. 5.2.2. Thereby we review the results of the DØ analysis. We show the excluded
regions of the ẽR and µ̃R LSP parameter space and an extrapolation to higher luminosities in
Sect. 5.2.3.

5.2.1. The DØ trilepton analysis

The DØ search for associated production of charginos and neutralinos with final states containing
three leptons is presented in Ref. [196]. The analysis is based on pp collision data at a center-
of-mass energy of

√
s = 1.96 TeV corresponding to an integrated luminosity of 2.3 fb−1, with

the exception of the analysis using identified hadronic τ lepton decays, which is based on 1 fb−1

of data. Four dedicated trilepton event selections were designed, distinguished by the lepton
content in the final state, i.e. we have a eeℓ, µµℓ, eµℓ and µτ selection without specification of
the lepton charge. Here the third lepton ℓ corresponds to a reconstructed isolated track without
using the DØ standard lepton identification criteria. The first three channels are separated
into a low-pT and a high-pT selection, while the µτ channel contains a µτℓ selection and a µττ
selection. In this study, we focus on the eeℓ, µµℓ and eµℓ selections. The µτ selection turned
out to be insensitive to our models.

In our object reconstruction, we use cone isolation criteria for all leptons, where the cone
radius ∆R =

√

(∆φ)2 + (∆η)2 is given by the distance in pseudorapidity η and azimuthal angle
φ. Guided by the DØ object reconstruction, an electron (muon4) with pseudorapidity |η| < 3.2
(|η| < 2.0) is considered as isolated, if the scalar sum of the absolute value of the transverse
momenta of all tracks in a cone of ∆R = 0.4 does not exceed 2.5 GeV. We do not loosen the
reconstruction criteria for the third lepton ℓ but demand it to be an isolated electron or muon.
Jets are reconstructed with FastJet 2.4.1 [209, 210] using the kt algorithm with cone radius

2Note, that also other SUSY searches using the tri-lepton or (like-sign) di-lepton signature have been performed
at DØ and CDF [199, 200, 201, 202]. At the current status, these analyses use at most a dataset corresponding
to 1.1 fb−1. Thus, we do not expect these searches to be more restrictive than those presented here.

3In order to discriminate the tt background, CDF requires the scalar sum of the jet transverse energies
∑

Et(jets) ≤ 80 GeV and the number of jets N(jets) < 2 [197]. We thus expect SUSY events from sparton
(squark and/or gluino) pair production to be mostly rejected in the CDF analysis.

4This isolation criteria corresponds to tight muons in Ref. [196].
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Selection µµℓ eeℓ eµℓ
low pT high pT low pT high pT low pT high pT

I pℓ1T , p
ℓ2
T > 12, > 8 > 18, > 16 > 12, > 8 > 20, > 10 > 12, > 8a > 15, > 15

mℓ1ℓ2 ∈ [20, 60] ∈ [0, 75] ∈ [18, 60] ∈ [0, 75] - -
II ∆φℓ1ℓ2 < 2.9 < 2.9 < 2.9 < 2.9 - -

/ET > 20 > 20 > 22 > 20 > 20 > 20
Sig( /ET ) > 8 > 8 > 8 > 8 > 8 > 8
mmin

T > 20 > 20 > 20 > 14 > 20 > 15
III HT - < 80 - - - -

IV pℓ3T > 5 > 4 > 4 > 12 > 6 > 6

mℓ3
T > 10 > 10 > 10 > 10 > 10 > 8

V mℓ1,2ℓ3 6∈ [80, 110] - - - < 70 < 70

anti W - - tight likelihoodb - tight likelihoodc

hit in 2 inner layersc

very tight muon isolationd

VI
∑

0.05<∆R<0.4 p
ℓ3
T < 1

/ET × pℓ3T > 200 > 300 > 220 - - -
VII pbalT < 4 < 4 < 4 < 4 < 2 < 2

apℓ1T and pℓ2T are electron and muon pT , respectively.
bfor pℓ3T < 15 GeV
cfor mµ

T ∈ [40, 90] GeV
dfor me

T ∈ [40, 90] GeV

Table 5.2.: DØ selection criteria for the µµl, eel and eµl analyses (all energies, masses and
momenta in GeV, angles in radians) for the low-pT selection and the high-pT se-
lection, see text and Ref. [196] for further details. We apply all cuts except the cut
on Sig( /ET ) in step III and the anti W requirements in step VI (both marked in
gray).

∆R = 0.4 and must be within |η| < 2.5. In our Monte Carlo (MC) simulation, the missing
transverse energy /ET is calculated as the sum over the transverse momenta of all invisible
particles5.

In the following, we describe the general features of the various steps in the event selection.
The details are given in Tab. 5.2 and the specific values should be taken from this table. For
a detailed description and their effect on the Standard Model (SM) background we refer the
reader again to Ref. [196].

First, each selection requires two identified leptons (ℓ = e, µ) with a certain minimum trans-
verse momenta pℓ1T , pℓ2T (I). If more then two leptons are identified that satisfy the pT criteria,
the two leptons with the highest pT are considered. Next, constraints on the invariant mass
mℓ1ℓ2 and the opening angle ∆φℓ1ℓ2 of the two leptons are imposed (II). This is followed in step

5Experimentally, we do not know the transverse momenta of the invisible particles. Here, we have to sum
over the transverse momenta of all visible objects in the event. The missing transverse momentum can then be
calculated using energy and momentum conservation, assuming that the initial state particles have zero transverse
momentum.
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5. Probing Selectron and Smuon LSP models at hadron colliders

(III) by requirements on /ET , the minimal transverse mass mmin
T = min(mℓ1

T ,m
ℓ2
T ), where

mℓ
T =

√

2pℓT /ET [1 − cos ∆φ(ℓ, /ET )], (5.2)

and HT , which is the scalar sum of the pT of all jets with pT > 15 GeV. In this step, a further
requirement on Sig( /ET ) is performed in the original DØ analysis, where Sig( /ET ) is defined for
events with at least one jet as

Sig( /ET ) ≡ /ET
√

∑

jets σ
2(Ej

T ||/ET )
. (5.3)

Here, σ2(Ej
T ||/ET ) is the jet energy resolution projected on the /ET direction. This cut rejects

events with /ET faked by poorly measured jets. In our approach, we do not apply this cut on
Sig( /ET ), since we do not have a measure of the jet energy resolution. However, since the missing
transverse energy is stemming mostly from the neutrinos coming from the leptonically decaying
ℓ̃R LSP, the effect of this cut is expected to be small.

In step IV, we demand an additional third lepton with a softer pT requirement. Further cuts
on its transverse mass mℓ3

T and the invariant masses mℓ1,2,ℓ3 of the third lepton with one of the
preselected leptons are applied (V). For some channels in the original DØ analysis, step (VI)
includes further lepton quality requirements using likelihood discriminants in order to reduce
background from W boson production, where the second lepton is faked by jets or photons. This
step is skipped in our approach, since the usage of these methods is beyond the scope of this
work. In the last step (VII) a cut on the product of the third lepton pT and /ET and on the pT
balance

pbalT =
|~p ℓ1

T + ~p ℓ2
T + ~/ET |
pℓ3T

(5.4)

is applied.

5.2.2. DØ results and a test of two benchmark scenarios

In this section, we select two benchmark scenarios which we test explicitly against the DØ anal-
ysis described in the last section. We focus on light ℓ̃R LSP models with an LSP mass MLSP .

200 GeV. As discussed in Sect. 4.3, a general feature of these scenarios is a near mass degeneracy
of the ℓ̃R LSP with the τ̃1, which is the NLSP for most of the parameter space, cf. Fig. 4.3. The
B3 mSUGRA parameters for the two benchmark points, denoted SUSY1 and SUSY2, are given
in Tab. 5.3. Both scenarios exhibit a ẽR LSP with a dominant 6P6 coupling λ231|GUT = 0.045.

The benchmark point SUSY1 represents a wide region of of the ẽR LSP parameter space,
where the mass difference between the ẽR LSP and the lightest neutralino, χ̃0

1, is much larger
than the mass difference between ẽR LSP and the τ̃1 NLSP. The masses of the ẽR, τ̃1 and χ̃0

1 are
given by 139.1 GeV, 139.6 GeV and 163.3 GeV, respectively. In fact, the NNLSP is the right-
handed smuon, µ̃R, with mass Mµ̃R

= 156.2 GeV. In contrast, SUSY2 lies in the boundary
region to the χ̃0

1 LSP. Here, all three sparticles ẽR, τ̃1 and χ̃0
1 have close to equal masses, with

151.5 GeV, 151.6 GeV and 152.8 GeV, respectively. Due to the low mass difference between
the χ̃0

1 and the ẽR, we expect the electrons from the decay χ̃0
1 → ẽRe to be fairly soft, such

that many do not fulfill the preselection criteria. Detailed tables containing all sparticle masses
and decay modes for these benchmark models are given in Appendix A.1. Both SUSY1 and
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B3 mSUGRA parameter SUSY1 SUSY2

M0 [GeV] 0 80
M1/2 [GeV] 400 375

A0 [GeV] −1250 −1250
tan β 5 5
sgn(µ) + +
λ231|GUT 0.045 0.045

Table 5.3.: B3 mSUGRA parameter for the benchmark points SUSY1 and SUSY2.

Signal cross section (in fb) at the Tevatron SUSY1 SUSY2

σ(pp→ sparton pairs) 1.5 ± 0.1 8.2 ± 0.2

σ(pp→ slepton pairs) 8.5 ± 0.2 6.4 ± 0.1

σ
(

pp→ gaugino pairs,
gaugino-sparton

)

3.8 ± 0.1 5.9 ± 0.1

σ(pp→ sparticle pairs) 13.8 ± 0.2 21.5 ± 0.2

Table 5.4.: Leading-order (LO) signal cross sections for pp̄ collisions at a center-of-mass energy
of

√
s = 1.96 TeV for the benchmark scenarios SUSY1 and SUSY2. We give the

cross section of sparton (i.e. squark and gluino) pair, slepton pair and electroweak
(EW) gaugino pair / EW gaugino-sparton production separately. The last row
gives the total sparticle pair production cross section, which is the signal process.
We employed HERWIG6.510 to derive the LO cross sections and for the event
simulation. The uncertainties are due to statistical fluctuations from Herwig.

SUSY2 are chosen such that they are consistent with the 2σ lower value of δaSUSY
µ (green line

in Fig. 4.3).

In order to test whether our benchmark models are excluded, we generate 2000 signal events
scaled to an integrated luminosity of 2.3fb−1 and apply the simplified DØ analysis described
above. We employ the Feldman & Cousins method [211] to set 90% C.L. upper limits given the
number of expected background events and the number of observed events, both taken from the
DØ paper [196]. In those cases where the number of observed events is smaller than the expected
background, we take as the upper limit the 90% C.L. sensitivity, defined as the average upper
limit that would be obtained by an ensemble of experiments with the expected background and
no true signal, and given in Tab. XII in Ref. [211]3. We claim a 90% C.L. exclusion of the SUSY
scenario, if the number of signal events exceeds this upper confidence limit in any step of the
event selection. We do this comparison separately for all four4 selection channels in order to
gain some insights about their sensitivity on our models. Note that in this method, systematic
uncertainties are not taken into account.

For the simulation, we use SOFTSUSY 3.0.13 [188, 189] to calculate the SUSY mass spectra.
The SOFTSUSY output is fed into ISAWIG1.200 and ISAJET7.64 [212] in order to calculate

3For the number of expected background events > 15, we approximate the sensitivity by the Feldman &
Cousins upper limit for Nobs = Nbkg.

4As mentioned before, the fourth channel including τ leptons is insensitive. Thus we do not present the results
for this specific channel here.
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Selection µµℓ eeℓ eµℓ
Data Backgrd. SUSY1 SUSY2 Data Backgrd. SUSY1 SUSY2 Data Backgrd. SUSY1 SUSY2

I 194006 195557 ± 177 6.6 17.8 235474 232736 ± 202 19.8 11.7 16630 16884 ± 75 12.6 18.2
II 22766 26067 ± 88 1.4 4.2 31365 27184 ± 64 4.8 2.8
III 178 181 ± 6.4 1.2 3.9 515 212± 12 4.3 2.6 1191 1177 ± 20 11.1 16.9
IV 7 2.9± 0.7 1.0 2.8 16 9.3± 2.0 3.0 1.3 22 18.0± 1.2 9.9 11.0
V 4 2.2± 0.5 0.6 2.4 9 5.9± 1.7 2.8 1.3 3 3.5± 0.5 3.8 3.9
VI 6 3.1± 0.4 2 1.6± 0.4
VII 4 1.2± 0.2 0.5 1.8 2 1.8± 0.2 2.4 1.2 2 0.8± 0.2 1.2 1.0

Table 5.5.: Numbers of events observed in the data and expected for the background (taken
from Ref. [196]) and numbers of signal (SUSY1 and SUSY2, see text) events at
various stages of the analysis for the µµℓ, eel and eµℓ channels and the low-pT
selection. Each row corresponds to a group of cuts, as detailed in Tab. 5.2.

Selection µµℓ eeℓ eµℓ
Data Backgrd. SUSY1 SUSY2 Data Backgrd. SUSY1 SUSY2 Data Backgrd. SUSY1 SUSY2

I 140417 141781 ± 120 5.4 16.2 171001 170197 ± 175 19.0 11.1 4617 4709 ± 23 10.6 17.0
II 10349 10645 ± 51 1.9 5.6 8273 7937 ± 39 6.8 3.9
III 173 176± 5.7 1.2 3.7 244 264± 10 6.4 3.8 727 738 ± 11 9.8 16.0
IV 7 3.8± 0.5 0.9 2.8 0 1.5± 0.3 3.9 1.8 11 12.7± 0.9 8.8 10.3
V 4 2.9± 0.4 0.9 2.8 0 1.1± 0.3 3.7 1.8 2 2.8± 0.5 3.3 3.6
VI 0 1.0± 0.2
VII 4 2.0± 0.3 0.9 2.4 0 0.8± 0.1 3.4 1.7 0 0.5± 0.1 0.9 1.0

Table 5.6.: Numbers of events observed in the data and expected for the background (taken
from Ref. [196]) and numbers of signal (SUSY1 and SUSY2, see text) events at
various stages of the analysis for the µµℓ, eeℓ and eµℓ channels and the high-pT
selection. Each row corresponds to a group of cuts, as detailed in Tab. 5.2. Signal
event yields that exceed the 90% C.L. upper exclusion bound are marked in bold-
faced red.

the decay widths of the SUSY particles. The signal process, i.e. sparticle pair production, was
simulated with HERWIG6.510 [213, 214, 215].

The leading-order (LO) cross section of this process and its subprocesses of sparton (i.e.
squark and gluino) pair, slepton pair and electroweak (EW) gaugino pair / EW gaugino-sparton
production for the two benchmark models is given in Tab. 5.4. For SUSY1, sparticle production
is dominated by slepton and gaugino production. However, for SUSY2 the sparton production
dominates due to the low mass of the lightest stop, Mt̃1

= 304.9 GeV, which decays exclusively
to the lightest chargino and a bottom quark, cf. Tab. A.2. As a conservative approach, we
only use the LO cross section for the signal, while the SM background in the DØ analysis [196]
includes next-to-leading (NLO) and next-to-NLO corrections. For the calculation of the Feldman
& Cousins confidence limits we employ ROOT [216].

In Tab. 5.5 and 5.6 we review the results from the DØ analysis and compare them with the
results for the two B3 mSUGRA models SUSY1 and SUSY2 for the low-pT and the high-pT
selections, respectively.

In all selections, the signal event yield for both benchmark scenarios is . 20 events after the
two lepton requirement (step I). Thus, the event yields in the first steps (I-III) of the analysis are
dominated by the overwhelming SM background. The analysis becomes sensitive to the signal
once we require the third lepton (step IV and beyond). Then, the SM background is reduced to
O(1 − 20) expected events. We now discuss in detail the DØ results and the signal event yields
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5.2. Constraints from SUSY searches at the Tevatron

of the different selections after step IV of the analysis was performed.

In the µµℓ channel (in both the low-pT and high-pT selection), the number of observed events
is larger than the number of expected events from the SM background for all steps beyond cut
IV. Therefore, this channel has intrinsically a less restrictive impact on the SUSY models. We
expect only O(1 − 3) signal events beyond step IV for both benchmark points. Hence, the µµℓ
channel cannot exclude these models.

Note, that SUSY2 yields roughly three times as many events in this selection as SUSY1. This
is due to the enhanced t̃1 pair production and their decay to the lightest chargino, as mentioned
above. The chargino decays to the ν̃µ and a muon 21% of the time, leading to an enhanced
number of muons in the signal. However, in the µµℓ high-pT selection, most of the signal events
from sparton-pair production are rejected by the HT cut in step III. This reduces in particular
the SUSY2 event yield, since here the production of sparton-pairs comprises 38% of the signal
cross section, cf. Tab. 5.4.

In the eeℓ channel, the number of observed events is larger (lower) than the number of
expected SM background events in the low-pT (high-pT ) selection for all steps beyond cut IV.
For both benchmark scenarios we expect O(1 − 4) signal events in these steps of the analysis.
Furthermore, the expected signal events for SUSY1 are roughly two times more than for SUSY2.
This is because in SUSY2 the mass difference between the χ̃0

1 and the ẽR LSP is small. Then,
the electrons from the decay χ̃0

1 → ẽRe tend to be soft and fail to pass the pT criteria in step I
of the eel selection. The SUSY1 event yield exceeds the 90% C.L. upper bound in step VII of
the high-pT eeℓ selection and is therefore excluded by the DØtrilepton search.

For the low-pT selection of the eµℓ channel, the number of observed events tends to be
larger than the number of expected SM background events, whereas in the high-pT selection,
the SM background is slightly overestimated. Both the SUSY1 and SUSY2 event yield exceed
the 90% C.L. upper limit in step IV of the eµℓ high-pT selection. The following steps in the eµℓ
channel (step V and beyond) are not as sensitive to our models as step IV, because the cut on
the dilepton invariant masses in step V significantly reduces the signal.

In general, the region close to a χ̃0
1 LSP is more difficult to exclude due to the soft electrons.

For instance, in step IV of the eµℓ low-pT selection, the 90% C.L. upper limit is 13.0 events,
while we expect 11.0 signal events for SUSY2. However, if we modify the M0 value of SUSY2
from 80 GeV to 75 GeV, i.e. we basically change the mass difference between χ̃0

1 and ẽR from
1.3 GeV to 3.7 GeV, the number of expected signal events increases to 15.2 events and the model
is excluded.

