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ABSTRACT

Relationships between claw disorders and test-day
milk yield recorded in 2005 on 5,360 Holstein cows,
kept on 11 large-scale dairy farms in eastern Germany,
were analyzed in a Bayesian framework with standard
linear and threshold models and recursive linear and
threshold models. Four different claw disorders, digital
dermatitis (DD), sole ulcer (SU), wall disorder (WD),
and interdigital hyperplasia (IH), were scored as binary
traits within 200 d after calving and analyzed sepa-
rately. Incidences of disorders were 13.7% for DD,
16.5% for SU, 9.8% for WD, and 6.7% for IH. Heritabilit-
ies of disorders were greater when applying threshold
or recursive threshold models than with linear or linear
recursive models. Posterior means of genetic correla-
tions between test-day milk production and claw disor-
ders ranged from 0.17 to 0.44, suggesting that breeding
strategies focusing on increased milk yield will increase
incidences of disorders as a correlated response. A pro-
gressive path of lagged relationships was postulated
for recursive models describing first the influence of
test-day milk yield (MY1) on claw disorders and second,
the effect of the disorder on milk production level at
the following test day (MY2). In recursive models, struc-
tural coefficients describe recursive relationships at the
phenotypic level. The structural coefficient λ21 was
the gradient of disease (trait 2) with respect to MY1
(trait 1) for a model with a recursive effect of trait 1 on
trait 2. The increase of disease incidence of the 4 differ-
ent disorders per 1-kg increase of MY1 ranged from λ21=
0.006 to λ21= 0.024 on the visible scale when applying
recursive linear models, and from λ21= 0.003 to λ21=
0.016 on the underlying liability scale for recursive
threshold models. The rate of change in MY2 (trait 3)
with respect to the previous claw disorder is given by
λ32 for a model with a recursive effect from trait 2 to
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trait 3. Structural coefficients λ32 ranged from −0.12 to
−0.68 predicting that a 1-unit increase in the incidence
of any disorder reduces milk yield at the following test
day by up to 0.67 kg. Rank correlations between sire
posterior means for the same claw disorders among
different models were >0.84, but some changes in rank
of sires in distinct top-10 lists were observed. Structural
equation models are of increasing importance in genetic
evaluations, and this study showed the possible applica-
tion of recursive systems, even for categorical data.
Key words: claw disorder, milk yield, recursive thresh-
old model, Bayesian method

INTRODUCTION

In most dairy cattle breeding programs, selection has
focused mainly on increasing milk production traits.
Miglior et al. (2005) compared national selection indices
used in 15 countries and found that the average relative
emphases on production, durability-health, and repro-
duction were 59.5, 28, and 12.5%, respectively. In the
last decade, there has been growing interest in includ-
ing functional or health traits in total net merit indexes.
In theory, the evolution of disease incidences in dairy
cattle depends on the sign and magnitude of genetic
correlations between susceptibility to diseases and milk
yield. Reliable estimates of phenotypic and genetic cor-
relations between disorders and other traits of economic
importance are required for defining an aggregate
breeding value in dairy cattle in the near future, as has
been the case for decades for several health traits in
Nordic dairy cattle populations (Heringstad et al.,
2000).

Due to their economic impact (e.g., Enting et al., 1997;
Kossaibati and Esslemont, 2000), claw disorders in Ger-
man Holsteins are receiving as much attention as fertil-
ity or mastitis. To cope with this problem, the German
association for claw hygiene and trimming developed a
computer-supported documentation and analysis sys-
tem, as described by Landmann et al. (2006). Data from
this recording system was used recently for estimating
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heritability of various claw disorders via logistic models
(König et al., 2005a). Results agreed with those from
other similar studies applying threshold animal models
(Swalve et al., 2005) or threshold sire models (Van der
Waaij et al., 2005). However, genetic correlations be-
tween claw disorders and production traits have varied
markedly among studies, because of different defini-
tions of production traits; for example, average of single
test-day production (König et al. 2005a) vs. whole-lacta-
tion milk yield (Swalve et al., 2005). Difficulties in eval-
uating diseases and their correlations with other traits
of interest that arise from the discrete nature of obser-
vations have been overcome by applying generalized
linear mixed models (Wolfinger and O’Connell, 1993).

