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ABSTRACT 

Machine learning and artificial intelligence techniques have transformed our everyday life 
within the past few years. In areas for which vast amounts of data are available the 
aforementioned techniques had a tremendous success, especially when mathematical models 
are lacking. Instead, engineering tools in general and computational fluid dynamics tools in 
particular rely on first-order principals that directly enable to describe and investigate system 
behavior. However, such tools are far from perfect and suffer several short-comings, e.g. 
computational bottlenecks once a massive amount of simulations is required or the problem of 
deriving accurate turbulence models to describe small scale turbulent behavior. Machine 
learning techniques are generally regarded as a possibility to enhance and complement first-
order based numerical simulation tools to circumvent these shortcomings. Following this 
ambition, the Center for Computer Applications in AeroSpace Science and Engineering 
department of the German Aerospace Center has investigated and industrialized scientific 
machine learning techniques within the past two decades always in close connection to 
established numerical simulation tools as well as industrial needs [1]. This presentation will 
provide an insight into previous and current activities within the department covering topics 
from purely data-driven approaches to the incorporation of physical knowledge into models. 
Namely, reduced order techniques [2], fusion of data from different sources and with different 
sparsity [3], data-driven turbulence modeling [4] as well as physics-informed neural networks 
[5] will be discussed. Highlights will be show-cased and existing limitations outlined. 
Moreover, open questions that the community has to address to further establish machine 
learning methods for industrial applications will be posed. 
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