We conclude, that the DØ analysis using 2.3 fb−1 of data excludes both benchmark points
SUSY1 and SUSY2 at 90% C.L.. The most restrictive channels for ẽR LSP models with a
dominant λ231 coupling are the eeℓ high-pT selection (in step VII) and the eµℓ high-pT selection
(in step IV). In the next section, we determine the excluded regions of the ẽR and µ̃R LSP
parameter space, considering also other dominant 6P6 couplings.

5.2.3. Excluded selectron and smuon LSP parameter space with existing data

We now apply the DØ analysis to a more extensive parameter region with a ℓ̃R LSP. For
this, we perform a scan in the M1/2 −M0 plane with M1/2 ∈ [350 GeV, 500 GeV] in steps of
∆M1/2 = 5 GeV and M0 ∈ [0 GeV, 120 GeV] in steps of ∆M0 = 2.5 GeV. We test both ẽR LSP
and µ̃R models with dominant 6P6 couplings λ231, λ131 and λ132, respectively, with a value of
0.045 at MGUT. The other B3 mSUGRA parameter values are A0 = −1250 GeV, tan β = 5 and
sgn(µ) = +. The ẽR LSP parameter region with λ231 6= 0 was already discussed in Sect. 4.3,
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5. Probing Selectron and Smuon LSP models at hadron colliders

cf. Fig. 4.3. For each parameter point with a ℓ̃R LSP, 2000 events were generated and scaled
to an integrated luminosity of

∫

Ldt = 2.3 fb−1 and the eeℓ, µµℓ and eµℓ low-pT and high-pT
event selections were applied5. At each step of the event selection, the number of passed events
is compared with the DØ results as described above. We make this comparison for all event
selection steps once the third lepton is required, i.e. for step IV and beyond, cf. Tab. 5.2.

In the following figures, the patterned gray regions mark parameter points with either a
neutralino or stau LSP (as indicated in the figures) which are not considered here. The solid
gray region is ruled out by the bound on the 6P6 coupling Λ, cf. Tab. 4.1. The mass of the ℓ̃R
LSP (in GeV) is given by the gray contour lines.

In Fig. 5.2 we give the ẽR LSP parameter space for both a dominant 6P6 coupling λ231 = 0.045
(upper figures) and λ131 = 0.045 (lower figures) at MGUT. We show the parameter region that is
excluded at 90% C.L. with 2.3 fb−1 of analyzed data for each channel and pT selection separately.
The figures on the left-hand-side (right-hand-side) show the low-pT (high-pT ) selection of the eeℓ
and eµℓ channel. The µµℓ channel does not exclude any ẽR LSP parameter space with 2.3 fb−1

of data.

In ẽR LSP models with a dominant λ231 coupling (upper figures in Fig. 5.2), the LSP decays
to 50% to a (hard) muon and a neutrino. Thus, the eµℓ selection is very sensitive to these models
and can exclude ẽR LSP scenarios with ẽR masses up to 150 GeV (155 GeV) and squark masses
up to 850 GeV (880 GeV) with the low-pT (high-pT ) selection, cf. Fig. 5.2(a) [Fig. 5.2(b)]. The
sensitivity decreases for lower mass differences of the χ̃0

1 and the ẽR due to the softer electrons,
as can be seen in all displayed channels in Fig. 5.2(a) and Fig. 5.2(b). Especially the eeℓ becomes
insensitive in this boundary region.

Considering ẽR LSP models with a dominant λ131 coupling (lower figures in Fig. 5.2), we
would näıvely expect an enhanced sensitivity of the eeℓ channel since the LSP decays to 50% to
a (hard) electron and a neutrino. However, in the eeℓ low-pT selection in Fig. 5.2(c), the reach is
actually worse than for ẽR LSP models with a dominant λ231 coupling at MGUT, cf. Fig. 5.2(a).
The reason is the following: If the two preselected electrons come from the same decay chain,
i.e. one from the decay χ̃0

1 → ẽRe and the other from ẽR → eντ , they tend to point in the same
direction as the neutrino. Thus, the pT balance, Eq. (5.4), is large and these events are rejected
in step VII of the event selection, cf. Tab. 5.2. Since the eeℓ low-pT selection is most sensitive
in step VII, cf. Tab. 5.5, the exclusion reach of this channel is reduced6. In addition, this
channel cannot exclude models with M1/2 . 370 GeV. Here, the average pT of the third lepton
is smaller, leading to a lower efficiency in step IV and even larger pT balance, cf. Eq. (5.4). Due
to the additional hard electrons from the LSP decay, the high-pT selection of the eeℓ channel
in Fig. 5.2(d) has a slightly improved sensitivity for models near the χ̃0

1 LSP region, compared
to the case with a coupling λ231 6= 0, cf. Fig. 5.2(b). Supersymmetric decay chains with a ẽR
LSP and a non-zero λ131 coupling usually do not involve muons. Thus, the sensitivity of the
eµℓ channels is lower than the sensitivity of the eeℓ channels, except for parameter points close
to the χ̃0

1 LSP region.

Comparing the excluded ẽR parameter regions in Fig. 5.2 with Fig. 4.3, we conclude that ẽR
LSP scenarios with a significant contribution to the anomalous magnetic moment of the muon
(green line in Fig. 4.3) are excluded at 90% C.L. by the DØ search with 2.3 fb−1 of analyzed
data.

5We did the same for the µτ selections for an integrated luminosity of
∫

Ldt = 1.0 fb−1. However, this channel

is not capable to exclude any ℓ̃R LSP parameter space. Thus, we do not show any results for the µτ channels.
6The same effect also exists in the eµℓ channel for scenarios with a dominant λ231 coupling. However, this

channel is most sensitive in the steps IV and V, i.e. before the cut on the pT balance is performed, cf. Tab. 5.5
and Tab. 5.6. Thus, the exclusion power of the eµℓ channel does not significantly suffer from this effect.
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(a) Excluded ẽR LSP parameter space with a domi-
nant λ231 coupling with the low-pT selections.
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ẽR-LSP

high pT selection90% C.L. excl.

(b) Excluded ẽR LSP parameter space with a domi-
nant λ231 coupling with the high-pT selections.
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(c) Excluded ẽR LSP parameter space with a domi-
nant λ131 coupling with the low-pT selections.
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(d) Excluded ẽR LSP parameter space with a domi-
nant λ131 coupling with the high-pT selections.

Figure 5.2.: Excluded regions (90% C.L.) of the ẽR LSP parameter space by the DØ trilepton
analysis with 2.3 fb−1 of data. We show two different parameter regions with
(a,b) λ231 = 0.045 and (c,d) λ131 = 0.045 as the dominant 6P6 coupling at MGUT.
The other parameters are A0 = −1250 GeV, tan β = 5 and sgn(µ) = +. The
colored contour lines give the excluded region by the different channels: In (a,c)
they correspond to the eel (red, dashed) and eµl (blue, dotted) low-pT selections,
while in (b,d) they are shown for the same channels in the high-pT selection. The
gray dotted contour lines give the LSP mass, MẽR in GeV, as indicated by the
labels.
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(a) Excluded µ̃R LSP parameter space with a domi-
nant λ132 coupling with the low-pT selections.
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(b) Excluded µ̃R LSP parameter space with a domi-
nant λ132 coupling with the high-pT selections.

Figure 5.3.: Excluded regions (90% C.L.) of the µ̃R LSP parameter space (A0 = −1250 GeV,
tan β = 5, sgn(µ) = +, λ132|GUT = 0.045) by the DØ trilepton analysis with
2.3 fb−1 of data. In (a) the blue dotted contour line corresponds to the eµℓ low-
pT selection, while in (b) the red dashed and blue dotted contour lines indicate
the eeℓ and eµℓ high-pT selection, respectively. The gray dotted contour lines give
the LSP mass, Mµ̃R

in GeV, as indicated by the labels.

The excluded µ̃R LSP parameter space with a dominant 6P6 coupling λ132 = 0.045 at MGUT

is shown in Fig. 5.3. In complete analogy to ẽR LSP models, we now have soft muons from the
decay χ̃0

1 → µ̃Rµ in the region of low mass difference between the χ̃0
1 and the µ̃R LSP. The µ̃R

LSP decays to 50% into a (hard) electron and a neutrino. Thus, the most sensitive channel is
eµℓ, which has a similar reach for both the low-pT and high-pT selection as for the ẽR LSP models
with a dominant λ231 coupling, cf. Fig. 5.2(a) and Fig. 5.2(b). The eeℓ channel can only exclude
a small fraction of the parameter space with its high-pT selection, since the electron multiplicity
is lower than in ẽR LSP models. Although these models exhibit an enhanced number of muons,
the µµℓ channel is still not as sensitive as the other channels due to its lower exclusion power,
cf. Sect. 5.2.2.

We also compared the excluded µ̃R LSP parameter space in Fig. 5.3 with those µ̃R LSP
regions7, which give a significant contribution to aµ. It turns out, that also these scenarios are
excluded to 90% C.L. by the DØ analysis with 2.3 fb−1 of analyzed data.

In summary, the DØ trilepton SUSY search analysis using 2.3 fb−1 of data excludes ẽR and
µ̃R LSP scenarios with M1/2 . (400 − 410) GeV at 90% C.L., roughly corresponding to LSP
masses of (140 − 150) GeV. Thus, the ẽR and µ̃R LSP parameter regions with a significant
contribution to the anomalous magnetic moment of the muon are ruled out. ẽR LSP scenarios
with a dominant λ131 coupling are less constrained by the present analysis, since these models

7Note, that the µ̃R mass enters in the SUSY contribution to the anomalous magnetic moment of the muon,
δaSUSY

µ , via a neutralino-smuon-loop diagram [37]. Thus, δaSUSY
µ is slightly larger in µ̃R LSP models as in ẽR

LSP models.
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have a low muon multiplicity.

5.2.4. Sensitive selectron and smuon LSP parameter space with future data

Both Tevatron experiments DØ and CDF are expected to have acquired ∼ 10 fb−1 of data at the
end of this year (2010). Therefore, we extrapolate the current DØ results to study the prospects
of an exclusion of ℓ̃R LSP models, using data corresponding to an integrated luminosity of
10 fb−1.

We assume that the events after each selection step in each channel are observed in the same
rate as given by the results with integrated luminosity of 2.3 fb−1, cf. Tab. 5.5 and Tab. 5.6.
Then, we can extrapolate the data to the higher integrated luminosity of 10 fb−1. By applying
the same method as in the previous section, we determine the 90% C.L. sensitivity region,
i.e. the supersymmetric parameter region which would lead to a significant deviation from the
extrapolated data, assuming no discrepancies are observed.

In Fig. 5.4 we present the ẽR LSP parameter space, which can be excluded with a future
integrated luminosity of 10 fb−1. The parameter space is the same as in Fig. 5.2, i.e. the
dominant 6P6 operator is λ231 (λ131) in the upper (lower) figures with a value of 0.045 at MGUT.
The 90% C.L. sensitivity regions for the channels eeℓ, eµℓ and µµℓ are given by the contour
lines for the low-pT (left figures) and high-pT (right figures) selection.

For ẽR LSP models with a dominant λ231 coupling, the most sensitive channels are the eµℓ and
eeℓ high-pT selections, which may exclude scenarios with M1/2 . 450 GeV with future data. This
corresponds to LSP masses MẽR . (160 − 170) GeV and squark masses Mq̃ . (900− 950) GeV.
As expected, the eµℓ selections are more efficient than the eeℓ channels for scenarios with low
mass difference between the χ̃0

1 and the ẽR. The µµℓ channel may become sensitive for models
with M1/2 ≈ (370 − 380) GeV, because then the t̃1 decays dominantly via t̃1 → χ̃+

1 b, and the
decay of the chargino leads to an enhanced muon multiplicity, cf. Tab. A.2. However, if the
events are observed at the same rate as given by the current data, the µµℓ channel will not play
a major rôle in the exclusion of ẽR LSP scenarios.

For most of the ẽR LSP parameter space with a dominant λ131 coupling the high-pT eeℓ
channel is the most sensitive and may exclude scenarios with M1/2 . 440 GeV with 10 fb−1,
cf. Fig. 5.4(d). This reach roughly corresponds to models with LSP masses MẽR . (155 −
165) GeV and squark masses Mq̃ . (870−940) GeV. As with 2.3 fb−1 of data, the eµℓ selections
perform slightly better than the eeℓ selections for scenarios with a low mass difference between
the χ̃0

1 and the ẽR LSP.

We present the sensitive µ̃R LSP parameter space with a dominant 6P6 coupling λ132 = 0.045
at MGUT in Fig. 5.5. The parameter space is the same as in Fig. 5.3. With 10 fb−1, the low-
pT (high-pT ) eµℓ selection may exclude scenarios with M1/2 . 430 GeV (450 GeV), whereas
the eeℓ channel selection is only sensitive to scenarios with M1/2 . 390 GeV (420 GeV) in its
low-pT (high-pT ) selection. However, the eeℓ channel sensitivity does not depend on the mass
difference, between the χ̃0

1 and the µ̃R LSP, while the sensitivity of the eµℓ channel decreases to
approximately the eeℓ sensitivity. We observe in Fig. 5.5 that the µµℓ channel may exclude µ̃R
LSP scenarios around M1/2 . 390 GeV.

We conclude this section by pointing out, that the DØ analysis may exclude an extended ẽR
and µ̃R parameter space with future data. Under the (strong) assumption, that we can linearly
extrapolate the results given for an integrated luminosity of 2.3 fb−1 to a higher integrated
luminosity, both ẽR LSP and µ̃R LSP scenarios with M1/2 . 450 GeV may be excluded with

10 fb−1.
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(b) ẽR LSP sensitivity region with a dominant λ231
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(c) ẽR LSP sensitivity region with a dominant λ131

coupling with the low-pT selections.
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(d) ẽR LSP sensitivity region with a dominant λ131
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Figure 5.4.: Extrapolated sensitivity regions (90% C.L.) of the ẽR LSP parameter space for the
DØ trilepton analysis with future data corresponding to an integrated luminosity
of 10 fb−1. The parameter regions are the same as in Fig. 5.2, i.e. we have (a,b)
λ231 = 0.045 and (c,d) λ131 = 0.045 as the dominant 6P6 coupling at MGUT. The
colored contour lines give the sensitivity of the different channels: In (a,c) they
correspond to the eel (red, dashed) and eµl (blue, dotted) low-pT selections, while
in (b,d) they are shown for the same channels in the high-pT selection. In (b),
the fine dotted, green contour gives the sensitivity of the µµl high-pT selection.
The gray dotted contour lines give the LSP mass, MẽR in GeV, as indicated by
the labels.
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Figure 5.5.: Extrapolated sensitivity regions (90% C.L.) of the µ̃R LSP parameter space for the
DØ trilepton analysis with future data corresponding to an integrated luminosity
of 10 fb−1. The parameter regions are the same as in Fig. 5.3. The colored
contour lines give the sensitivity of the different channels: In (a) they correspond
to the µµℓ (green, fine dotted), eeℓ (red, dashed) and eµℓ (blue, dotted) low-
pT selections, while in (b) they are shown for the same channels in the high-pT
selection. The gray dotted contour lines give the LSP mass, Mµ̃R

in GeV, as
indicated by the labels.

5.3. Discovery potential at the LHC

In the beginning of this year (2010), the LHC at CERN started to take data for proton-proton
(pp) collisions at a center-of-mass energy of

√
s = 7 TeV. The current plan schedules the

collection of data corresponding to an integrated luminosity of
∫

Ldt = 1 fb−1 until the end
of 2011. Then, the center-of-mass energy shall be increased to supposably

√
s = 14 TeV for a

longer running period.

In this section, we study the discovery potential of ẽR and µ̃R LSP models with an inclusive
search analysis with three final state leptons at the LHC. Due to the striking multi-leptonic
signatures of these models, cf. Sect. 5.1, these models may already be discovered with early
LHC data. Thus, we study the prospects of a discovery with LHC data at both 7 TeV and
14 TeV center-of-mass energies.

In the next section, we select three benchmark scenarios as representatives of different re-
gions in the ℓ̃R LSP parameter space. The design of the search analysis is then guided by the
properties of these signal benchmark points: We motivate the event selection by presenting the
signal distributions of the transverse momentum, pT , of the leptons and jets as well as event
distributions in the various cut variables for the signal and SM background. Furthermore, we
discuss in detail the impact of the analysis cuts on the signal and background and show, that the
benchmark scenarios can be discovered with 1 fb−1 of LHC data at

√
s = 7 TeV. The discussion
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5. Probing Selectron and Smuon LSP models at hadron colliders

of the discovery potential is then extended to a larger B3 mSUGRA parameter space. This will
demonstrate, that our cuts work efficiently also beyond our benchmark points.

5.3.1. Benchmark Scenarios

In order to account for the different phenomenology of ℓ̃R LSP models in the design of the three-
lepton search analysis, we select one representative benchmark point for each mass hierarchy
of the lightest sparticles, Eq. (4.8)-(4.10). The B3 mSUGRA parameters and the masses of
the lightest four sparticles of these benchmark points, denoted BE1, BE2 and BE3, are given
in Tab. 5.7. All benchmark points exhibit a ẽR LSP via a dominant coupling λ231 = 0.045 at
MGUT and fulfill the experimental constraints from LEP Higgs searches, Eq. (4.7), and Tevatron
trilepton SUSY searches, cf. Sect. 5.2, as well as the constraints on the 6P6 coupling, cf. Tab. 4.1.
The specific choice of the indices of the 6P6 coupling Λ, cf. Tab. 4.1, does not change the main
structure of the mass spectrum8 but only the lepton content in the final state at colliders,
cf. Sect. 5.1. Since we want to design the search analysis as flavor-universal as possible, the
selection of the benchmark models is somewhat independent of the choice of the Λ coupling
indices. We therefore only study in detail the case of a ẽR LSP with a dominant λ231 coupling
and argue, that these results also account for the other possible 6P6 couplings and the case of a
µ̃R LSP.

We now discuss the main properties of the selected benchmark scenarios. The complete
sparticle mass spectra and branching ratios are given in Appendix A.2.

The benchmark points BE1 and BE2 both feature a τ̃1 NLSP. In BE1, the τ̃1 is nearly mass
degenerate with the ẽR and decays exclusively via the λ231 coupling into an electron and a muon
neutrino. The NNLSP is the µ̃R which decays via three-body decays into the ẽR or the τ̃1. There
is a fairly large mass difference between the ẽR and the next-to-NNLSP (NNNLSP) χ̃0

1 of about
27 GeV. In contrast, in BE2 the τ̃1 mass is close to the mass of the χ̃0

1, which is the NNLSP.
Thus, the τ̃1 dominantly decays into the ẽR via three-body decays. For this benchmark point,
the mass difference between the ẽR and the χ̃0

1 is smaller, i.e. about 7 GeV. The NNNLSP is
the µ̃R. Finally, the benchmark point BE3 features a χ̃0

1 NLSP with a mass difference to the
ẽR of about 3 GeV. The τ̃1 NNLSP mostly decays into the χ̃0

1 and a τ (64.5%). The remaining
decay is τ̃1 → eνµ via the λ231 coupling. Again, the µ̃R is the NNNLSP.