Recently, Gianola and Sorensen (2004) proposed an
extension of the multivariate mixed linear model to
account for possible feedback and recursiveness among
response variables assuming an infinitesimal, additive
model of inheritance. These feedback models for biologi-
cal systems were discussed by Haldane and Priestley
(1905), Turner and Stevens (1959), and Wright (1960)
and have a long tradition in econometrics (Haavelmo,
1943). In dairy cattle and goats, de los Campos et al.
(2006a,b) found an increased risk of infection in the
udder with increasing milk yield, with the latter acting,
probably, as a stress factor. On the other hand, an in-
crease of infection or SCC could affect milk yield ad-
versely, which defines a feedback situation. These si-
multaneous and recursive relationships cannot be mod-
eled in standard linear models, at least explicitly.

Applications of recursive models in the context of
animal breeding have been limited. In a recursive rela-
tionship, one variable affects another, but without a
reciprocal effect. Sorensen and Varona (2006) used data
from 2 breeds of pigs to investigate the influence of
litter size on birth weight of piglets. Their specification
defines a recursive 2-trait system, in which litter size
is modeled to account for its effect on birth weight, but
birth weight does not affect litter size. Legarra and
Robert-Granié (2006) conducted a simulation study to
analyze the impact of recursiveness of phenotypes for
fertility and milk yield on estimates of genetic correla-
tions between these traits. López de Maturana et al.
(2007) investigated relationships between calving ease
and fertility in Holsteins, accommodating censored and
discrete outcomes. The relationship between calving
ease and fertility traits is a recursive one, because calv-
ing ease may affect subsequent reproductive perfor-
mance but not vice versa.

In the case of claw disorders and milk production
in dairy cows, it seems sensible to postulate a lagged
progressive path involving 3 traits (Figure 1). One path
would describe the influence that test-day milk yield
has on claw disorders, and the second path would per-
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Figure 1. Recursive model for the 3 traits: trait 1 = test-day milk
yield before diagnosis of a claw disorder (MY1), trait 2 = claw disorder
(CD), trait 3 = test-day milk yield after diagnosis of claw disorder
(MY2). Y indicates phenotypic values for test-day milk yield and claw
disorders; E indicates residual effects; U indicates additive-genetic
effects; a single-headed arrow indicates that variable A affects vari-
able B, and trait 2 affects trait 3; a double-headed arrow indicates
correlations between pairs of variables; and λij indicates the rate of
change of variable i with respect to variable j.

tain to the effect of the disorder on milk production
level at the following test date. The main objective of
this study was to apply recursive linear and threshold
models using our own computer algorithms (Wu, 2007)
to investigate relationships between different claw dis-
orders and test-day milk yield and to infer the respec-
tive model parameters. The application of recursive sys-
tems for categorical health data or even the availability
of computer algorithms for such cases is relatively new
and limited in the field of animal breeding.

MATERIALS AND METHODS

Data

Data were from a new electronic recording system
for claw disorders as described by Landmann et al.
(2006) and collected by 5 different claw trimmers. The
guideline for classification of individual claw disorders
was developed by the German Agricultural Society, and
all trimmers were trained for uniform identification of
traits. The electronic recording system allows combina-
tion with data from herd management programs and
with information on test-day records. The data set used
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Table 1. Incidences of dermatitis digitalis (DD), sole ulcer (SU), wall disorders (WD), and interdigital
hyperplasia (IH) within 200 d after calving, and average test-day milk yield before (MY1) and after (MY2)
diagnosis of the disorder1

Cows2 Mean day MY1 MY2 MY2 − MY1
Disorder (%; total n = 5,360) of diagnosis3 (kg) (kg) (in % of MY1)

Diagnosed for DD 13.67 95 32.61 30.14 −7.57
Undiagnosed for DD 86.33 100 31.31 30.01 −4.15
Diagnosed for SU 16.51 88 32.94 29.97 −9.02
Undiagnosed for SU 83.49 100 31.73 29.54 −6.90
Diagnosed for WD 9.78 86 33.18 30.04 −9.45
Undiagnosed for WD 90.22 100 32.21 30.09 −6.58
Diagnosed for IH 6.72 101 32.30 30.08 −9.52
Undiagnosed for IH 93.28 100 31.18 29.41 −5.68
Healthy 74.40 100 31.10 30.03 −3.44

1Test-day milk yields of undiagnosed cows for the respective disorder are presented by disorder. Cows
without any diagnosis are given in the last row.

2A single cow may show several disorders; therefore, the percentages for diagnosed cows and the healthy
cows sum up to >100%.

3The nearest test-day observation for healthy cows before a general dummy date of d 100 was defined as
MY1 and the nearest test-day observation after d 100 was MY2.

here comprised test-day production records and claw
and foot disorders collected in 2005 from 5,360 Holstein
cows kept on 11 large-scale dairy farms within a single
region in eastern Germany. These farms participated
as cooperator herds in a progeny test program as de-
scribed by Gernand et al. (2007). Hence, such a system
ensured a reasonable number of progeny per bull for
the present analysis and reliable genetic connectedness
across herds. The average number of daughters for the
511 sires was 10.5, and 79 sires had more than 30
daughters scored for claw disorders.

Cows of all parities were included. Claw and foot
disorders were divided into 4 conditions: digital derma-
titis (DD), sole ulcer (SU), wall disorder (WD), and
interdigital hyperplasia (IH), and scored separately as
“all or none” traits. A detailed description of the individ-
ual disorders is given by König et al. (2005a). The period
of observation spanned 200 d, starting at calving. If a
cow had the condition within this period in one or both
rear legs for the respective disorder, she was given a
score of 1; otherwise she was given a score of 0. For each
cow having a disorder, the nearest test-day observation
before and after the occurrence of the specific disease
was identified. This definition involved 3 different
traits: test-day milk yield before occurrence of the disor-
der (MY1 = trait 1); the disorder itself (trait 2), and
test-day milk yield after occurrence of the disorder
(MY2 = trait 3). Repeated episodes of a disease were
not taken into account. If a cow had several entries of
the same disorder within the 200-d period, the first
observation with complete information (i.e., a test-day
record before the occurrence date of the specific disease)
was stored. Cows without disorders were assigned a
value of 0 for trait 2 at a general dummy date of d 100
within their lactation. The nearest test-day observation
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for healthy cows before d 100 was defined as MY1 and
the nearest test-day observation after d 100 was MY2.
Table 1 gives mean incidences of claw and foot disorders
within the respective period and the average milk yield
of cows before and after the occurrence of each spe-
cific disease.

Statistical Methods

Four different sire models were used. Model M1 was
a standard 3-trait linear mixed model, and model M2
was a threshold-linear model treating the claw disorder
(i.e., the second trait) as a binary trait. In the threshold-
liability model (Gianola, 1982; Gianola and Foulley,
1983), it is assumed that an underlying continuous vari-
able, liability (li2), exists such that the observed binary
variable yi2 takes a value of 1 if li2 is larger than a fixed
threshold κ = 0.

Model M3 was a recursive model assuming a multi-
variate Gaussian distribution for the 3 traits, and model
M4 was a recursive threshold-linear model with 2
Gaussian traits and 1 binary trait. In recursive models
M3 and M4, the structural coefficient λ21 was the gradi-
ent of disease with respect to MY1 for a model with a
recursive effect of trait 1 on trait 2. The rate of change
in production level in MY2 with respect to the previous
claw disorder was given by λ32 for a model with a re-
cursive effect from trait 2 to trait 3 (Figure 1). The
recursive models can be written as follows:
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with i = 1,2,...,n indexing the animal, each measured
for the 3 traits. Above, yi = (yi1 yi2 yi3)′ in model M3
and yi = (yi1 yi2 yi3)′ in model M4; β is a vector of
“fixed” effects (in a Bayesian context, these are location
parameters with vague prior information) of order f* =

∑
3

j=1

fj and fj is the number of fixed effects affecting trait

j (j = 1, 2, 3). Fixed factors included the effects of herd
(11 levels), calving season (January–March, April–
June, July–September, October–December) and of par-
ity of the cow (3 levels: 1, 2, and >2). Further, Xi is a 3
× f* known incidence matrix linking phenotypic mea-
surements and liabilities in yi (or a rotation thereof,
via the matrix Λ explained later) to the fixed effects.
Vector u, of order q* = 3 × q, represents sire effects,
where q is the number of sires. Zi is a 3 × q* incidence
matrix linking yi or Λyi to u, and ei is a vector of
residual effects of order 3. It is assumed that u | G0 ∼
N(0,A ⊗ G0) and e | R0 ∼ N(0,I ⊗ R0), where G0 is a
genetic covariance matrix, R0 is a residual covariance
matrix, A is an additive relationship matrix, and ⊗
indicates the Kronecker product. It is also assumed that
u and e are mutually independent.