5.3.2. Major Backgrounds

In the following Monte Carlo (MC) study, we consider the main SM backgrounds which can
lead to three or more leptons (ℓ = e, µ) in the final state at particle level, i.e. after (heavy
flavor) hadron and τ lepton decays. Moreover, we expect the SUSY signal events to contain
additional energy from hard jets, which arise from decays of the heavier colored sparticles. We
thus consider the following SM processes as the major backgrounds in our analysis:

• Top production. We consider top pair production (tt), single-top production associated
with a W boson (Wt) and top pairs associated with a gauge boson (Wtt, Ztt).

• Z + jets. The Z boson can decay into a pair of oppositely charged leptons. We consider Z
production in association of one or two parton level jets. For these jets, we only consider c-
and b-quarks. For the Zj background, we force the Z boson to decay into charged leptons.

8As discussed in Chapter 4, only the masses of those sparticles, which couple directly to the dominant Λ

coupling, are significantly reduced compared to the P6 conserving scenario. Changing the indices of the dominant
Λ coupling interchanges the flavor of the mass reduced sparticles correspondingly, but preserves the main structure
(e.g. mass hierarchy between LSP, NLSP, NNLSP, etc.) of the mass spectrum.
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5.3. Discovery potential at the LHC

B3-mSUGRA parameter BE1 BE2 BE3

M0 [GeV] 0 90 90
M1/2 [GeV] 475 460 450

A0 [GeV] −1250 −1400 −1250
tan β 5 4 4
sgn(µ) + + +
λ231|GUT 0.045 0.045 0.045

lightest sparticles (mass/GeV)

LSP ẽR (168.7) ẽR (182.3) ẽR (182.0)
NLSP τ̃1 (170.0) τ̃1 (189.0) χ̃0

1 (184.9)
NNLSP µ̃R (183.6) χ̃0

1 (189.5) τ̃1 (187.2)
NNNLSP χ̃0

1 (195.7) µ̃R (199.0) µ̃R (195.9)

Table 5.7.: B3 mSUGRA parameter and the mass hierarchies of the lightest four sparticles for
the ẽR LSP benchmark points BE1, BE2 and BE3. The remaining spectrum and
the branching ratios are given in Appendix A.

• W + jets. The W boson can decay into a charged lepton and a neutrino. We demand two
heavy flavor quarks (c, b) at parton level.

• Di-boson (WZ, ZZ) and Di-boson + jet (WWj, WZj, ZZj) production. For the di-boson
background the gauge bosons are forced to decay leptonically. For WWj, we consider only
the heavy flavor quarks c and b for the (parton level) jet, while for WZj and ZZj every
quark flavor is taken into account.

In the backgrounds where we consider explicitly the production of heavy flavor quarks c and
b at parton level, a cut on the minimal transverse momentum pT ≥ 10 GeV of the c or b quark
is performed, because only then do these quarks have a fair probability to yield an additional
isolated lepton [217]. Table 5.8 gives an overview of the background samples used in our analysis.

5.3.3. MC Simulation and object selection

The SM backgrounds tt, Ztt, Zcc and Zbb are simulated with Herwig6.510 [213, 214, 215]. For
the other SM processes we employ MadGraph/MadEvent 4.4.30 [218] for the generation of the
hard process which is then fed into Herwig6.510 for the hadronization process. The employed
MC generators are listed in Tab. 5.8. We also give the leading-order (LO) cross section and
the number of simulated events for each background sample for both 7 TeV and 14 TeV LHC
collisions, derived with Herwig (for the backgrounds tt, Ztt, Zcc and Zbb) and MadGraph (else).
In order to be consistent, we only consider leading-order cross sections for signal and background
samples. However, we want to note that next-to-leading-order (NLO) corrections can be large
[219, 220]. These should be included in a more dedicated analysis. Furthermore, our simulation
does not account for detector effects, i.e. we neglect backgrounds with leptons faked by jets or
photons. It was shown in Ref. [195] that the QCD background can be efficiently suppressed in
multi-lepton final states.

The SUSY mass spectra were calculated with SOFTSUSY 3.0.13 [188, 189]. The SOFTSUSY
output was fed into ISAWIG1.200 and ISAJET7.64 [212] in order to calculate the decay widths
of the SUSY particles. We added the three-body slepton decays ℓ̃R → ℓℓ′ℓ̃′R and τ̃1 → τℓℓ̃R to
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5. Probing Selectron and Smuon LSP models at hadron colliders

Sample sub-sample cross section [pb] simulated events Generator
7 TeV 14 TeV 7 TeV 14 TeV

top tt 86.7 460.4 200 000 5 000 000 Herwig
Wt 10.2 60.7 100 000 1 200 000 MadGraph + Herwig
Wtt 0.14 0.52 10 000 10 000 MadGraph + Herwig
Ztt 0.066 0.43 10 000 10 000 Herwig

Z + jets Zcc 49.5 187.2 100 000 2 000 000 Herwig

Zbb 44.6 170.5 100 000 2 000 000 Herwig
Z → ℓ+ℓ− + j (j = c, b) 59.6 202.5 180 000 3 700 000 MadGraph + Herwig

W + jets W → ℓν + jj (j = c, b) 38.2 95.2 135 000 1 400 000 MadGraph + Herwig

di-boson WZ → charged leptons 0.20 0.40 100 000 100 000 MadGraph + Herwig
ZZ → charged leptons 0.03 0.06 22 000 75 000 MadGraph + Herwig
WW + j (j = c, b) 10.9 64.0 120 000 1 000 000 MadGraph + Herwig
WZ + j (j = all) 7.0 25.0 77 000 100 000 MadGraph + Herwig
ZZ + j (j = all) 3.2 10.2 16 000 280 000 MadGraph + Herwig

Table 5.8.: Monte Carlo (MC) samples of the SM background used for our analysis. The third
and fourth (fifth and sixth) column give the leading-order cross section (number
of simulated events) for pp collisions at a center-of-mass energy of

√
s = 7 TeV

and
√
s = 14 TeV, respectively. For the event simulation we employ the MC

generator listed in the last column. The cross section is obtained by the empoyed
MC generator (MadGraph calculates the cross section in cases where we use both
MadGraph and Herwig).

Cross section (in fb) at the LHC at
√
s = 7 TeV BE1 BE2 BE3

σ(pp→ sparton pairs) 86.7 ± 0.4 151.7 ± 0.7 138.6 ± 0.7
σ(pp→ slepton pairs) 24.0 ± 0.1 19.9 ± 0.1 21.1 ± 0.1

σ
(

pp→ gaugino pairs,
gaugino-sparton

)

32.2 ± 0.2 38.6 ± 0.2 43.3 ± 0.2

σ(pp→ sparticle pairs) 142.9 ± 0.5 210.2 ± 0.7 203.0 ± 0.7

Cross section (in fb) at the LHC at
√
s = 14 TeV BE1 BE2 BE3

σ(pp→ sparton pairs) 1968 ± 10 2771 ± 13 2759 ± 14
σ(pp→ slepton pairs) 96.7 ± 0.5 83.9 ± 0.5 88.1 ± 0.5

σ
(

pp→ gaugino pairs,
gaugino-sparton

)

224 ± 1 259 ± 1 284 ± 1

σ(pp→ sparticle pairs) 2288.7 ± 10.1 3113.9 ± 13.0 3131.1 ± 14.0

Table 5.9.: Leading-order signal cross section for pp collisions at center-of-mass energies
√
s =

7 TeV and
√
s = 14 TeV for the benchmark scenarios BE1, BE2 and BE3. We

give the cross section of sparton (i.e. squark and gluino) pair, slepton pair and
electroweak (EW) gaugino pair / EW gaugino-sparton production separately. We
further give the total sparticle pair production cross section, which is the signal
process. We employ Herwig to determine the LO cross sections and to simulate
≈ 15 000 (≈ 250 000) events for the 7 TeV (14 TeV) MC signal samples. The
uncertainties are due to statistical fluctuations from Herwig.
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the ISAJET code, cf. Appendix C for the calculation and a discussion of these slepton decays.
The signal processes, i.e. pair production of SUSY particles, were simulated with Herwig6.510.

In Tab. 5.9 we give the LO production cross section for all selected benchmark points at
the LHC at center-of-mass energies of

√
s = 7 TeV and

√
s = 14 TeV. We present the cross

sections the signal process, i.e. sparticle pair production, and three of its subprocesses: Firstly,
the production of sparton pairs, where we consider squarks and gluinos as spartons; Secondly,
slepton pair production and thirdly the production of electroweak (EW) gaugino pairs or an
EW gaugino in association with a squark or gluino. For all benchmark points, sparton pair
production is the dominant SUSY production process. Thus, the majority of SUSY events will
fulfill our signature expectations including at least two hard jets, cf. Sect. 5.1. For the signal
samples at 7 TeV (14 TeV), we generate approximately 15000 (250000) events.

The particle selection is inspired by the definitions used by the ATLAS collaboration for
SUSY studies, cf. Ref. [195, pp. 1518]. We select leptons (i.e. electrons and muons) and jets
with pseudorapidity |η| < 2.5 and minimum transverse momentum pT > 10 GeV. We employ
the following isolation criteria using the distance in pseudorapidity η and azimuthal angle φ,
defined as ∆R =

√

(∆φ)2 + (∆η)2: Leptons are rejected, if the total transverse momentum of
all particles within a cone of ∆R < 0.2 around the lepton exceeds 1 GeV. Jets are reconstructed
with FastJet 2.4.1 [209, 210] using the kt algorithm with cone radius ∆R = 0.4. The missing
transverse energy /ET is given by the sum over the transverse momenta of the neutrinos.

5.3.4. Kinematic Distributions and Event Selection

In this section we discuss the kinematic event distributions for the benchmark points and moti-
vate the event selection criteria. All figures are given for the simulated 7 TeV dataset and are
either normalized or correspond to an integrated luminosity of

∫

Ldt = 1 fb−1. In Appendix B
we discuss the performance of the analysis for the LHC at 14 TeV.

The normalized pT distribution of the electrons (muons) after the object selection is shown in
Fig. 5.6(a) (Fig. 5.6(b)) for the B3 mSUGRA benchmark models. In all scenarios, the electrons
mostly stem from the neutralino decay χ̃0

1 → ẽRe, while many of the muons come from the LSP
decay ẽR → µντ .

For BE1, the mass difference between the µ̃R (χ̃0
1) and the ẽR LSP is about 15 (27) GeV

and thus quite large. Furthermore, the τ̃1 NLSP exclusively decays via the P6 violating decay
τ̃1 → eνµ. Thus, the electrons tend to have a hard pT . For instance, 81% of all electrons have
pelT & 25 GeV. However, a large amount of the muons are soft, cf. Fig. 5.6(b). A sizable fraction
of all muons do not fulfill the object selection requirement pT > 10 GeV, such that 34% of all
events do not contain any selected muon. These soft muons stem from the three body decays of
the µ̃R into the ẽR or the τ̃1.

The benchmark points BE2 and BE3 have similar lepton pT spectra: Due to the smaller
mass differences between the χ̃0

1 and the ẽR LSP compared to BE1, the electrons are softer.
For instance the fraction of selected electrons with pelT . 25 GeV is 55% (34%) for BE2 (BE3).
Because of the lepton pT requirement in the object selection, the electron multiplicity is reduced
in these scenarios: 30% (50%) of all events do not contain any selected electron in BE2 (BE3).
In contrast, these two scenarios have a harder muon pT spectrum than BE1, since the majority
of the muons stem from the ẽR LSP decay.

We conclude, that the lepton pT spectrum strongly depends on the sparticle mass spectrum.
Thus, we desist from making further requirements on the lepton pT since this would imply a
strong model dependence in the event selection.
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Figure 5.6.: Normalized lepton transverse momentum (pT ) distributions of SUSY benchmark
models BE1 (red), BE2 (blue) and BE3 (green) for a center-of-mass energy of√
s = 7 TeV and after object selection cuts. Note, that these distributions contain

all selected leptons (of the given flavor) of the event.

In Fig. 5.7(a) [Fig. 5.7(b)] we present the normalized pT distribution of the (second) hardest
jet for the benchmark scenarios BE1, BE2 and BE3. For all signal models we observe a broad
peak of the hardest jet pT at around 400 GeV. These jets stem from the decays of the heavier
squarks, whose masses are typically around 800 − 1000 GeV, and from the gluino decays into
the t̃1 and a t quark. We find another peak of both the hardest and second hardest jet at around
100 GeV. These jets are formed by the t quark from the t̃1 decay. The peak is most pronounced
for BE2, since here we have a light t̃1 mass, Mt̃1

= 448 GeV, and thus t̃1 pair production is
enhanced. In contrast, the t̃1 mass is about 90 GeV heavier for BE1 and thus, the peak is
hardly visible. For this benchmark point, the pT distribution of both the hardest and second
hardest jet rather peaks at low values, pT . 50 GeV. These soft jets stem from initial and final
state radiation of gluons and are selected as the hardest and second hardest jet in the case of
EW gaugino and slepton pair production. These channels form a sizable fraction (39%) of the
sparticle pair production for BE1, while they are less important for BE2 and BE3, cf. Tab. 5.9.
However, this picture will change for a center-of-mass energy of

√
s = 14 TeV, where sparton

pair production is much more dominant for all three benchmark points.

We now discuss the construction of our event selection. In order to motivate the selection
steps, we show in Fig. 5.8 the event distribution as a function of the respective cut variable for
the SM background, the three ẽR LSP benchmark models BE1, BE2, and BE3, as well as for
comparison the P6 conserving SUSY benchmark model SPS1a [221] before the corresponding
cut. In Tab. 5.10 we give the number of background and signal events after each selection step
of the analysis. Furthermore, we provide for each signal benchmark scenario the cut-flow of the
significance estimator9 S/

√
B, where S (B) is the number of signal (background) events. In

general, the signal can be defined to be observable if [222, 223]

S ≥ max
[

5
√
B, 5, 0.2B

]

. (5.5)

9Note that this widely used estimator is an approximation for large Poisson statistics with S ≪ B. Thus, in
particular in the case of low SM background and larger number of signal events, this significance estimator should
not be taken too seriously.
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Figure 5.7.: Normalized jet transverse momentum (pT ) distributions for the SUSY benchmark
models BE1 (red), BE2 (blue) and BE3 (green) for a center-of-mass energy of√
s = 7 TeV and after object selection cuts.

The requirement S ≥ 0.2B avoids the possibility that a small signal on top of a large back-
ground could otherwise be regarded as statistically significant, although this would require the
background level to be known to an excellent precision. In the case of a very low background
expectation, B ≤ 1, we still require 5 signal events for a discovery.

As we have seen in Sect. 5.1, we expect an extensive number of leptons in the final state.
However, the lepton flavor multiplicity depends on the LSP flavor as well as on the Λ coupling,
cf. Tab. 5.1. Also, the pT spectrum of the leptons depends on the mass hierarchy. To be as
model independent as possible, we simply demand three leptons (e or µ) without further pT
requirements in step I of our event selection.

In Fig. 5.8(a) we show the lepton multiplicity. We clearly observe more leptons in the B3

mSUGRA models than for SPS1a. All SM backgrounds can be highly reduced by demanding
three (or more) leptons. We also see, that in demanding five leptons, we could already get a
background free signal. However, this would also significantly reduce the signal. Furthermore,
we do not take into account detector effects and leptons, which may be faked by jets or photons.
These effects could also lead to background events with more than five leptons. After step I
the main SM background comes from di-boson events (≈ 68%). No W + jets events survived
this cut, indicated by . 1.0 events in Tab. 5.10. The number of signal events is reduced to 63%
(44%) for BE1 (BE2). Even more signal events are rejected in the benchmark scenario BE3
(30% of the events survive the cut), because due to the low mass difference between the χ̃0

1 and
the ẽR LSP, the lepton multiplicity is reduced. According to Eq. (5.5), BE1 and BE2 are already
observable after this cut.

We show the jet multiplicity in Fig. 5.8(b) after demanding three leptons. Due to the weak
object selection criteria that we chose for the jets, we observe a high jet multiplicity. As discussed
in Sect. 5.1, we expect at least two jets from squark and gluino decays. Thus we demand in
step II of our event selection the number of jets to be Njet ≥ 2. This cut reduces most of the
di-boson backgrounds WZ and ZZ as well as about 70% of the Z + jets background. After this
cut, the dominant SM background is WZ + j (≈ 39%). The number of signal events is reduced
to 88% (83%) for BE1 and BE2 (BE3). After this requirement, also BE3 is observable.

In order to further reduce the SM backgrounds involving Z bosons, we construct the invariant
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Figure 5.8.: Event distributions of several cut variables: (a) lepton multiplicity, (b) jet mul-
tiplicity, (c) OSSF lepton invariant mass and (d) visible effective mass for the
SM background (gray patterned) and the SUSY models BE1 (red), BE2 (blue),
BE3 (green) and SPS1a (white). Note that Fig. 5.8(a) and 5.8(b) are given on
a logarithmic scale. The distributions show events after the object selection and
follow the event selection, i.e. they are presented before the cut on the respective
variable is applied (see text). They correspond to an integrated luminosity of
1 fb−1 at a center-of-mass energy of 7 TeV.

mass of opposite-sign-same-flavor (OSSF) leptons, shown in Fig. 5.8(c). As expected, the SM
background has a large peak at the Z boson mass MZ = 91.2 GeV, while the signal distribution
is mostly flat in that region. Thus, in step III of our event selection, we reject all events where
the invariant mass of the OSSF leptons lies within a 10 GeV window around the Z boson mass,
i.e. we demand

MOSSF 6∈ [81.2 GeV, 101.2 GeV] . (5.6)

This cut strongly reduces the Z + jets and di-boson backgrounds, leaving tt as the dominant
SM background. Roughly 85%− 90% of the signal events (all benchmark scenarios) survive this
cut.
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Sample before cuts Nlep ≥ 3 Njet ≥ 2 MOSSF Mvis
eff ≥ 300 GeV

top 97111 ± 197 14.9 ± 2.2 13.8 ± 2.1 12.0 ± 2.1 2.1 ± 0.8
Z + jets 153591 ± 254 51.9 ± 4.3 16.6 ± 2.4 1.0 ± 0.6 . 1.0
W + jets 38219 ± 103 . 1.0 . 1.0 . 1.0 . 1.0
di-boson 21331 ± 48 179.2 ± 3.0 53.5 ± 2.0 2.6 ± 0.4 0.7 ± 0.2

all SM 310252 ± 341 264.0 ± 5.7 83.9 ± 3.8 15.6 ± 2.2 2.8 ± 0.8

BE1 143.1 ± 1.2 90.5 ± 0.9 79.4 ± 0.9 68.8 ± 0.8 65.5 ± 0.8

S/
√
B - 5.6 8.7 17.4 39.1

BE2 210.4 ± 1.5 92.6 ± 1.0 81.4 ± 0.9 73.8 ± 0.9 70.4 ± 0.8

S/
√
B - 5.7 8.9 18.7 42.1

BE3 202.7 ± 1.4 61.6 ± 0.8 51.3 ± 0.7 45.2 ± 0.7 43.2 ± 0.7

S/
√
B - 3.8 5.6 11.4 25.8

Table 5.10.: Number of SM background and signal events after each step in the event selection
at

√
s = 7 TeV, scaled to an integrated luminosity of 1 fb−1. We provide the

results for the three signal benchmark scenarios BE1, BE2 and BE3. For each
signal model, we give S/

√
B as significance estimator. The uncertainties include

statistical errors only.