A remarkable difference between the recursive model
and the standard mixed model is that in the former,
each observation vector yi is premultiplied by an un-
known 3 × 3 matrix Λ, whose elements need to be esti-
mated. This matrix Λ contains the structural coeffi-
cients λ′

ij describing the rate of change of trait i with
respect to trait j′ (Gianola and Sorensen, 2004). The
form of Λ in this study was

Λ =

⎡
⎢
⎢
⎣

1 0 0
−λ21 1 0

0 −λ32 1

⎤
⎥
⎥
⎦
.

In standard linear (M1) and threshold (M2) models,
Λ is an identity matrix, because the traits do not affect
each other.

The conditional distribution of all observed data for
the linear-linear model M1 was:

p(y | λ, β, u, R0, H) ∝ Π
n
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and of the data and liabilities jointly for the linear-
threshold model M2:
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For the 2 recursive models, conditional distributions
of the pseudo-data Λy (M3), or of the pseudo-data and
liabilities jointly (M4), given the unknown parame-
ters, were:

M3 (recursive linear mixed model):
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M4 (recursive threshold-linear model):
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where w and yb are vectors containing observable binary
data and underlying liabilities of all animals, H repre-
sents the collection of all known hyper-parameters, and
I (A) is an indicator function of value 1 if condition A
is true, and 0 otherwise. Letting Λ = I, [3] and [4] reduce
to the corresponding densities for a standard linear
model [1] and a standard linear-threshold model [2], re-
spectively.

Bayesian inference via Markov chain Monte Carlo
(MCMC) implementation was used to infer unknown
parameters of interest. Bayesian analysis of linear
model M1 was conducted as described by Sorensen and
Gianola (2002), with location parameters sampled from
a multivariate normal distribution, and covariance ma-
trices G0 and R0 (the 3 × 3 covariance matrices between
sire and residual effects, respectively) sampled from
inverse Wishart distributions. When extending a stan-
dard mixed model to include 1 binary trait in a thresh-
old-linear model, such as M2 and M4, one needs to
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sample the residual covariance matrix from a condi-
tional inverse Wishart distribution, given that the vari-
ance of liability is fixed to 1 (Korsgaard et al., 2003).
Further, in the recursive models M3 and M4, structural
coefficients (λ) were sampled using a Gibbs sampler
(Gianola and Sorensen, 2004). Bayesian modeling and
MCMC sampling procedures for simultaneous and re-
cursive (SIR) models (e.g., M3 and M4) are described in
details in the users’ manual of the SIR-BAYES software
package (Wu, 2007).

The MCMC sampling procedure consists of successive
iterative updating of each parameter or group of param-
eters. Length of burn-in and of the sampling period were
assessed by the method of Raftery and Lewis (1992),
as implemented in the BOA software package (Smith,
2005), and using the first 10,000 iterations of a Gibbs
chain of coefficients λij. The structural coefficients mix
more slowly than other parameters, so this assessment
was deemed conservative. Based on the diagnostics and
visual inspections of trace plots, chain lengths of be-
tween 180,000 and 230,000 iterations were run for dif-
ferent models and trait combinations; the burn-in pe-
riod was 10,000 rounds for all models.

Parameters from recursive models (M3 and M4) differ
from those obtained using a standard mixed model and
should be viewed as system parameters. Gianola and
Sorensen (2004) described how parameters of a re-
cursive model can be transformed into parameters of a
standard mixed model. Estimates of genetic, residual,
and phenotypic covariance matrices were obtained by
applying the following matrix operations to the poste-
rior samples of system parameters:

G∗
0 = Λ−1G0Λ′−1

R∗
0 = Λ−1R0Λ′−1

P∗
0 = G∗

0 + R∗
0,

where G0 and R0 are the system covariance matrices
for the sire and residual effects, and G∗

0, R∗
0, and P∗

0 are
the sire, residual, and phenotypic variance-covariance
matrices, respectively. Also, sire effects were estimated
as S*i = Λ−1Si, where Si is the vector of system sire
effects.

Structural equation coefficients obtained from model
M4 were estimated on the liability scale and, therefore,
the impact on the outward scale was not obvious. An
approach similar to that described by López de Matur-
ana et al. (2007) was used for assessing the impact of
different levels of MY1 on the incidence of disorders;
the method used liabilities for each cow from model M4.
Six classes of MY1 for the range between 28 and 34 kg
in increments of 1 kg were created. Differences (∆) on

Journal of Dairy Science Vol. 91 No. 1, 2008

the outward scale for claw disorders between adjacent
classes of MY1 were calculated as illustrated for MY1-
class 1 (28–29 kg) and MY1-class 2 (29–30 kg):

∆ [MY1-class 2 with respect to MY1-class 1] =

Φ [� + effect (MY1-class 2), σ2
e]

− Φ [� + effect (MY1-class 1), σ2
e]

where effect indicates the effect estimated for the differ-
ent MY1-classes on the underlying liability scale,
Φ(x,σ2

e) is the cumulative normal distribution function
with mean x and residual variance σ2

e, and � refers to
probit corresponding to the mean incidences of disor-
ders reported in Table 1.

RESULTS AND DISCUSSION

Mean Incidences and Milk Yield

Mean incidences of observed claw disorders in the
first 200 d of lactation (Table 1) were in the range re-
ported by König et al. (2005a) when considering the
entire lactation of a cow, and nearly identical to those
found in other studies (Somers et al., 2003; Van der
Waaij et al., 2005). In this study, the mean incidences
of DD, SU, WD, and IH were 0.137, 0.165, 0.098, and
0.067, respectively, and there were substantial differ-
ences between herds (Figure 2).

On the phenotypic scale, cows affected by any of the
claw disorders had a larger decrease in test-day milk
yield (MY2 − MY1) compared with undiagnosed cows
for the respective disorders (Table 1). Hence, following
treatment after infection does not increase milk yield
up to the level of undiagnosed or healthy cows. The
average day of occurrence of disorders was close to d
100, which was the fixed dummy day used for undiag-
nosed cows to define the “before” and “after” test days.
Claw disorders appear to occur in clusters; that is, a
cow showing one disease has an increased genetic risk
to show another claw disease. A relatively high percent-
age (74.40%) of all cows were completely healthy, indi-
cating a remarkable intersection of cows affected within
the 200-d period by several disorders simultaneously.
Healthy cows without any of these 4 claw disorders had
the lowest level of MY1, but also showed the smallest
decrease in test-day milk yield when comparing MY1
and MY2. Collard et al. (1999) found that high milk
yield within the first third of lactation increases a cow’s
risk to experience health problems. An explanation
could be that potential resource intake is insufficient
to express further production potential. Additional re-
sources of energy are drawn away from fitness traits
such as fertility and health (Van der Waaij, 2004).
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Figure 2. Incidences of dermatitis digitalis (DD), sole ulcer (SU), wall disorders (WD), and interdigital hyperplasia (IH) in the best herd
(white bars), the worst herd (black bars), and on average over all herds (gray bars).

Genetic Parameters

Posterior means of selected parameters from the
standard linear mixed model (M1, λ = 0), standard
threshold-linear mixed model (M2, λ = 0), recursive
mixed linear model (M3), and the recursive mixed
threshold model (M4) are shown in Tables 2 (DD,) 3
(SU), 4 (WD), and 5 (IH). Heritability estimates of DD
were in the range from 0.049 to 0.089; for SU between
0.100 and 0.136; for WD between 0.086 and 0.135, and
for IH from 0.111 to 0.188. Threshold models (M2 and
M4) lead to generally higher heritabilities on the liabil-
ity scale than linear models (M1 and M3). For all disor-
ders, the largest point estimates of heritability were
from the threshold model (M2). Varona et al. (1999)
analyzed calving ease and birth weight applying linear-
linear and linear-threshold models. They found that
threshold-linear models accounting for the probabilistic
structure of the binary trait (i.e., calving ease) were