SUSY events are expected to contain a large amount of energy in the form of high transverse
momenta of the jets and leptons. Thus, we construct the visible10 effective mass as the scalar
sum of the absolute value of the transverse momenta of the four hardest jets and all selected
leptons in the event,

Mvis
eff ≡

4
∑

i=1

pjet,iT +
∑

all

plepT . (5.7)

The visible effective mass distribution is shown in Fig. 5.8(d). The SM background dominates
for Mvis

eff < 300 GeV, while most of the signal events exhibit a visible effective mass beyond
300 GeV. This threshold value is slightly higher for the 14 TeV dataset. Thus, we demand in
step IV of our event selection

Mvis
eff >

{

300 GeV, if
√
s = 7 TeV,

400 GeV, if
√
s = 14 TeV.

(5.8)

After this cut, only 2.8 ± 0.8 SM events remain, dominated by the tt background. The signal
is mainly unaffected by this cut. More than 95% of the signal events (all benchmark scenarios)
survive this selection step.

We observe two peaks in the visible effective mass distribution for our benchmark scenarios.
The peak at lower values of Mvis

eff contains mainly events from t̃1 pair production, while events
from heavier squark or gluino production build the second peak at higher Mvis

eff values. Due
to the large difference of the t̃1 mass to the other squark masses of about 400 GeV − 500 GeV
(depending on the model), these peaks are clearly separated in the visible effective mass. We

10We denote this variable as visible effective mass because it does not include the missing transverse energy as
in other definitions of the effective mass [195].
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Figure 5.9.: Missing transverse energy, /ET , distribution for the B3 benchmark points BE1,
BE2 and BE3, the R-parity conserving benchmark scenario SPS1a and the SM
background. The distributions show events before the event selection and corre-
spond to an integrated luminosity of 1 fb−1 at

√
s = 7 TeV.

make use of this fact when we present a method to reconstruct the masses of both the t̃1 and
the right-handed first and second generation squarks, cf. Sect. 6.2.

In order to test the flavor sensitivity of this search, we applied the analysis to a modified
version of the benchmark models presented in Tab. 5.7. Instead of λ231, we chose λ131 (λ132) as
the dominant 6P6 coupling to obtain the ẽR (µ̃R) as the LSP, while we left the other B3 mSUGRA
parameters unchanged. The results for the µ̃R LSP scenario are in agreement with the original
benchmark scenarios within < 1% deviations, which are due to statistical fluctuations of the
MC estimate. However, for ẽR LSP scenarios with a dominant λ131 coupling, the cut on the
invariant mass of OSSF leptons (step III) rejects more signal events than for scenarios with λ231
as the dominant 6P6 coupling. For the modified scenario of BE1 (BE2), the number of signal
events passing the MOSSF cut is reduced by around 15% (3%) compared to the original results,
cf. Tab. 5.10. This difference is strongest for BE1-like scenarios, because the endpoint of the
di-electron invariant mass distribution, where one electron comes from the χ̃0

1 decay and the
other from the ẽR LSP decay, cf. also Eq. (6.6a), coincides with the upper value of the Z boson
mass window. We conclude that in most cases, our detailed study of ẽR LSP models with a
dominant 6P6 coupling λ231 as representative for a general B3 mSUGRA model with a ℓ̃R LSP is
justified. However, for ẽR models with a dominant coupling λ1j1 (j = 2, 3), the signal efficiency
and thus the discovery potential can be slightly reduced due to the MOSSF cut.

In Fig. 5.9 we present the missing transverse energy event distribution for all signal scenarios
and the SM background before the event selection criteria are applied. In P6 conserving scenarios
like SPS1a, the χ̃0

1 LSP is stable and escapes detection, leading to missing transverse energy /ET .
However, even though the LSP decays within the detector in the B3 scenarios BE1, BE2 and
BE3, there is a significant amount of missing energy due to the neutrinos from the LSP decay.
Moreover, the /ET distribution for SPS1a falls off more rapidly than for the B3 scenarios. Thus,
B3 scenarios can lead to even more missing transverse energy than P6 conserving scenarios.

The performance of the event selection presented in this section on the signal and SM back-
ground samples for an integrated luminosity of 10 fb−1 at a center-of-mass energy of 14 TeV is
discussed in Appendix B.
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5.3. Discovery potential at the LHC

5.3.5. Discovery reach with early LHC data

The previous analysis is now extended to a more extensive supersymmetric parameter region.
We provide the discovery potential of B3 mSUGRA models with a ẽR LSP with early LHC data
at

√
s = 7 TeV and

√
s = 14 TeV. For each center-of-mass energy, we perform a two dimensional

parameter scan in the M1/2 −M0 plane around the benchmark point BE1 (A0 = −1250 GeV,
tan β = 5, sgn(µ) = +, λ231|GUT = 0.045), cf. also Fig. 4.3. For each parameter point, we
generate 1000 events and apply the analysis presented in the previous section. Thus, we do not
optimize the cuts for each parameter point.

Due to the RGE running, all sparticle masses, especially those of the strongly interacting
sparticles, increase with increasing M1/2 [158]. Thus, by varying M1/2, we can investigate the
discovery potential as a function of the SUSY mass scale. As we have seen in the previous
section, the discovery potential is also sensitive to the mass hierarchy of the lighter sparticles
and, in particular, to the mass difference between the χ̃0

1 and the LSP. As with M1/2, all sparticle
masses also increase with increasing M0, however, this mainly affects the scalar particles, while
gauginos are nearly unaffected. Thus, M0 provides a handle on the mass difference between the
χ̃0
1 and the ẽR or µ̃R LSP.

For the LHC at
√
s = 7 TeV, we give in Fig. 5.10 the signal cross section (in pb) [Fig. 5.10(a)]

and the signal efficiency [Fig. 5.10(b)], i.e. the fraction of signal events that pass the analysis.
The results are given only for B3 mSUGRA models with a ẽR LSP, while models with a χ̃0

1 LSP
(τ̃1 LSP) are indicated by the striped (checkered) region. The solid gray region is excluded by
the experimental bound on the λ231 coupling.

The signal cross section, which is dominated by the production of colored sparticles, clearly
decreases with increasing M1/2, i.e. with an increasing SUSY mass scale. For instance, increasing
M1/2 from 400 GeV to 500 GeV reduces the cross section from 0.6 pb to 0.1 pb, while the
right-handed squark (gluino) mass increases from around 820 GeV (930 GeV) to 1010 GeV
(1150 GeV). In contrast, the M0 dependence of the signal cross section is negligible.

For the benchmark scenario BE1 we obtained a signal efficiency of roughly 46%. Going
beyond BE1, we observe in Fig. 5.10(b) that the signal efficiency lies between 30% and 50%
for most of the ẽR LSP parameter space. Thus, the presented analysis works also quite well
for a larger set of ẽR LSP models. However, the signal efficiency decreases dramatically for
a decreasing mass difference, ∆M , between the χ̃0

1 and the ẽR LSP. For models with ∆M .

2.5 GeV the signal efficiency is usually around 10% − 20%, because the electrons from the
decay χ̃0

1 → ẽRe are very soft and tend to fail the minimum pT requirement. For models with
∆M > 10 GeV, the signal efficiency becomes more or less insensitive of ∆M . Note that, if
we choose a stronger minimum lepton pT requirement in our analysis, this band of low signal
efficiency will become wider.

The signal efficiency depends also slightly on M1/2. At low values, M1/2 . 400 GeV, i.e.
for models with a light sparticle mass spectrum, more events are rejected by the cut on the
visible effective mass. Moreover, the SM particles from cascade decays and LSP decays then
have on average smaller momenta than for scenarios with a heavier mass spectrum, and thus
may fail to pass the object selection11. The signal efficiency is highest for values of M1/2 between
450 GeV and 550 GeV and reaches up to 50%. However, when going to very large M1/2, the
signal efficiency again decreases. Here, the production of sparton pairs is suppressed due to their
large masses. For instance, by varying M1/2 from 500 GeV to 700 GeV, the fraction of sparton

11However, due to our rather weak pT requirements for jets and leptons, this effect does not play a major rôle
in this analysis.
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pair production of the signal cross section decreases from 58% to 24% at a center-of-mass energy
of

√
s = 7 TeV. Since our analysis is optimized for sparton pair production, the signal efficiency

decreases with very large values of M1/2.

In Fig. 5.11 we present the discovery potential for the LHC at
√
s = 7 TeV. The discovery

reach for the integrated luminosities 100 pb−1, 500 pb−1 and 1 fb−1 is given in Fig. 5.11(a). We
use Eq. (5.5) as criteria for a discovery. Furthermore, we present the signal to background ratio,
S/B, in Fig. 5.11(b). As shown in the previous section, the SM background can be reduced to
2.8 ± 0.8 events at

√
s = 7 TeV.

Fig. 5.11(a) suggests that ẽR LSP scenarios up to M1/2 . 620 GeV can be discovered with

an integrated luminosity of 1 fb−1. This corresponds to squark masses of 1.2 TeV and ẽR LSP
masses of around 230 GeV. For these models, we have a signal over background ratio of S/B ≈ 3
and thus, systematic uncertainties are not significant for a discovery. Furthermore, we see that
BE1 can already be discovered with . 100 pb−1 of data. We clearly see in Fig. 5.11 that
scenarios with a small mass difference between the χ̃0

1 and the ẽR LSP are more difficult to
discover.

We now discuss the prospects of a discovery at the LHC at
√
s = 14 TeV. In Fig. 5.12 we

give the signal cross section [Fig. 5.12(a)] and the signal efficiency [Fig. 5.12(b)].

Due to the higher center-of-mass energy, the cross section is O(10) times larger than for√
s = 7 TeV, cf. Fig. 5.10(a). For instance, at M1/2 = 400 GeV (500 GeV) the signal cross

section at
√
s = 14 TeV is 7.2 pb−1 (1.7 pb−1). Furthermore, the signal production is strongly

dominated by sparton pair production, cf. also Tab. 5.9.

The signal efficiency at
√
s = 14 TeV is slightly improved compared to the results for

√
s =

7 TeV. This is because due to the enhanced sparton pair production, more signal events pass the
cut on the jet multiplicity, Njet ≥ 2, cf. also Appendix B. For the benchmark point BE1, we now
obtain a signal efficiency of about 51%. Most of the parameter points in Fig. 5.12(b) exhibit a
signal efficiency in the range of 40% to 60%. For the scenarios with low mass difference between
the χ̃0

1 and the ẽR LSP, ∆M . 2.5 GeV, the signal efficiency is reduced to around 15% − 25%.
As for

√
s = 7 TeV, the signal efficiency decreases at very large values of M1/2 because of the

increasing sparton mass. Here, this effect slowly sets in at values M1/2 & 1100 GeV, i.e. for
scenarios with very heavy squark and gluino masses & 2 TeV. For instance, atM1/2 = 1100 GeV,
sparton pair production still forms 52% of the signal cross section.

Applying the search analysis presented in Sect. 5.3.4 on the SM background samples at√
s = 14 TeV with an integrated luminosity of 10 fb−1, we obtain 64.7 ± 7.2 SM background

events passing the full event selection, cf. Tab. B.1 in Appendix B. In Fig. 5.13 we give the
discovery potential for the LHC at

√
s = 14 TeV. We give the discovery reach for the integrated

luminosities 100 pb−1, 1 fb−1 and 10 fb−1 in Fig. 5.13(a). The signal to background ratio
S/B is shown in Fig. 5.13(b). We observe, that scenarios with M1/2 . 1 TeV (1.15 TeV) can be

discovered with 1 fb−1 (10 fb−1) with a signal over background ratio of 2 (0.6). This corresponds
to squark masses of around 1.9 TeV (2.2 TeV) and LSP masses of roughly 370 GeV (450 GeV).

We conclude this section by pointing out that due to the striking multi-leptonic signature, the
prospects of an early discovery of B3 mSUGRA with a ℓ̃R LSP are better than for P6 conserving
mSUGRA models [222, 223]. The discovery potential decreases significantly for scenarios with
a low mass difference between the χ̃0

1 and ℓ̃R LSP. Note, that the vast reach in M1/2 is also
due to the fact, that typically the t̃1 mass is much smaller than those of the other squarks. For
instance, at M1/2 = 525 GeV, the t̃1 mass is around 630 GeV and thus can still be produced
numerously at the LHC at

√
s = 7 TeV.
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We want to remark that, for scenarios with low mass difference between the χ̃0
1 and the

ℓ̃R LSP, the search for like-sign di-lepton final states might be a more promising approach.
Assuming both like-sign leptons originate from the LSP decay, a high lepton pT requirement
can be imposed, which may reduce the SM background dramatically [15, 224, 225, 226, 227].
However, a detailed analysis of these search channels is beyond the scope of this thesis.
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Figure 5.10.: Signal cross section (in pb) [Fig. 5.10(a)] and signal efficiency [Fig. 5.10(b)] at
the LHC at

√
s = 7 TeV in the M1/2 −M0 plane. The other parameters are

those of BE1 (A0 = −1250 GeV, tan β = 5, sgn(µ) = +, λ231|GUT = 0.045).
The patterned regions correspond to scenarios with either a τ̃1 or χ̃0

1 LSP. The
solid gray region is excluded by the bound on λ231.
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Figure 5.11.: Discovery reach at the LHC at
√
s = 7 TeV. We give the minimal required

integrated luminosity for a discovery in Fig. 5.11(a) and the signal to background
ratio, S/B in Fig. 5.11(b). The ẽR LSP parameter region is shown for A0 =
−1250 GeV, tan β = 5, sgn(µ) = + and λ231|GUT = 0.045. The patterned
regions correspond to scenarios with either a τ̃1 or χ̃0

1 LSP. The solid gray region
is excluded by the bound on λ231. The grey dotted contour lines give the ẽR
mass (in GeV) as indicated by the labels.
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Figure 5.12.: Signal cross section (in pb) [Fig. 5.12(a)] and signal efficiency [Fig. 5.12(b)] at
the LHC at

√
s = 14 TeV in the M1/2 − M0 plane. The other B3 mSUGRA

parameter are those of BE1, i.e. A0 = −1250 GeV, tan β = 5, sgn(µ) = + and
λ231|GUT = 0.045.
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Figure 5.13.: Discovery reach at the LHC at
√
s = 14 TeV. We give the minimal required

integrated luminosity for a discovery in Fig. 5.13(a) and the signal to background
ratio, S/B in Fig. 5.13(b). The ẽR LSP parameter region is shown for A0 =
−1250 GeV, tan β = 5, sgn(µ) = + and λ231|GUT = 0.045. The patterned
regions correspond to scenarios with either a τ̃1 or χ̃0

1 LSP. The solid gray region
is excluded by the bound on λ231. The grey dotted contour lines give the ẽR
mass (in GeV) as indicated by the labels.
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6. Mass reconstruction at the LHC

In the last section we have shown that B3 mSUGRA scenarios with a ℓ̃R LSP can already be
tested quite stringently with early LHC data. If a discovery has been made, the next step would
be to try to determine the sparticle mass spectrum. Here, we present an idea how some sparticle
masses can be reconstructed, using the benchmark point BE2 as an example.

As in P6 conserving scenarios, the decay chain of sparticles cannot be completely recon-
structed, as the ẽR LSPs decay into neutrinos that cannot be detected. Thus, we focus on the
measurement of edges and thresholds of invariant mass distributions formed from certain decay
chains [228]. This method has been studied in detail for SPS1a [229, 230], at ATLAS [195] and
at CMS [103, 231] as well as for baryon number violating scenarios [232].

6.1. The Basic Idea

We first discuss the general idea of the method. We assume the decay chain

D → Cc→ Bbc→ Aabc, (6.1)

illustrated in Fig. 6.1, where the particles D, C, B, and A are massive1 and their masses satisfy

mD > mC > mB > mA. (6.2)

The particles a, b and c are observed SM particles.

With particle A invisible, we can form four invariant mass combinations of the 4-momenta
of the decay products c, b and a: mba, mca, mcb and mcba. The shapes and endpoints of these
distributions are functions of the (unknown) particle masses in Eq. (6.2) and are derived under
rather general assumptions in Ref. [233]. The maximal values of the two- and three-particle

1Particle A does not necessarily need to be massive.

D

c

C

b

B

a

A

Figure 6.1.: Sequential decay chain used for the mass reconstruction.
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invariant masses are given by

(mmax
ba )2 =(m2

C −m2
B)(m2

B −m2
A)/m2

B , (6.3a)

(mmax
ca )2 =(m2

D −m2
C)(m2

B −m2
A)/m2

B , (6.3b)

(mmax
cb )2 =(m2

D −m2
C)(m2

C −m2
B)/m2

C , (6.3c)
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except for the special case in which m2
B < mAmD < m2

C and mAm
2
C < m2

BmD,

where we must use (mD −mA)
2.

(6.3d)

In principle, these four equations are sufficient to determine the unknown masses mD, mC , mB

and mA, once the endpoints are determined. In addition, the three-particle invariant mass, mcba,
has a non-zero threshold value given by

(mmin
cba )2 =

[

2m2
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4
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2
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/(4m2
Bm

2
C). (6.3e)

This can be used to over-constrain the problem for a more precise determination of the involved
particle masses2.