Table 2. Posterior means and standard deviations (in parentheses) of heritabilities (h2), genetic correlations
(rg), and phenotypic correlations (rp) for dermatitis digitalis (DD) and test-day milk yield before (MY1) and
after (MY2) after diagnosis of disorder applying 4 different models1

Model1

Item M1 M2 M3 M4

h2
MY1 0.163 (0.05) 0.171 (0.05) 0.155 (0.05) 0.149 (0.05)

h2
DD 0.072 (0.05) 0.089 (0.06) 0.049 (0.03) 0.053 (0.05)

h2
MY2 0.177 (0.06) 0.181 (0.07) 0.162 (0.06) 0.157 (0.06)

rg(MY1:DD) 0.355 (0.06) 0.330 (0.06) 0.269 (0.07) 0.283 (0.08)
rg(MY1:MY2) 0.888 (0.07) 0.912 (0.06) 0.895 (0.05) 0.907 (0.05)
rg(DD:MY2) 0.170 (0.06) 0.165 (0.07) 0.077 (0.07) 0.091 (0.07)
rp(MY1:DD) 0.222 (0.10) 0.198 (0.09) 0.081 (0.10) 0.090 (0.10)
rp(MY1:MY2) 0.766 (0.17) 0.700 (0.16) 0.773 (0.18) 0.810 (0.18)
rp(DD:MY2) 0.193 (0.10) 0.192 (0.11) 0.156 (0.11) 0.145 (0.09)

1M1 = standard linear mixed model, M2 = threshold mixed model, M3 = recursive linear mixed model,
M4 = recursive threshold mixed model.
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better than linear models; also, heritability of the bi-
nary trait was larger from threshold-linear models.
This is what theory for analysis of categorical traits
would lead one to expect (Dempster and Lerner, 1950),
and is in agreement with studies analyzing categorical
data with different models (e.g., Weller and Ron, 1992;
Andersen-Ranberg et al., 2005). For traits or disorders
characterized by low incidences (e.g., IH), differences
in heritabilities between linear-linear and threshold-
linear models were substantial. However, Huang and
Shanks (1995) estimated heritabilities of SU and IH
applying threshold and linear models, and results were
very similar. Freund and Walpole (1980) argued that
estimates of parameters for categorical traits when as-
suming an underlying Gaussian would be unbiased
when nπ is >5, with π being the incidence of a disorder,
and n the size of the smallest subclass in the statisti-
cal model.
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Table 3. Posterior means and standard deviations (in parentheses) of heritabilities (h2), genetic correlations
(rg), and phenotypic correlations (rp) for sole ulcer (SU) and test-day milk yield before (MY1) and after (MY2)
after diagnosis of disorder applying 4 different models1

Model1

Item M1 M2 M3 M4

h2
MY1 0.157 (0.06) 0.160 (0.05) 0.155 (0.04) 0.158 (0.05)

h2
SU 0.103 (0.07) 0.136 (0.07) 0.100 (0.07) 0.129 (0.06)

h2
MY2 0.165 (0.08) 0.168 (0.07) 0.154 (0.08) 0.164 (0.08)

rg(MY1:SU) 0.409 (0.18) 0.443 (0.16) 0.365 (0.16) 0.317 (0.17)
rg(MY1:MY2) 0.926 (0.11) 0.902 (0.10) 0.914 (0.11) 0.896 (0.10)
rg(SU:MY2) 0.252 (0.11) 0.269 (0.12) 0.197 (0.10) 0.216 (0.11)
rp(MY1:SU) 0.187 (0.13) 0.200 (0.13) 0.123 (0.14) 0.165 (0.14)
rp(MY1:MY2) 0.803 (0.18) 0.810 (0.17) 0.692 (0.18) 0.720 (0.18)
rp(SU:MY2) 0.233 (0.14) 0.254 (0.13) 0.169 (0.12) 0.186 (0.12)

1M1 = standard linear mixed model, M2 = threshold mixed model, M3 = recursive linear mixed model,
M4 = recursive threshold mixed model.