The most prominent application of this method is in P6 conserving SUSY, where one inves-
tigates the decay cascade of a left-handed squark,

q̃L → qχ̃0
2 → qℓ±n ℓ̃

∓
R → qℓ±n ℓ

∓
f χ̃

0
1. (6.4)

Here, the lightest neutralino, χ̃0
1, is stable and escapes the detector unseen. It is a general

feature of P6 conserving SUSY, that the near lepton, ℓn, and far lepton, ℓf , are of the same
flavor and thus indistinguishable on an event-by-event basis [228, 236]. Thus, the invariant
mass distributions mℓnq and mℓf q, cannot be formed unambiguously and one usually defines the
slightly modified variables mℓq(low) and mℓq(high) [228, 233].

We now apply this method to our P6 violating scenarios. We investigate the decay chain of
a right-handed squark

q̃R → qχ̃0
1 → qℓ±ℓ̃∓R → qℓ±ℓ′∓ν, (6.5)

where ℓ̃R is the LSP. It decays into a lepton ℓ′ and a neutrino, where the flavor depends on the
dominant Λ coupling, cf. Tab. 5.1. In contrast to the P6 conserving scenarios, we can actually
distinguish the near and far lepton if we have a dominant 6P6 coupling Λ ∈ {λ231, λ132}. The ℓ̃R
LSP then decays into a lepton of different flavor than its own flavor.

Another difference to the P6 conserving scenarios is that the decay chain is initiated by a
right-handed squark. In most ℓ̃R LSP models, the (mostly right-handed) t̃1 is much lighter than
the first and second generation q̃R scenarios. Thus, we typically have two distinct squark mass
scales. This enables the measurement of both the t̃1 mass and the mass of the right-handed first
and second generation squarks, q̃R, simultaneously, if we succeed in separating the events from
q̃R and t̃1 pair production.

For the following study, we focus on the ẽR LSP benchmark model BE2. We concentrate

2Another variable which can be used is the Stransverse mass, mT2 [234, 235].
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q̃R

q

χ̃0
1

e±
“near”

ẽ∓R

µ∓
“far”

ντ

λ231

●

Figure 6.2.: Decay cascade of a right-handed squark, q̃R → qχ̃0
1 → qe±ẽ∓R → qe±µ∓ντ , which

is relevant for the mass reconstruction in ẽR LSP models with a non-zero λ231
coupling. The cascade leads to a jet, two distinguishable leptons and a neutrino.
The P6 violating decay of the ẽR LSP via the λ231 coupling is marked in red.

on the case, where the ẽR decays into a muon and a neutrino, because firstly, muons are much
easier to reconstruct than τ leptons, and secondly, these events have a higher probability to pass
the event selection which demands three leptons, cf. Sect. 5.3.4. The relevant decay cascade,
Eq. (6.5), is shown in Fig. 6.2. This cascade yields a jet and two different flavor leptons of
opposite charge, from which we can unambiguously form the invariant masses meµ, meµq, meq

and mµq.

In the mass determination, one can leave the mass of the invisible particle, mA, as a free
parameter. However, once the P6 violating decay chain, Eq. (6.5), is experimentally confirmed,
the knowledge of mA = 0 simplifies Eq. (6.3) and reduces the number of fit parameters by one.
The endpoints of the invariant mass distributions are then given by

(mmax
eµ )2 =M2

χ̃0
1
−M2

ẽR , (6.6a)

(mmax
µq )2 =M2

q̃R −M2
χ̃0
1
, (6.6b)

(mmax
eq )2 =(M2

q̃R
−M2

χ̃0
1
)(M2

χ̃0
1
−M2

ẽR
)/M2

χ̃0
1
, (6.6c)

(mmax
eµq )2 =M2

q̃R −M2
ẽR , (6.6d)

(mmin
eµq )2 =M2

q̃R(M2
χ̃0
1
−M2

ẽR)/(2M2
χ̃0
1
). (6.6e)

In BE2, t̃1 pair production comprises approximately 30% of all sparton pair production,
while right-handed first and second generation squarks are mainly produced in association with
a gluino (16% of all sparton pair production) or in pairs (9% of all sparton pair production).
Thus we have a similar number of events from t̃1 pair production (denoted in the following as t̃1
events) as from sparton pair production including a right-handed squark of the first or second
generation (denoted as q̃R events). The approximate branching ratios of the subsequent cascade
decays are

q̃R
100%−→ qχ̃0

1
100%−→ qe±ẽ∓R

50%−→ qe±µ∓ντ , (6.7)

t̃1
71.9%−→ tχ̃0

1
100%−→ te±ẽ∓R

50%−→ te±µ∓ντ , (6.8)

respectively.
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6.2. Event selection

In the following, we basically apply the same event selection as designed for a discovery at the
LHC at

√
s = 14 TeV, cf. Sect. 5.3.4. Furthermore, for the construction of the invariant mass

distributions, the event has to contain at least one electron and one muon with opposite charge.
In order to enhance the probability of selecting the right muon, i.e. the µ from the ẽR decay,
we require a minimal transverse momentum of the muon pµT ≥ 25 GeV. At this stage we can
construct the opposite-sign-different-flavor (OSDF) dilepton invariant mass distribution, meµ. In
order to reduce combinatorial background, we subtract the dilepton invariant mass distribution
of same-sign-different-flavor (SSDF) leptons3. Note that this method also suppresses SUSY
background processes, where the charges of the selected leptons are uncorrelated because of an
intermediate Majorana particle (i.e. a neutralino), for instance SUSY decay chains involving the
cascade µ̃−L → µ−χ̃0

1 → µ−e±ẽ∓R.

For the invariant mass distributions containing the jet, we design further selection cuts to
discriminate between t̃1 events and q̃R events. We expect at least two b jets in the t̃1 events
from the top quark decays. Thus, we introduce a simple b-tagging algorithm in our simulation,
assuming a pT independent b-tagging efficiency of 60%. See Ref. [195, pp. 397] and [237, pp.
461] for b-tagging studies of ATLAS and CMS, respectively. We demand 2 b-tagged jets for the
t̃1 event candidates while no b-tagged jet must be present for the q̃R event candidates. Moreover,
we use the visible effective mass, Mvis

eff , as a handle to discriminate between t̃1 and q̃R events,
i.e. we impose the cuts

400 GeV ≤Mvis
eff ≤ 900 GeV,

900 GeV ≤Mvis
eff ,

for t̃1 events,

for q̃R events,
(6.9)

respectively. For the construction of invariant mass distributions involving the quark from the
squark decay, we consider the hardest and second hardest jet, j1 and j2, respectively. Due to
the lighter t̃1 mass, the jets are expected to be somewhat softer in t̃1 events than in q̃R events.
For BE2, we choose the following pT selection criteria for the first and second hardest jet:

50 GeV ≤ pj1T ≤ 250 GeV

25 GeV ≤ pj2T

}

250 GeV ≤ pj1T
100 GeV ≤ pj2T

}

for t̃1 events,

for q̃R events.

(6.10)

Note that since we can not unambiguously determine the true jet of the cascade, we have
combinatorial background from combinations with the wrong jet. After this event selection, the
invariant mass distributions meµq, meq, and mµq are constructed as follows:

• meµq: We take the invariant masses of the selected two leptons together with the hard-
est and second hardest jet. The smaller (larger) value is taken for the edge (threshold)
distribution. For the threshold distribution, we demand the dilepton invariant mass of
the selected leptons to lie within mmax

eµ /
√

2 ≤ meµ ≤ mmax
eµ , corresponding to the subset

3In R-parity conserving scenarios, a technique called flavor subtraction is employed to reduce combinatorial
background. There, the opposite-sign-different-flavor (OSDF) lepton invariant mass distribution is subtracted
from the opposite-sign-same-flavor (OSSF) lepton distribution. This elegantly cancels the background, that arises
from the combination of leptons coming from different decay chains. Our technique is based on the same idea.
We refer to it as charge subtraction.
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(a) Dilepton edge. The dashed line gives the ex-
pected value of 51.7 GeV, assuming the cascade de-
cay in Eq. (6.5).
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(b) Mass peak of the tau sneutrino, ν̃τ , due to the
P6 violating decay ν̃τ → eµ. The true mass value is
Mν̃τ = 309.76 GeV.

Figure 6.3.: Dilepton invariant mass distribution. The dilepton edge, mmax
eµ , is shown in

Fig. 6.3(a) and the mass peak of the tau sneutrino, ν̃τ , is given in Fig. 6.3(b).

of events in which the angle between the two leptons (in the center of mass frame of the
slepton) is greater than π/2 [228]. In the edge distribution, we require meµ ≤ mmax

eµ and
employ charge subtraction to reduce the combinatorial background.

• meq (mµq): We construct4 the invariant mass of a selected electron (muon) with the
hardest and second hardest jet and take the lower value. Furthermore we require, that
the selected electron (muon) forms a dilepton invariant mass meµ ≤ mmax

eµ with a selected
muon (electron).

For this construction, the dilepton invariant mass edge, mmax
eµ , must have already been fitted.

In this study, we use the true value of the dilepton edge.

6.3. Results

We simulated BE2 signal events corresponding to an integrated luminosity of 100 fb−1 of LHC
data at

√
s = 14 TeV. We assume, that the SM background can be reduced to a negligible

amount with the given event selection and present only the invariant mass distributions for the
signal sample. In the following figures, the gray dashed line indicates the nominal endpoint
value given by Eq. (6.6), using the sparticle mass spectrum of BE2, cf. Tab. A.4.

We discuss the main contributions from various SUSY decay cascades to the invariant mass
distributions. We give a rough estimate of how accurately the endpoints may be determined
by a fit and investigate whether the result can be biased due to SUSY background processes or
systematical effects of the event selection. The discussion presented here should be understood
as a proof-of-principle of the feasibility of the method. A detailed reconstruction of the sparticle
masses from the endpoints of the fitted invariant mass distributions will be investigated in the
future.

4In this construction, we make use of the fact that we can distinguish the near and far lepton. However, we
checked that the model-independent construction of the variables mℓq(near/far) as proposed in Ref. [228] leads to
similar results.
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(a) meµq distribution for the q̃R event selection. The
dashed line gives the expected value of 925 GeV.
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(b) meµq distribution for the t̃1 event selection. The
dashed line gives the expected value of 410 GeV.

Figure 6.4.: Dilepton-jet invariant mass edge distribution for the q̃R event [Fig. 6.4(a)] and t̃1
event [Fig. 6.4(b)] selection. The distributions are charge subtracted.

6.3.1. Dilepton invariant mass

In Fig. 6.3 we present the charge subtracted dilepton invariant mass distribution. We expect
for the cascade decay in Eq. (6.5) a dilepton edge at 51.7 GeV, which we can clearly identify
in Fig. 6.3(a). The observed edge matches quite accurately the nominal value and should be
observable already with a few fb−1.

For an invariant mass below the dilepton edge, the distribution shape slightly deviates from
the (expected) triangular shape. This is because the LSP can decay into a neutrino and a τ
lepton, which then decays into a muon and neutrinos. In this case, the muon only carries a
fraction of the τ lepton pT . We thus obtain a lower meµ value as in the case of the direct LSP
decay ẽR → µντ .

Beyond the endpoint at 51.7 GeV, we observe another small edge at about 70 GeV. These
events come from the decay of the left-handed smuon, µ̃±L → µ±χ̃0

1 → µ±e∓ẽR. The true
endpoint value for this cascade is 70.7 GeV.

Furthermore, we observe a sharp peak at 309.8 GeV in the di-lepton invariant mass distri-
bution, shown in Fig. 6.3(b). Here, the mass of the tau sneutrino, ν̃τ , is fully reconstructed due
to the P6 violating decay ν̃τ → e∓µ±. In addition, a similar peak can be seen in the eτ invariant
mass at the muon sneutrino mass of 312.0 GeV, due to the P6 violating decay ν̃µ → e∓τ±. This
however requires the reconstruction of the τ lepton momentum. These sneutrino mass peaks
should be observable with a few fb−1 of data and are thus a smoking gun for 6P6 scenarios with
a non-zero LiLjĒk coupling.

6.3.2. Dilepton-jet invariant mass

Now we turn to the invariant mass distributions formed by two leptons and a jet. In all invariant
masses containing a jet, the endpoints (and thresholds) are “smeared”, since the contributing
squarks in general have slightly different masses (except in the case of the t̃1). In addition, the
jet can lose some of its momentum due to final state radiation (FSR) of gluons, if the radiated
gluons are not covered by the jet algorithm. This will slightly shift the distribution towards
lower values of the invariant mass [233]. A detector simulation, which we do not include here,
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(a) meµq threshold distribution for the q̃R event se-
lection. The dashed line gives the expected value of
181 GeV.
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(b) meµq threshold distribution for the t̃1 event se-
lection. The dashed line gives the expected value of
86 GeV.

Figure 6.5.: Dilepton-jet invariant mass threshold distribution for the q̃R event [Fig. 6.5(a)]
and t̃1 event [Fig. 6.5(b)] selection.

would lead to additional smearing due to the energy (mis-)measurement. Thus, at the LHC, a
precise determination of the endpoints in most cases will not be an easy task and will require a
high luminosity and a good understanding of the detector effects.

In Fig. 6.4 we show the meµq edge distribution for the q̃R event [Fig. 6.4(a)] and t̃1 event
[Fig. 6.4(b)] selection. In the q̃R event selection, the nominal value of 925 GeV, assuming the
cascade decay in Eq. (6.7), can be identified fairly well. In contrast, in the t̃1 event selection the
identification of the endpoint at the nominal value of 410 GeV, assuming the t̃1 decay chain in
Eq. (6.8), is more difficult. The reasons are the following: Firstly, events with cascade decays of
heavier squarks can leak into the t̃1 event selection, in particular those with an initial bottom
squark or a foregoing gluino, which decays into the t̃1 and a t quark. If the selected jet stems
from these heavy sparticle decays we can obtain meµq values beyond 410 GeV. Secondly, the
distribution flattens out as it approaches the nominal endpoint, because the jet pT only carries
a fraction of the t quark pT . Moreover, the cut imposed on the jet transverse momentum,
pT < 250 GeV, tends to reject events at high meµq values. Thus, the distribution does not
linearly approach the endpoint.

Furthermore, the distribution in Fig. 6.4(b) contains events with the t̃1 cascade decay

t̃1
28.1%−→ bχ̃±

1
19.9%−→ bµ±ν̃µ

14.2%−→ bµ±e∓τ±. (6.11)

This cascade yields an meµq endpoint at 322 GeV, which leads to the small abrupt change of
the distribution slope observed in this region. One might suspect an edge around 220 GeV in
Fig. 6.4(b), however, there is no SUSY cascade which yields an endpoint in this region. In
fact, this strong decrease of the distribution is triggered by the jet-pT requirements for the t̃1
event selection, Eq. (6.10). By increasing the minimal and maximal jet-pT limits, the “edge” at
≈ 220 GeV disappears and the distribution approaches the endpoint almost linearly. However,
this also leads to more SUSY background events beyond the nominal endpoint.

In Fig. 6.5 we present the meµq threshold distribution for the q̃R [Fig. 6.5(a)] and t̃1 event
[Fig. 6.5(b)] selection. In the q̃R event selection, we observe an edge slightly below the nominal
threshold value of 181 GeV, assuming the q̃R cascade decay, Eq. (6.7). This shift towards lower

79



6. Mass reconstruction at the LHC

 [GeV]eqm
0 50 100 150 200 250 300

-1
E

ve
nt

s 
/ 2

.5
 G

eV
 / 

10
0 

fb

0

50

100

150

200

250

300

350

 events
R

q~

(a) meq distribution for the q̃R event selection. The
dashed line gives the expected value of 251 GeV.
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(b) meq distribution for the t̃1 event selection. The
dashed line gives the expected value, 111 GeV.

Figure 6.6.: Electron-jet invariant mass distribution for the q̃R event [Fig. 6.6(a)] and t̃1 event
[Fig. 6.6(b)] selection.

values of meµq is due to gluon final state radiation (FSR) from the jet.

In general, the meµq threshold value is set by the lightest squark. Thus, all events with
values far below the endpoint at 181 GeV must contain third generation squarks. These events
can leak into the q̃R event selection when the b quarks are not tagged. Events from t̃1 pair
production are efficiently rejected by the jet-pT and Mvis

eff requirement of the q̃R event selection.
However, the t̃1 decay chain in Eq. (6.8) can also be initiated by heavier squarks and gluinos,
which decay into the t̃1, leading to a hard jet and generally a high value of Mvis

eff .

The observed meµq threshold in the t̃1 event selection matches quite accurately the nominal
value of 86 GeV, assuming the t̃1 cascade decay in Eq. (6.8). The other cascade, Eq. (6.11),
yields a meµq threshold at 158 GeV which cannot be reliably identified since the slope of the
distribution is very steep in this region.

6.3.3. Lepton-jet invariant masses

We now discuss the invariant mass distributions formed by one lepton and a jet. As described
in Sect. 6.2, we consider only those electrons (muons), which form an dilepton invariant mass
meµ < mmax

eµ = 51.7 GeV with the other selected muon (electron). For the lepton-jet invariant
masses, we generally have more sources of SUSY background than in the dilepton and dilepton-
jet invariant mass distributions, because we cannot employ the method of charge subtraction.

The electron-jet invariant mass distribution is presented in Fig. 6.6. In the q̃R event selection
[Fig. 6.6(a)], we observe an edge near the nominal endpoint of 251 GeV. In contrast, the endpoint
cannot be easily identified in the t̃1 event selection [Fig. 6.6(b)]. As for the meµq invariant mass,
cf. Fig. 6.4(b), the distribution fades away as it approaches the nominal endpoint at 111 GeV,
since the jet carries only a fraction of the t quark momentum. In addition, the t̃1 decay cascade
in Eq. (6.11) yields an endpoint at 266 GeV of the electron-jet invariant mass, leading to events
beyond the nominal endpoint of the assumed t̃1 cascade, Eq. (6.8). As a result, the distribution
is almost smooth around 111 GeV, and thus, the determination of this endpoint will be a difficult
task.

In Fig. 6.7 we show the far lepton-jet invariant mass distribution for the q̃R event [Fig. 6.7(a)]
and t̃1 event [Fig. 6.7(b)] selection.
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(a) mµq distribution for the q̃R event selection. The
dashed line gives the expected value of 921 GeV.
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(b) mµq distribution for the t̃1 event selection. The
dashed line gives the expected value, 406 GeV.

Figure 6.7.: Muon-jet invariant mass distribution for the q̃R event [Fig. 6.7(a)] and t̃1 event
[Fig. 6.7(b)] selection.

Assuming the q̃R decay cascade in Eq. (6.7), the mµq distribution has a nominal endpoint at
921 GeV. We can clearly observe an endpoint in Fig. 6.7(a), however, it might be underestimated
by ≈ 20 GeV, due to the FSR of gluons from the jet.

In the t̃1 event selection, the endpoint is again more difficult to observe. For values mµq ≥
300 GeV, the distribution approaches the endpoint with a very flat linear slope. Thus, the
determination of the endpoint requires high statistics. Moreover, we have background events
beyond the endpoint from heavier squark cascade decays or combinations with a jet from a
decaying gluino.

6.4. Prospects and future plans

In this chapter we presented a possible ansatz to determine the masses of the sparticles q̃R, t̃1,
ν̃τ , χ̃0

1 and ẽR for 6P6 models with a ẽR LSP, using the endpoints of invariant mass distributions.
In order to determine the q̃R mass (scale) and the t̃1 mass simultaneously, we designed an event
selection to discriminate between the two types of events. We studied this method for the
benchmark scenario BE2. In general, the proposed cuts should be optimized to the model under
investigation. For this specific example, the event discrimination seems to work fairly well.

In the q̃R event selection, we should be able to determine all endpoints quite accurately,
however, a slight bias towards lower values is expected due to the final state radiation of gluons
from the selected jet. The endpoint determination in the t̃1 event selection is more problematic,
for the following reasons: Both the requirement on the maximal jet-pT ≤ 250 GeV and the fact,
that the jet carries only a fraction of the t quark pT , flattens out the squark-related invariant
mass distributions while approaching the endpoint. Furthermore, combinations of the leptons
with a jet stemming from a decaying gluino can lead to values beyond the endpoint.

The observability of the endpoints in the t̃1 related invariant masses may be improved by
employing the reconstruction of the t quark momentum. Also, the choice of the jet-pT and
Mvis

eff requirements may be optimized for a specific endpoint fit. For the future, we plan to fit
the invariant mass distributions and determine the masses of the involved sparticles via a χ2

minimization.
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7. Summary and Conclusions

If the discrete symmetry P6 (or R-parity) is violated, the lightest supersymmetric particle (LSP)
is unstable. Then, cosmological constraints on the LSP do not apply and thus in principle
any supersymmetric particle can be the LSP. In this thesis we presented the hadron collider
phenomenology of supersymmetric models with a right-handed first or second generation charged
slepton as the LSP. Hereby we restricted ourselves to the framework of minimal supergravity
(mSUGRA) with conserved baryon triality (B3). In this model, one non-vanishing lepton number
violating (LNV) operator is present at the grand unification scale, MGUT, in addition to the P6

conserving mSUGRA parameters.

Due to these LNV interactions, the renormalization group equations (RGEs) of the sparticle
masses receive new contributions, compared to the P6 conserving case. We showed, that the
mass of the right-handed slepton (of generation k = 1, 2), ℓ̃kR, can be significantly reduced by
the LNV interaction λijkLiLjĒk. For certain regions of the supersymmetric parameter space
we obtain a ℓ̃kR LSP with a coupling λijk & O(10−2) at MGUT. These parameter regions usually
feature low values of tan β and M0, a large value of M1/2 and a large magnitude of a negative
A0. The latter enhances the impact of the LNV coupling, λijk, in the renormalization group
evolution of the ℓ̃kR mass.

Given a supersymmetric model with a selectron or smuon LSP, we classified its main hadron
collider signatures, assuming the pair production of strongly interacting SUSY particles, see
Tab. 5.1. In general, these models lead to striking multi-leptonic final state signatures and are
thus interesting for early LHC studies.

Furthermore, we showed that selectron and smuon LSP models with M1/2 . (400−410) GeV
are already excluded at 90% C.L. by the trilepton search performed by the DØ experiment at the
Tevatron. Therefore, the supersymmetric parameter regions, which might explain the discrep-
ancy between the observed anomalous magnetic moment of the muon and its SM prediction, are
ruled out. We further argued that this exclusion reach might be improved up to M1/2 . 450 GeV

once the DØ search is applied to 10 fb−1 of data, which will be collected by the end of 2010.

In order to study the discovery potential at the LHC with early data, we performed a detailed
Monte Carlo (MC) study for the SUSY signal and the main SM backgrounds. We selected three
benchmark scenarios with a selectron LSP, representing different regions of the parameter space,
and investigated their kinematic properties. Based on this, we designed an inclusive trilepton
analysis to improve the signal to background ratio. We showed, that the SM background can
be reduced to only a few events while our benchmark scenarios can clearly be discovered with
O(50) selected events, using 1 fb−1 of LHC data at a center-of-mass energy of

√
s = 7 TeV.

We further showed that the proposed search works also quite well beyond our benchmark
scenarios. For a wide region in the M1/2 −M0 parameter space we achieve signal efficiencies
in the range of 20% − 50% at

√
s = 7 TeV. The signal efficiency at

√
s = 14 TeV is even

better, namely 40% − 60% for most of the parameter space. In the narrow region of low mass
difference between the lightest neutralino and the selectron LSP the signal efficiency and thus
the discovery potential decreases. This is due to the fact that the electrons from the neutralino
decay into the LSP are very soft and thus tend to fail the minimum lepton pT criteria. We
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7. Summary and Conclusions

presented the discovery reach for various integrated luminosities in the M1/2 −M0 parameter

plane for both 7 TeV and 14 TeV center-of-mass energies. With 1 fb−1 of data at a center-of-
mass energy of 7 TeV (14 TeV) scenarios with squark masses of 1.2 TeV (1.9 TeV) and LSP
masses of 230 GeV (370 GeV) can be discovered.

Besides the proposed inclusive trilepton seach, these models may also be discovered by narrow
resonances in dilepton invariant mass distributions, since the sneutrinos may decay into two
leptons via the present LNV interaction. We therefore advise the experiments to investigate
dilepton invariant masses, where the leptons have different flavor.

In the case of a SUSY discovery, the masses of the supersymmetric particles have to be
determined. We demonstrated that a widely used method, using the kinematic endpoints of
invariant mass distributions, can also be applied in a slightly modified way in P6 violating
mSUGRA scenarios with a selectron or smuon LSP. Here, we investigate the decay chain of the
right-handed squark and lightest top squark,

q̃R/t̃1 → qχ̃0
1 → qℓ±ℓ̃∓R → qℓ±ℓ′∓ν.

In contrast to P6 conserving scenarios, the number of unknown masses is reduced by one, due to
the massless neutrino at the end of the decay cascade. Moreover, in scenarios with a dominant
λ231 or λ132 coupling, we can distinguish between the near and far lepton on an event-by-
event basis, since the leptons ℓ and ℓ′ have different flavor. This is impossible in P6 conserving
scenarios.

Typically, we have a large mass splitting between the right-handed first and second generation
squarks, q̃R, and the lightest top squark, t̃1. Therefore, we designed an event selection using
the visible effective mass and the b jet multiplicity to discriminate between the decay cascades
initiated by either the q̃R or the t̃1. In this way, we may determine the mass (scale) of both
squark types.

Using a large LHC dataset of 100 fb−1 at
√
s = 14 TeV, we presented several invariant mass

distributions, which can be used for the mass reconstruction, exemplarily for one benchmark
point and for both the q̃R and the t̃1 event selection. In the q̃R event selection, the endpoints
can be clearly identified, while the endpoint determination in the t̃1 event selection is more
problematic. The endpoint of the dilepton invariant mass is very clear and should already be
observable with a few fb−1 of data.

The results presented here for the mass reconstruction method are to be understood as
a proof-of-principle. In a future publication, we plan to fit the kinematic endpoints of the
distributions in order to determine the q̃R, t̃1, χ̃0

1 and ẽR masses via a χ2 minimization procedure.
Then, we may quantitatively study how accurately these masses can be determined and whether
the event selection between q̃R and t̃1 events introduces a bias in the reconstructed sparticle mass.
We will further investigate the impact of detector effects using a detector simulation.

We eagerly await the first results for new physics from the LHC experiments. These will
shed new light on the possible new physics landscape at the TeV scale. As demonstrated, the
supersymmetric models presented here are sensitive to early LHC data and might be discovered
soon.
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A. Properties of the benchmark models

In this appendix we discuss the mass spectrum of the supersymmetric particles and their decay
properties for the selected Tevatron benchmark points SUSY1 and SUSY2 as well as the LHC
benchmark points BE1, BE2 and BE3 in more detail. Sparticle masses, that are reduced by
more than 5 GeV due to the impact of the λ231 coupling on the RGE running, and P6 violating
decays via the λ231 coupling are marked in bold-face in the following tables.

We remark, that only the masses of those sparticles, which couple directly via the LiLjĒk

operator, are significantly reduced compared to the P6 conserving case, cf. Sect. 4.1. Thus,
since all benchmark models exhibit a dominant λ231 coupling, only the ẽR, µ̃L, ν̃µ, τ̃2 and ν̃τ
are affected. These sparticles then also exhibit P6 violating decays to SM particles via the λ231
coupling. Furthermore, the τ̃1 can also decay via the λ231 coupling due to its (small) left-handed
component. This happens in particular in scenarios, where the τ̃1 is the NLSP and its mass is
close to the LSP mass. Due to the λ231 coupling, the ẽR LSP decays undergo the 2-body decays
ẽR → µντ and ẽR → τνµ.

Common to all benchmark points is a rather light t̃1, compared to the other squarks. Due to
the top Yukawa coupling, the RGE running of the stop mass receives large negative contributions
for a large negative A0, going fromMGUT to MZ [158]. In all benchmark scenarios except SUSY2,
the t̃1 mostly decays into the χ̃0

1 and a t quark, while the decay t̃1 → χ̃+
1 b is subdominant.

The ẽR, µ̃R, τ̃1 and χ̃0
1 always form the lightest four sparticles in B3 mSUGRA models with

a ẽR or µ̃R LSP. The next lightest sparticles are the sneutrinos with masses more than 100 GeV
heavier as the right-handed sleptons. Those sneutrinos, which couple to the LiLjĒk operator,
decay to roughly 10%− 15% into two SM leptons. Due to the ν̃ mass, these leptons have a high
pT and in general allow for a mass reconstruction of the sneutrino, cf. Sect. 6.

The sneutrinos are followed by the (mostly) left-handed sleptons ẽL, µ̃L and τ̃2 in the mass
hierarchy. Their masses are only slightly larger than those of the sneutrinos because they belong
to the same SU(2) doublet. We have P6 violating decays into a lepton and a neutrino of those
sleptons, which couple directly to the LiLjĒk operator. However, due to the neutrino, a mass
reconstruction of the left-handed sleptons using these decays is difficult.

The remaining sparticle mass spectrum is nearly identical to that, which we would obtain in
the P6 conserving mSUGRA.

A.1. Benchmark scenarios for the Tevatron

The benchmark scenarios selected for the Tevatron possess a very light sparticle mass spectrum.
The SUSY contribution to the anomalous magnetic moment of the muon, δaSUSY

µ , agrees within
2σ with the discrepancy between the SM prediction and the observation, cf. Eq. 4.4. In both
benchmark scenarios SUSY1 and SUSY2 the τ̃1 NLSP is nearly mass degenerate with the ẽR
LSP and undergoes exclusively the 6P6 decay τ̃1 → eν̃µ. The electrons from this decay usually
have a high momentum.

In Tab. A.1 we give the sparticle mass spectrum and decay modes for SUSY1 (M0 = 0 GeV,
M1/2 = 400 GeV, A0 = −1250 GeV, tan β = 5, sgn(µ) = +, λ231|GUT = 0.045). The ẽR LSP
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mass is about 139 GeV. Due to the low M0 value, the mass difference between the χ̃0
1 NNNLSP

and the ẽR LSP is about 24 GeV and thus fairly large. The right-handed smuon, µ̃R, is the
NNLSP and undergoes three-body decays into the ẽR LSP and τ̃1 NLSP. These decays are
discussed in detail in Appendix C and usually yield a low-pT muon. The lightest stop, t̃1, has a
mass of 366 GeV and decays preferably into the χ̃0

1 and a t quark. The first generation squarks
have masses around 820 − 860 GeV and the gluino mass is 934 GeV.

The sparticle mass spectrum and branching ratios of SUSY2 (M0 = 80 GeV, M1/2 =
375 GeV, A0 = −1250 GeV, tan β = 5, sgn(µ) = +, λ231|GUT = 0.045) are given in Tab. A.2.
This scenario lies near the χ̃0

1 LSP region and thus, all three sparticle masses of the ẽR LSP,
τ̃1 NLSP and χ̃0

1 NNLSP lie close together at around 152 GeV. We have a fairly light t̃1 with
a mass of 305 GeV. The t̃1 decay into the χ̃0

1 and a t quark is kinematically forbidden and
t̃1 → χ̃±

1 b is the only decay mode. The squarks of the first and second generation have masses
around 780 − 820 GeV and the mass of the gluino is 881 GeV.

A.2. Benchmark scenarios for the LHC

The sparticle mass spectrum and the branching ratios for BE1 (M0 = 0 GeV, M1/2 = 475 GeV,
A0 = −1250 GeV, tan β = 5, sgn(µ) = +, λ231|GUT = 0.045) are given in Tab. A.3. It has
similar properties as the Tevatron benchmark point SUSY1 but a heavier mass spectrum, e.g.
the ẽR mass is about 169 GeV and thus roughly 40 GeV heavier than in SUSY1. The τ̃1 is
the NLSP and nearly mass degenerate with the ẽR LSP. It undergoes the P6 violating decay
τ̃1 → eνµ, yielding high-pT electrons. The µ̃R is the NNLSP and decays into the ẽR or the τ̃1 via
three body decays. The χ̃0

1 is the NNNLSP. Besides the decay into the ẽR LSP and an electron
(47.6%), it also decays to a sizable fraction (42.0%) into the τ̃1 NLSP and a τ lepton.

In Tab. A.4 we give the sparticle masses and decay properties for BE2 (M0 = 90 GeV,
M1/2 = 460 GeV, A0 = −1400 GeV, tan β = 4, sgn(µ) = +, λ231|GUT = 0.045). Due to the
lower value of tan β, the mass difference between the τ̃1 NLSP and the ẽR LSP is slightly larger
than in BE1, i.e. about 6.3 GeV. Furthermore, the τ̃1 NLSP is nearly mass degenerate with the
χ̃0
1 NNLSP. Thus, it decays exclusively via 3-body decays into the ẽR LSP, yielding a low-pT τ

lepton and an electron. The χ̃0
1 NNLSP decays always into the ẽR LSP and an electron.

In Tab. A.5 we present the sparticle masses and branching ratios for BE3 (M0 = 90 GeV,
M1/2 = 450 GeV, A0 = −1250 GeV, tan β = 4, sgn(µ) = +, λ231|GUT = 0.045). Here, the χ̃0

1 is
the NLSP and the mass difference to the ẽR LSP is about 3 GeV. Therefore, the electrons from
the χ̃0

1 decay are very soft. We have a τ̃1 NNLSP, which decays into the χ̃0
1 and a τ (64.5%) as

well as via 2-body P6 violating decays (35.5%). In both BE2 and BE3, the µ̃R is the NNNLSP
and decays exclusively into the χ̃0

1 and a muon.

In all LHC benchmark points, the t̃1 mass is around 450 GeV − 550 GeV and the other
squark masses are in the range of 800 GeV − 1 TeV. The heaviest sparticle is the gluino with a
mass & 1 TeV.
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A.2. Benchmark scenarios for the LHC

mass [GeV] channel BR channel BR

ẽ−R 139.1 µ−ντ 50% τ−νµ 50%

τ̃−1 139.6 e−ν̄µ 100%

µ̃−
R 156.2 ẽ+Re−µ− 30.2% ẽ−Re+µ− 25.1%

τ̃+1 τ−µ− 24.4% τ̃−1 τ+µ− 20.3%

χ̃0
1 163.3 ẽ−Re+ 24.7% ẽ+Re− 24.7%

τ̃−1 τ+ 22.9% τ̃+1 τ− 22.9%

µ̃−
Rµ+ 2.4% µ̃+

Rµ− 2.4%

ν̃τ 254.9 χ̃0
1ντ 63.9% W+τ̃−1 24.1%

e−µ+ 12.1%
ν̃µ 258.1 χ̃0

1νµ 84.5% e−τ+ 15.5%
ν̃e 262.9 χ̃0

1νe 100%

µ̃−
L 269.3 χ̃0

1µ
− 84.2% e−ν̄τ 15.8%

τ̃−2 269.6 χ̃0
1τ

− 63.7% H0τ̃−1 13.1%

Z0τ̃−1 12.8% e−ν̄µ 10.5%

ẽ−L 273.9 χ̃0
1e

− 100%
χ̃0
2 311.1 ¯̃ντντ 10.8% ν̃τ ν̄τ 10.8%

¯̃νµνµ 9.7% ν̃µν̄µ 9.7%
¯̃νeνe 8.1% ν̃eν̄e 8.1%

µ̃−
Lµ+ 6.6% µ̃+

Lµ− 6.6%

τ̃−2 τ+ 6.3% τ̃+2 τ− 6.3%

ẽ−Le+ 5.4% ẽ+Le− 5.4%

τ̃−1 τ+ 2.7% τ̃+1 τ− 2.7%

χ̃−
1 311.2 ¯̃νττ− 22.3% ¯̃νµµ− 20.0%

¯̃νee− 16.9% µ̃−
L ν̄µ 12.7%

τ̃−2 ν̄τ 12.1% ẽ−L ν̄e 10.3%

τ̃−1 ν̄τ 5.0%

t̃1 365.8 χ̃0
1t 69.1% χ̃+

1 b 30.9%

b̃1 706.3 W−t̃1 78.5% χ̃−
1 t 12.8%

χ̃0
2b 8.2%

t̃2 790.6 Z0t̃1 55.3% H0 t̃1 22.9%

χ̃+
1 b 14.3% χ̃0

2t 1.2%

χ̃0
3 819.8 t̃1 t̄ 26.5% t̃∗1t 26.5%

χ̃−
1 W+ 14.2% χ̃+

1 W− 14.2%
χ̃0
2Z

0 12.6% χ̃0
1Z

0 3.7%
χ̃0
2H

0 1.0%

b̃2 821.5 χ̃0
1b 59.3% W−t̃1 36.8%

χ̃−
1 t 2.0% χ̃0

2b 1.2%

d̃R (s̃R) 824.2 χ̃0
1d(s) 100%

ũR (c̃R) 826.3 χ̃0
1u(c) 100%

χ̃−
2 828.0 t̃∗1b 57.5% χ̃0

2W
− 12.9%

χ̃−
1 Z0 12.4% χ̃−

1 H0 11.6%
χ̃0
1W

− 3.3%

χ̃0
4 828.3 t̃1 t̄ 34.7% t̃∗1t 34.7%

χ̃−
1 W+ 9.0% χ̃+

1 W− 9.0%
χ̃0
2H

0 7.5% χ̃0
1H

0 2.2%

ũL (c̃L) 856.3 χ̃+
1 d(s) 65.9% χ̃0

2u(c) 32.9%
χ̃0
1u(c) 1.2%

d̃L (s̃L) 859.8 χ̃−
1 u(c) 65.5% χ̃0

2d(s) 32.8%
χ̃0
1d(s) 1.7%

g̃ 933.8 t̃1 t̄ 23.4% t̃∗1t 23.4%

b̃1b̄ 9.2% b̃∗1b 9.2%

b̃2b̄ 2.6% b̃∗2b 2.6%

d̃Rd̄(s̃R s̄) 2.5% d̃∗Rd(s̃∗Rs) 2.5%
ũRū(c̃Rc̄) 2.4% ũ∗

Ru(c̃∗Rc) 2.4%
ũLū(c̃Lc̄) 1.3% ũ∗

Lu(c̃
∗
Lc) 1.3%

d̃Ld̄(s̃Ls̄) 1.2% d̃∗Ld(s̃
∗
Ls) 1.2%

Table A.1.: Branching ratios (BRs) and sparticle masses for the benchmark scenario SUSY1.
BRs smaller than 1% are neglected. 6P6 decays are shown in bold-face. Masses
which are reduced by more than 5 GeV (compared to the P6 conserving spectrum)
due to λ231|GUT = 0.045 are also shown in bold-face.
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mass [GeV] channel BR channel BR

ẽ−R 151.5 µ−ντ 50% τ−νµ 50%

τ̃−1 151.6 e−ν̄µ 100%

χ̃0
1 152.8 ẽ−Re+ 50%% ẽ+Re− 50%

µ̃−
R 167.3 χ̃0

1µ
− 100%

ν̃τ 250.4 χ̃0
1ντ 75.7% e−µ+ 12.6%

W+τ̃−1 11.7%
ν̃µ 253.7 χ̃0

1νµ 86.1% e−τ+ 13.9%
ν̃e 258.5 χ̃0

1νe 100%

µ̃−
L 265.0 χ̃0

1µ
− 85.5% e−ν̄τ 14.5%

τ̃−2 265.6 χ̃0
1τ

− 80.6% e−ν̄µ 11.6%

Z0τ̃−1 7.7%

ẽ−L 269.6 χ̃0
1e

− 100%
χ̃0
2 291.0 ¯̃ντντ 12.0% ν̃τ ν̄τ 12.0%

¯̃νµνµ 10.3% ν̃µν̄µ 10.3%
¯̃νeνe 7.9% ν̃eν̄e 7.9%

µ̃−
Lµ+ 5.5% µ̃+

Lµ− 5.5%

τ̃−2 τ+ 5.0% τ̃+2 τ− 5.0%

τ̃−1 τ+ 4.7% τ̃+1 τ− 4.7%

ẽ−L e+ 3.8% ẽ+Le− 3.8%
χ̃0
1H

0 1.0%

χ̃−
1 291.0 ¯̃νττ− 24.8% ¯̃νµµ− 21.3%

¯̃νee− 16.4% µ̃−
L ν̄µ 10.5%

τ̃−2 ν̄τ 9.6% τ̃−1 ν̄τ 8.9%

ẽ−L ν̄e 7.2% χ̃0
1W

− 1.0%

t̃1 304.9 χ̃+
1 b 100%

b̃1 661.6 W−t̃1 80.9% χ̃−
1 t 11.2%

χ̃0
2b 7.5%

t̃2 750.2 Z0t̃1 57.1% H0t̃1 22.2%

χ̃+
1 b 13.2% χ̃0

2t 5.4%
χ̃0
1t 1.2%

b̃2 779.1 χ̃0
1b 56.7% W−t̃1 39.3%

χ̃−
1 t 1.9% χ̃0

2b 1.2%

d̃R (s̃R) 781.9 χ̃0
1d(s) 100%

ũR (c̃R) 783.7 χ̃0
1u(c) 100%

χ̃0
3 793.9 t̃1 t̄ 28.5% t̃∗1t 28.5%

χ̃−
1 W+ 13.0% χ̃+

1 W− 13.0%
χ̃0
2Z

0 11.4% χ̃0
1Z

0 3.3%
χ̃0
2H

0 1.0%

χ̃−
2 802.1 t̃∗1b 60.4% χ̃0

2W
− 11.9%

χ̃−
1 Z0 11.5% χ̃−

1 H0 10.7%
χ̃0
1W

− 3.0%

χ̃0
4 802.4 t̃1 t̄ 36.1% t̃∗1t 36.1%

χ̃−
1 W+ 8.2% χ̃+

1 W− 8.2%
χ̃0
2H

0 6.7% χ̃0
1H

0 2.0%

ũL (c̃L) 811.4 χ̃+
1 d(s) 66.0% χ̃0

2u(c) 33.0%
χ̃0
1u(c) 1.0%

d̃L (s̃L) 815.0 χ̃−
1 u(c) 65.5% χ̃0

2d(s) 32.8%
χ̃0
1d(s) 1.7%

g̃ 881.0 t̃1 t̄ 24.7% t̃∗1t 24.7%

b̃1b̄ 9.5% b̃∗1b 9.5%

b̃2b̄ 2.4% b̃∗2b 2.4%

d̃Rd̄(s̃Rs̄) 2.3% d̃∗Rd(s̃∗Rs) 2.3%
ũRū(c̃Rc̄) 2.2% ũ∗

Ru(c̃∗Rc) 2.2%
ũLū(c̃Lc̄) 1.2% ũ∗

Lu(c̃
∗
Lc) 1.2%

d̃Ld̄(s̃Ls̄) 1.1% d̃∗Ld(s̃
∗
Ls) 1.1%

Table A.2.: Branching ratios (BRs) and sparticle masses for the benchmark scenario SUSY2.
BRs smaller than 1% are neglected. 6P6 decays are shown in bold-face. Masses
which are reduced by more than 5 GeV (compared to the P6 conserving spectrum)
due to λ231|GUT = 0.045 are also shown in bold-face.
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mass [GeV] channel BR channel BR

ẽ−R 168.7 µ−ντ 50% τ−νµ 50%

τ̃−1 170.0 e−ν̄µ 100%

µ̃−
R 183.6 ẽ+Re−µ− 34.6% ẽ−Re+µ− 28.3%

τ̃+1 τ−µ− 20.4% τ̃−1 τ+µ− 16.7%

χ̃0
1 195.7 ẽ−Re+ 23.8% ẽ+Re− 23.8%

τ̃−1 τ+ 21.0% τ̃+1 τ− 21.0%

µ̃−
Rµ+ 5.1% µ̃+

Rµ− 5.1%

ν̃τ 306.5 χ̃0
1ντ 60.2% W+τ̃−1 28.4%

e−µ+ 11.4%
ν̃µ 309.4 χ̃0

1νµ 84.4% e−τ+ 15.6%
ν̃e 313.5 χ̃0

1νe 100%

τ̃−2 318.4 χ̃0
1τ

− 59.0% H0τ̃−1 16.5%

Z0τ̃−1 14.1% e−ν̄µ 10.4%

µ̃−
L 318.7 χ̃0

1µ
− 84.1% e−ν̄τ 15.9%

ẽ−L 322.8 χ̃0
1e

− 100%
χ̃0
2 372.0 ¯̃ντντ 10.0% ν̃τ ν̄τ 10.0%

¯̃νµνµ 9.2% ν̃µν̄µ 9.2%
¯̃νeνe 8.1% ν̃eν̄e 8.1%

µ̃−
Lµ+ 7.2% µ̃+

Lµ− 7.2%

τ̃−2 τ+ 7.1% τ̃+2 τ− 7.1%

ẽ−Le+ 6.2% ẽ+Le− 6.2%

τ̃−1 τ+ 1.6% τ̃+1 τ− 1.6%

χ̃−
1 372.0 ¯̃νττ− 20.6% ¯̃νµµ− 19.0%

¯̃νee− 16.8% µ̃−
L ν̄µ 13.9%

τ̃−2 ν̄τ 13.7% ẽ−L ν̄e 12.0%

τ̃−1 ν̄τ 3.1%

t̃1 531.1 χ̃0
1t 62.2% χ̃+

1 b 37.8%

b̃1 847.3 W−t̃1 71.5% χ̃−
1 t 17.5%

χ̃0
2b 10.4%

χ̃0
3 898.0 t̃1 t̄ 19.7% t̃∗1t 19.7%

χ̃−
1 W+ 18.4% χ̃+

1 W− 18.4%
χ̃0
2Z

0 16.5% χ̃0
1Z

0 4.8%
χ̃0
2H

0 1.2%

χ̃−
2 906.0 t̃∗1b 47.6% χ̃0

2W
− 15.9%

χ̃−
1 Z0 15.4% χ̃−

1 H0 14.6%
χ̃0
1W

− 4.2%

χ̃0
4 906.4 t̃1 t̄ 29.6% t̃∗1t 29.6%

χ̃−
1 W+ 12.1% χ̃+

1 W− 12.1%
χ̃0
2H

0 10.3% χ̃0
1H

0 2.9%

t̃2 919.4 Z0t̃1 49.1% H0 t̃1 24.6%

χ̃+
1 b 17.3% χ̃0

2t 7.6%
χ̃0
1t 1.5%

b̃2 959.5 χ̃0
1b 67.0% W−t̃1 28.9%

χ̃−
1 t 2.1% χ̃0

2b 1.2%

d̃R (s̃R) 962.3 χ̃0
1d(s) 100%

ũR (c̃R) 965 χ̃0
1u(c) 100%

ũL (c̃L) 1001.8 χ̃+
1 d(s) 65.9% χ̃0

2u(c) 32.9%
χ̃0
1u(c) 1.2%

d̃L (s̃L) 1004.7 χ̃−
1 u(c) 65.5% χ̃0

2d(s) 32.8%
χ̃0
1d(s) 1.7%

g̃ 1093.7 t̃1 t̄ 20.9% t̃∗1t 20.9%

b̃1b̄ 8.5% b̃∗1b 8.5%

b̃2b̄ 2.9% b̃∗2b 2.9%

d̃Rd̄(s̃R s̄) 2.7% d̃∗Rd(s̃∗Rs) 2.7%
ũRū(c̃Rc̄) 2.6% ũ∗

Ru(c̃∗Rc) 2.6%
t̃2 t̄ 1.6% t̃∗2t 1.6%
ũLū(c̃Lc̄) 1.4% ũ∗

Lu(c̃
∗
Lc) 1.4%

d̃Ld̄(s̃Ls̄) 1.3% d̃∗Ld(s̃
∗
Ls) 1.3%

Table A.3.: Branching ratios (BRs) and sparticle masses for the benchmark scenario BE1. BRs
smaller than 1% are neglected. 6P6 decays are shown in bold-face. Masses which
are reduced by more than 5 GeV (compared to the P6 conserving spectrum) due
to λ231|GUT = 0.045 are also shown in bold-face.
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A. Properties of the benchmark models

mass [GeV] channel BR channel BR

ẽ−R 182.3 µ−ντ 50% τ−νµ 50%

τ̃−1 189.0 ẽ+Re−τ− 50.2% ẽ−Re+τ− 49.5%

χ̃0
1 189.5 ẽ−Re+ 50% ẽ+Re− 50%

µ̃−
R 199.0 χ̃0

1µ
− 100%

ν̃τ 309.8 χ̃0
1ντ 71.0% W+τ̃−1 17.0%

e−µ+ 12.0%
ν̃µ 312.0 χ̃0

1νµ 85.8% e−τ+ 14.2%
ν̃e 317.0 χ̃0

1νe 100%

τ̃−2 320.8 χ̃0
1τ

− 69.9% e−ν̄µ 11.3%

H0τ̃−1 10.2% Z0τ̃−1 8.6%

µ̃−
L 320.8 χ̃0

1µ
− 85.2% e−ν̄τ 14.8%

ẽ−L 325.7 χ̃0
1e

− 100%
χ̃0
2 360.1 ¯̃ντντ 10.5% ν̃τ ν̄τ 10.5%

¯̃νµνµ 9.7% ν̃µν̄µ 9.7%
¯̃νeνe 7.9% ν̃eν̄e 7.9%

µ̃−
Lµ+ 7.0% µ̃+

Lµ− 7.0%

τ̃−2 τ+ 6.8% τ̃+2 τ− 6.8%

ẽ−Le+ 5.4% ẽ+Le− 5.4%

τ̃−1 τ+ 2.0% τ̃+1 τ− 2.0%
χ̃0
1H

0 1.3%

χ̃−
1 360.2 ¯̃νττ− 21.7% ¯̃νµµ− 19.9%

¯̃νee− 16.3% µ̃−
L ν̄µ 13.4%

τ̃−2 ν̄τ 13.2% ẽ−L ν̄e 10.5%

τ̃−1 ν̄τ 3.8% χ̃0
1W

− 1.3%

t̃1 448.3 χ̃0
1t 71.9% χ̃+

1 b 28.1%

b̃1 809.1 W−t̃1 78.1% χ̃−
1 t 13.3%

χ̃0
2b 8.1%

t̃2 887.0 Z0t̃1 52.7% H0 t̃1 25.9%

χ̃+
1 b 14.1% χ̃0

2t 6.1%
χ̃0
1t 1.2%

χ̃0
3 936.7 t̃1 t̄ 26.0% t̃∗1t 26.0%

χ̃−
1 W+ 14.6% χ̃+

1 W− 14.6%
χ̃0
2Z

0 13.3% χ̃0
1Z

0 3.8%

b̃2 937.7 χ̃0
1b 67.9% W−t̃1 26.0%

χ̃−
1 t 2.7% χ̃0

2b 1.5%

d̃R (s̃R) 939.8 χ̃0
1d(s) 100%

ũR (c̃R) 942.9 χ̃0
1u(c) 100%

χ̃−
2 944.5 t̃∗1b 55.6% χ̃0

2W
− 13.5%

χ̃−
1 Z0 13.1% χ̃−

1 H0 12.4%
χ̃0
1W

− 3.4%

χ̃0
4 945.1 t̃1 t̄ 33.3% t̃∗1t 33.3%

χ̃−
1 W+ 10.0% χ̃+

1 W− 10.0%
χ̃0
2H

0 8.5% χ̃0
1H

0 2.4%

ũL (c̃L) 977.6 χ̃+
1 d(s) 65.9% χ̃0

2u(c) 32.9%
χ̃0
1u(c) 1.2%

d̃L (s̃L) 980.4 χ̃−
1 u(c) 65.6% χ̃0

2d(s) 32.8%
χ̃0
1d(s) 1.6%

g̃ 1063.1 t̃1 t̄ 23.0% t̃∗1t 23.0%

b̃1b̄ 8.7% b̃∗1b 8.7%

b̃2b̄ 2.4% b̃∗2b 2.4%

d̃Rd̄(s̃R s̄) 2.4% d̃∗Rd(s̃∗Rs) 2.4%
ũRū(c̃Rc̄) 2.3% ũ∗

Ru(c̃∗Rc) 2.3%
t̃2 t̄ 2.0% t̃∗2t 2.0%
ũLū(c̃Lc̄) 1.2% ũ∗

Lu(c̃
∗
Lc) 1.2%

d̃Ld̄(s̃Ls̄) 1.1% d̃∗Ld(s̃
∗
Ls) 1.1%

Table A.4.: Branching ratios (BRs) and sparticle masses for the benchmark scenario BE2. BRs
smaller than 1% are neglected. 6P6 decays are shown in bold-face. Masses which
are reduced by more than 5 GeV (compared to the P6 conserving spectrum) due
to λ231|GUT = 0.045 are also shown in bold-face.
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A.2. Benchmark scenarios for the LHC

mass [GeV] channel BR channel BR

ẽ−R 182.0 µ−ντ 50% τ−νµ 50%

χ̃0
1 184.9 ẽ−Re+ 50% ẽ+Re− 50%

τ̃−1 187.2 χ̃0
1τ

− 64.5% e−ν̄µ 35.5%

µ̃−
R 195.9 χ̃0

1µ
− 100%

ν̃τ 304.3 χ̃0
1ντ 73.6% W+τ̃−1 14.2%

e−µ+ 12.2%
ν̃µ 306.2 χ̃0

1νµ 86.0% e−τ+ 14.0%
ν̃e 310.4 χ̃0

1νe 100%

µ̃−
L 315.2 χ̃0

1µ
− 85.2% e−ν̄τ 14.8%

τ̃−2 315.3 χ̃0
1τ

− 72.5% e−ν̄µ 11.7%

H0τ̃−1 8.5% Z0τ̃−1 7.3%

ẽ−L 319.3 χ̃0
1e

− 100%
χ̃0
2 351.2 ¯̃ντντ 10.5% ν̃τ ν̄τ 10.5%

¯̃νµνµ 9.7% ν̃µν̄µ 9.7%
¯̃νeνe 8.1% ν̃eν̄e 8.1%

µ̃−
Lµ+ 6.8% µ̃+

Lµ− 6.8%

τ̃−2 τ+ 6.6% τ̃+2 τ− 6.6%

ẽ−Le+ 5.4% ẽ+Le− 5.4%

τ̃−1 τ+ 2.0% τ̃+1 τ− 2.0%
χ̃0
1H

0 1.6%

χ̃−
1 351.2 ¯̃νττ− 21.7% ¯̃νµµ− 20.1%

¯̃νee− 16.8% µ̃−
L ν̄µ 13.0%

τ̃−2 ν̄τ 12.7% ẽ−L ν̄e 10.4%

τ̃−1 ν̄τ 3.8% χ̃0
1W

− 1.6%

t̃1 481.7 χ̃0
1t 62.1% χ̃+

1 b 37.9%

b̃1 805.4 W−t̃1 73.9% χ̃−
1 t 15.9%

χ̃0
2b 9.7%

t̃2 881.7 Z0t̃1 51.3% H0 t̃1 24.2%

χ̃+
1 b 16.1% χ̃0

2t 7.0%
χ̃0
1t 1.4%

χ̃0
3 884.0 t̃1 t̄ 22.1% t̃∗1t 22.1%

χ̃−
1 W+ 17.0% χ̃+

1 W− 17.0%
χ̃0
2Z

0 15.4% χ̃0
1Z

0 4.5%
χ̃0
2H

0 1.0%

χ̃−
2 892.4 t̃∗1b 50.8% χ̃0

2W
− 15.1%

χ̃−
1 Z0 14.6% χ̃−

1 H0 13.7%
χ̃0
1W

− 3.8%

χ̃0
4 893.1 t̃1 t̄ 31.4% t̃∗1t 31.4%

χ̃−
1 W+ 11.1% χ̃+

1 W− 11.1%
χ̃0
2H

0 9.4% χ̃0
1H

0 2.7%

b̃2 919.3 χ̃0
1b 70.5% W−t̃1 26.0%

χ̃−
1 t 1.8% χ̃0

2b 1.1%

d̃R (s̃R) 921.1 χ̃0
1d(s) 100%

ũR (c̃R) 923.8 χ̃0
1u(c) 100%

ũL (c̃L) 957.9 χ̃+
1 d(s) 65.9% χ̃0

2u(c) 33.0%
χ̃0
1u(c) 1.1%

d̃L (s̃L) 961.0 χ̃−
1 u(c) 65.5% χ̃0

2d(s) 32.7%
χ̃0
1d(s) 1.7%

g̃ 1041.8 t̃1 t̄ 22.6% t̃∗1t 22.6%

b̃1b̄ 8.9% b̃∗1b 8.9%

b̃2b̄ 2.7% b̃∗2b 2.7%

d̃Rd̄(s̃R s̄) 2.6% d̃∗Rd(s̃∗Rs) 2.6%
ũRū(c̃Rc̄) 2.5% ũ∗

Ru(c̃∗Rc) 2.5%
ũLū(c̃Lc̄) 1.3% ũ∗

Lu(c̃
∗
Lc) 1.3%

d̃Ld̄(s̃Ls̄) 1.2% d̃∗Ld(s̃
∗
Ls) 1.2%

Table A.5.: Branching ratios (BRs) and sparticle masses for the benchmark scenario BE3. BRs
smaller than 1% are neglected. 6P6 decays are shown in bold-face. Masses which
are reduced by more than 5 GeV (compared to the P6 conserving spectrum) due
to λ231|GUT = 0.045 are also shown in bold-face.
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B. Signal and Background at the LHC at√
s = 14 TeV

We present the cut flow of the signal and SM background events for 10 fb−1 of simulated LHC
data at

√
s = 14 TeV in Tab. B.1. Although the benchmark scenarios BE1, BE2 and BE3 are

already observable with very early data at the LHC with
√
s = 7 TeV, we provide their expected

event yields here as a reference in order to compare the signal efficiencies.

We applied the inclusive three-lepton analysis as presented in Sect. 5.3.4. After the three
lepton requirement (step I), the expected SM background is reduced to 5110±49 events. Already
at this stage, the expected signal event yield of BE1, BE2 and BE3 is overwhelming. The signal
efficiency for step I is the same as at LHC at 7 TeV.

The jet multiplicity requirement (step II) reduces the SM background to 1669± 32 expected
events, which mainly stem from Zj (26%), tt (24%) and WZ (15%) production. Due to the
dominating sparton pair production of the benchmark scenarios at 14 TeV, cf. Tab. 5.9, almost
every event has at least two hard jets. Thus, the signal efficiency of this cut is enhanced: For BE1
and BE2 (BE3), roughly 97% (95%) of all signal events pass the jet multiplicity cut. Compared
to LHC at 7 TeV, the signal efficiency of step II is about 10% larger.

The Z veto (step III) effectively reduces the Z + jets and di-boson backgrounds, leaving a
total expected SM background of 503 ± 20 events, which is then dominated by the tt sample
(71%). For the benchmark scenarios, the signal efficiencies are about the same as at LHC at
7 TeV.

After the requirement on the visible effective mass, Mvis
eff ≥ 400 GeV, (step IV), the SM

background is reduced to 64.7 ± 7.2 events. It is dominated by the tt background (78%). More
than 95% of the signal events pass this last cut.

Sample before cuts Nlep ≥ 3 Njet ≥ 2 MOSSF Mvis
eff ≥ 400 GeV

top (5215 ± 2) · 103 553 ± 21 491 ± 20 397 ± 19 55.9 ± 7.0
Z + jets (5601 ± 2) · 103 1980 ± 41 571 ± 22 48.7 ± 6.4 2.6 ± 1.5
W + jets (9516 ± 9) · 102 4.8 ± 2.0 1.6 ± 1.1 . 1.0 . 1.0
di-boson (7719 ± 8) · 102 2573 ± 17 605 ± 11 56.7 ± 4.4 6.1 ± 1.1

all SM (12540 ± 3) · 103 5110 ± 49 1669 ± 32 503 ± 20 64.7 ± 7.2

BE1 23040 ± 47 14412 ± 37 13925 ± 37 12204 ± 34 11854 ± 34
BE2 30980 ± 57 13910 ± 38 13442 ± 37 12227 ± 36 11569 ± 35
BE3 31160 ± 55 9118 ± 30 8700 ± 29 7807 ± 28 7533 ± 27

Table B.1.: Number of SM background and signal events after each step in the event selection
at

√
s = 14 TeV, scaled to an integrated luminosity of 10 fb−1. We provide

the results for the three signal benchmark scenarios BE1, BE2 and BE3. The
uncertainties include statistical errors only.
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C. Three-body slepton decays

In the ISAJET7.64 code, three-body slepton decays that result in a right-handed slepton of the
first or second generation are not implemented, since in most SUSY scenarios the τ̃1 is considered
to be lighter than the other sleptons. However, this is clearly not the case for ẽR and µ̃R LSP
scenarios, and these decays may be of greater importance in certain regions of the parameter
space. Here, we calculate the three-body slepton decays of the right-handed sleptons and the τ̃1
into a right-handed slepton of the first or second generation. We only present the calculation
of the spin-summed matrix amplitude squared. The phase-space integration is straight-forward
[118] and is partly performed numerically using adaptive Gaussian quadrature in ISAJET. We
use the 2-component spinor techniques and notation from Ref. [238] for the calculation.

C.1. Three-body slepton decay ℓ̃−R → ℓ−ℓ′±ℓ̃′∓R

We calculate the 3-body slepton decays ℓ̃−R → l−ℓ′±ℓ̃′∓R via a virtual neutralino, where ℓ, ℓ′ (ℓ̃R, ℓ̃
′
R)

denote the (right-handed) (s)leptons of the first and the second generation and the mass of the
ℓ̃′R is less than the mass of the ℓ̃R. We neglect Yukawa couplings and slepton mixing, i.e. our
sleptons are purely R-type.

ℓ̃−R(p)

ℓ̃′−R (k3)

ℓ̄′(k2, λ2)

ℓ̄†(k1, λ1)

χ̃0
j

Figure C.1.: Feynman diagram for the three-body slepton decay ℓ̃−R → ℓ−ℓ′+ℓ̃′−R .

The Feynman diagram for the decay ℓ̃−R → ℓ−ℓ′+ℓ̃′−R is shown in Fig. C.1. The momenta and
polarizations of the particles are indicated on the diagram. The amplitude for this diagram, for
each neutralino χ̃0

j exchanged, is

iM = (−ia∗j )(−iaj)x†2
i(p − k1) · σ̄

(p− k1)2 −m2
χ̃0
j

y1, (C.1)

where aj ≡
√

2g′Nj1, and the spinor wave function factors are y1 = y( ~k1, λ1) and x†2 = x†( ~k2, λ2).
Squaring the total amplitude then yields

|M|2 = Ax†2(p− k1) · σ̄y1y†1(p− k1) · σ̄x2, (C.2)
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C. Three-body slepton decays

ℓ̃−R(p)

ℓ̃′+R (k3)

ℓ̄′†(k2, λ2)

ℓ̄†(k1, λ1)

χ̃0
j

Figure C.2.: Feynman diagram for the three-body slepton decay l̃−R → l−l′− l̃′+R .

with

A =

4
∑

j,k=1

|aj |2
(p− k1)2 −m2

χ̃0
j

· |ak|2
(p− k1)2 −m2

χ̃0
k

. (C.3)

Summing over the spins leads to

∑

λ1,λ2

|M|2 = A
[

m2
13m

2
23 − p2k23

]

, (C.4)

where

m2
13 ≡ (p− k2)2 = (k1 + k3)2, (C.5)

m2
23 ≡ (p− k1)2 = (k2 + k3)2. (C.6)

We neglected the lepton masses (k21 , k
2
2 ≈ 0) in Eq. (C.4).

Now we turn to the decay ℓ̃−R → ℓ−ℓ′−ℓ̃′+R . Its Feynman diagram is given in Fig. C.2. The
amplitude, for each neutralino χ̃0

j exchanged, is given by

iM = (−ia∗j )(−iaj)
imχ̃0

j

(p− k1)2 −m2
χ̃0
j

y1y2, (C.7)

which leads to the following expression for the total amplitude squared:

|M|2 = B y1y2y
†
2y

†
1, (C.8)

with

B =
4

∑

j,k=1

|aj|2mχ̃0
j

(p − k1)2 −m2
χ̃0
j

|ak|2mχ̃0
k

(p− k1)2 −m2
χ̃0
k

. (C.9)

Taking the spin sums and then the trace, we arrive at

∑

λ1,λ2

|M|2 = B(−m2
13 −m2

23 + p2 + k23). (C.10)
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C.2. Three-body slepton decay τ̃−1 → τ−ℓ±ℓ̃∓R

Here, the proportionality to the neutralino mass, mχ̃0
j
, is due to the helicity flip of the neutralino,

cf. Fig. C.2.

C.2. Three-body slepton decay τ̃−1 → τ−ℓ±ℓ̃∓R

Now we calculate the more complicated decays τ̃−1 → τ−ℓ±ℓ̃∓R. The τ̃1 is a mixture of L- and
R-type eigenstates and, in addition, we cannot neglect the Yukawa couplings for the third gen-
eration.

The Feynman diagrams for the decay τ̃−1 → τ−ℓ+ℓ̃−R are shown in Fig. C.3. The amplitudes
for these two diagrams are

iMI = (−iaτ̃j )(−iaℓ̃ ∗j )x†2
i(p− k1) · σ̄

(p − k1)2 −m2
χ̃0
j

y1, (C.11)

iMII = (ibτ̃j )(−iaℓ̃ ∗j )
imχ̃0

j

(p− k1)2 −m2
χ̃0
j

x†2x
†
1, (C.12)

where we used the following abbreviations:

aℓ̃j ≡
√

2g′Nj1, (C.13)

aτ̃j ≡ YτNj3L
∗
τ̃1 +

√
2g′Nj1R

∗
τ̃1 , (C.14)

bτ̃j ≡ YτN
∗
j3R

∗
τ̃1 −

1√
2

(gN∗
j2 + g′N∗

j1)L
∗
τ̃1 . (C.15)

The total amplitude squared is

|M|2 =

4
∑

j,k=1

Cjk

[

aτ̃j a
τ̃ ∗
k x†2(p− k1) · σ̄y1y†1(p− k1) · σ̄x2

−
[

aτ̃j b
τ̃ ∗
k mχ̃0

k
+ aτ̃kb

τ̃ ∗
j mχ̃0

j

]

x†2(p− k1) · σ̄y1x1x2

+ bτ̃j b
τ̃ ∗
k mχ̃0

j
mχ̃0

k
x†2x

†
1x1x2

]

, (C.16)

where

Cjk =
aℓ̃ ∗j

(p− k1)2 −m2
χ̃0
j

· aℓ̃k
(p− k1)2 −m2

χ̃0
k

. (C.17)

Summing over the spins of the final state leptons, we derive

∑

λ1,λ2

|M|2 =

4
∑

j,k=1

Cjk

[

aτ̃j a
τ̃ ∗
k

(

(−m2
23 + p2 − k21)(−m2

13 + p2) − (p2 + k23 −m2
13 −m2

23)(p
2 − k21)

)

−
[

aτ̃j b
τ̃ ∗
k mχ̃0

k
+ aτ̃kb

τ̃ ∗
j mχ̃0

j

]

mτ (m2
23 − k23) + bτ̃j b

τ̃ ∗
k mχ̃0

j
mχ̃0

k
(p2 + k23 −m2

13 −m2
23)

]

,

(C.18)

where we have neglected the mass of the lepton (k22 ≈ 0) in Eq. (C.18).
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C. Three-body slepton decays

ℓ̃−R(k3)

ℓ̄(k2, λ2)

τ̄ †(k1, λ1)

χ̃0
i

τ̃−1 (p)

ℓ̃−R(k3)

ℓ̄(k2, λ2)

τ(k1, λ1)

χ̃0
i

τ̃−1 (p)

Figure C.3.: Feynman diagrams for the three-body slepton decay τ̃−1 → τ−ℓ+ℓ̃−R.

ℓ̃+
R(k3)

ℓ̄†(k2, λ2)

τ(k1, λ1)

χ̃0
i

τ̃−1 (p)

ℓ̃+
R(k3)

ℓ̄†(k2, λ2)

τ̄ †(k1, λ1)

χ̃0
i

τ̃−1 (p)

Figure C.4.: Feynman diagrams for the three-body slepton decay τ̃−1 → τ−ℓ−ℓ̃+R.

Now, we turn to the competing decay τ̃−1 → τ−ℓ−ℓ̃+R. The Feynman diagrams are shown in
Fig. C.4. The amplitudes for these diagrams are

iMI = (−ibτ̃ ∗
j )(−iaℓ̃ ∗j )x†2

i(p− k1) · σ̄
(p − k1)2 −m2

χ̃0
j

y1, (C.19)

iMII = (iaτ̃ ∗
j )(−iaℓ̃ ∗j )

imχ̃0
j

(p − k1)2 −m2
χ̃0
j

x†2x
†
1. (C.20)

This leads to an analogous calculation as for the decay τ̃−1 → τ−ℓ+ℓ̃−R with interchanged coeffi-
cients aτ̃j ↔ bτ̃ ∗

j .

C.3. Resulting branching ratios in the ℓ̃R LSP parameter space

In this section we study the previously calculated three-body slepton decays for the ẽR LSP
parameter space in the M1/2 −M0 plane. In Fig. C.5 we give the same parameter region as for
the LHC discovery reach for

√
s = 7 TeV in Fig. 5.11, i.e. we chose the B3 mSUGRA parameter

A0 = −1250 GeV, tan β = 5, sgn(µ) = + and λ231|GUT = 0.045. Gray contour lines indicate
sparticle mass differences that are relevant for the three-body slepton decay and are specified
in the following for each subfigure. The values of the mass difference are indicated by the gray
labels.
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C.3. Resulting branching ratios in the ℓ̃R LSP parameter space

In Fig. C.5(a) we show the branching ratio for the right-handed smuon decay µ̃−R → µ−e−ẽ+R.
The dashed (dotted) gray contour lines indicate the mass difference of the µ̃R to the ẽR (χ̃0

1).
In the shown ẽR LSP parameter region, the mass difference between µ̃R and ẽR is more than 10
GeV, thus there is enough phase-space for the decays µ̃−R → µ−e∓ẽ±R to happen. In the white
region, the µ̃R is heavier than the χ̃0

1 and decays on-shell into the χ̃0
1. The branching ratio

B(µ̃−R → µ−e−ẽ+R) increases with M1/2 and is rather insensitive to M0.

The decay µ̃−R → µ−e+ẽ−R behaves similarly to the decay µ̃−R → µ−e−ẽ+R. However, there is
a asymmetry between these two decays, defined by

A(µ̃−R → µ−e∓ẽ±R) ≡ B(µ̃−R → µ−e−ẽ+R) − B(µ̃−R → µ−e+ẽ−R)

B(µ̃−R → µ−e−ẽ+R) + B(µ̃−R → µ−e+ẽ−R)
, (C.21)

due to the different results for the spin-summed squared matrix element, cf. Eq. (C.4) and (C.10).
This asymmetry is shown in Fig. C.5(b). It is always positive and increases with increasing mass
difference between the χ̃0

1 and the µ̃R.

The competing decay µ̃−R → µ−τ−τ̃+1 is shown in Fig. C.5(c). Here, the dashed (dotted) gray
contour lines give the mass difference of the µ̃R to the τ̃1 (χ̃0

1). For light ẽR LSP scenarios, i.e.
at M1/2 values around 380 GeV, the µ̃R decays in almost the same rate into the τ̃1 and the ẽR
LSP. However, the branching ratios B(µ̃−R → µ−τ∓τ̃±1 ) decrease with increasing M1/2, because
then, the τ̃1 becomes more right-handed. Thus, at higher values of M1/2 the µ̃R prefers to decay
into the ẽR LSP.

We give the asymmetry between the decays µ̃−R → µ−τ−τ̃+1 and µ̃−R → µ−τ+τ̃−1 , defined by

A(µ̃−R → µ−τ∓τ̃±1 ) ≡ B(µ̃−R → µ−τ−τ̃+1 ) − B(µ̃−R → µ−τ+τ̃−1 )

B(µ̃−R → µ−τ−τ̃+1 ) + B(µ̃−R → µ−τ+τ̃−1 )
, (C.22)

in Fig. C.5(d). This asymmetry is positive for the shown ẽR LSP parameter space. As for
A(µ̃−R → µ−e∓ẽ±R), the asymmetry decreases with M0, i.e. with decreasing mass difference
between the χ̃0

1 and the µ̃R.

We present the branching ratio of the lightest stau decay τ̃−1 → τ−e−ẽ+R in Fig. C.5(e). The
dashed (dotted) gray contour lines give the mass difference of the τ̃1 to the ẽR (χ̃0

1). Since the
ẽR and τ̃1 are nearly mass degenerate for light ẽR scenarios, this decay becomes kinematically
possible only for higher M1/2 values. Here, the branching ratio severely depends on M0. This
is because there is also the competing R-parity violating decay τ̃1 → eνµ via the non-vanishing
coupling λ231. Thus, only for scenarios with a low mass difference between χ̃0

1 and τ̃1, the
three-body decays τ̃−1 → τ−e−ẽ+R and τ̃−1 → τ−e+ẽ−R become important. Again, we show the
asymmetry of these two decays,

A(τ̃−1 → τ−e∓ẽ±R) ≡ B(τ̃−1 → τ−e−ẽ+R) − B(τ̃−1 → τ−e+ẽ−R)

B(τ̃−1 → τ−e−ẽ+R) + B(τ̃−1 → τ−e+ẽ−R)
, (C.23)

in Fig. C.5(f). It behaves similar to the asymmetries for the µ̃R decays, i.e. the asymmetry
increases with increasing mass difference between the initial sparticle, τ̃1, and the intermediate
sparticle, χ̃0

1. In Fig. C.5(f), the structure at low values of M0 is due to numerical uncertainties,
since the branching ratios B(τ̃−1 → τ−e∓ẽ±R) become very small.
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C. Three-body slepton decays
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Figure C.5.: Branching ratios and asymmetries of three-body slepton decays, given in the
M1/2 − M0 plane for B3 mSUGRA parameters A0 = −1250 GeV, tan β = 5,
sgn(µ) = + and λ231|GUT = 0.045. Important mass differences between the
involved sparticles are given by the gray contour lines.
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