The estimated genetic correlation between MY1 and
any of the claw disorders was typically positive, in the
range from 0.16 to 0.44 over models (Tables 2 to 5). The
positive genetic correlations indicate that selection for
increased milk yield at the early stage of lactation in-
creases the susceptibility to claw disorders. In a previ-
ous study using logistic models, König et al. (2005a)
averaged the amount of milk yield of the first 2 test
days after calving and correlated this value with the
estimated probability that a claw disorder occurred at
any point of time in the same lactation. Despite differ-
ences in the definition of milk yield and in the observed
time span, their results were nearly identical to those
in the present study. König et al. (2006) showed that
the market price of Holstein heifers sold at auction is
mainly determined by their production measured at
their first test day. In view of the estimates of genetic
and of phenotypic correlations between MY1 and claw
disorders, the most expensive heifers would have the
greatest risk of being affected by any claw disorder.

Table 4. Posterior means and standard deviations (in parentheses) of heritabilities (h2), genetic correlations
(rg), and phenotypic correlations (rp) for wall disorders (WD) and test-day milk yield before (MY1) and after
(MY2) after diagnosis of disorder applying 4 different models1

Model1

Item M1 M2 M3 M4

h2
MY1 0.156 (0.05) 0.158 (0.05) 0.158 (0.05) 0.159 (0.04)

h2
WD 0.103 (0.05) 0.135 (0.05) 0.086 (0.05) 0.129 (0.06)

h2
MY2 0.178 (0.07) 0.187 (0.06) 0.175 (0.04) 0.181 (0.05)

rg(MY1:WD) 0.417 (0.07) 0.436 (0.06) 0.311 (0.07) 0.303 (0.07)
rg(MY1:MY2) 0.884 (0.06) 0.895 (0.05) 0.870 (0.05) 0.886 (0.05)
rg(WD:MY2) 0.258 (0.08) 0.280 (0.09) 0.167 (0.10) 0.165 (0.09)
rp(MY1:WD) 0.121 (0.08) 0.122 (0.07) 0.073 (0.11) 0.067 (0.11)
rp(MY1:MY2) 0.720 (0.14) 0.738 (0.15) 0.711 (0.16) 0.692 (0.16)
rp(WD:MY2) 0.193 (0.15) 0.199 (0.13) 0.099 (0.13) 0.090 (0.13)

1M1 = standard linear mixed model, M2 = threshold mixed model, M3 = recursive linear mixed model,
M4 = recursive threshold mixed model.
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Vinson and Kliewer (1976) compared linear and
threshold models, and showed that genetic correlations
from these models (at least for a simple specification)
are expected to be the same. Genetic correlations from
recursive models M3 and M4 were generally smaller
than those estimated from models M1 and M2. Sor-
ensen and Varona (2006) compared genetic correlations
between litter size and litter weight using a standard
mixed model and a recursive mixed model in 2 swine
breeds. In Yorkshires, they found a sizable influence (λ
coefficient) of litter size on birth weight; the genetic
correlation in the recursive model was near zero, but
it was −0.25 in the standard model. In the Landrace
breed, the structural coefficient λ was negligible, and
estimates of genetic correlations from the standard
mixed model and the recursive mixed model were
nearly the same. In our study, estimates for the poste-
rior distribution of λ were different from zero (Table 6),
which could explain differences in genetic correlations
from standard linear or standard threshold models and
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Table 5. Posterior means and standard deviations (in brackets) of heritabilities (h2), genetic correlations
(rg), and phenotypic correlations (rp) for interdigital hyperplasia (IH) and test-day milk yield before (MY1)
and after (MY2) after diagnosis of disorder applying 4 different models1

Model1

Item M1 M2 M3 M4

h2
MY1 0.158 (0.05) 0.162 (0.05) 0.157 (0.04) 0.148 (0.05)

h2
IH 0.111 (0.05) 0.188 (0.05) 0.122 (0.06) 0.156 (0.06)

h2
MY2 0.161 (0.06) 0.167 (0.06) 0.165 (0.09) 0.172 (0.09)

rg(MY1:IH) 0.394 (0.11) 0.384 (0.12) 0.171 (0.11) 0.203 (0.12)
rg(MY1:MY2) 0.831 (0.08) 0.902 (0.05) 0.896 (0.05) 0.899 (0.05)
rg(IH:MY2) 0.350 (0.05) 0.346 (0.07) 0.155 (0.11) 0.178 (0.10)
rp(MY1:IH) 0.121 (0.12) 0.195 (0.14) 0.062 (0.12) 0.077 (0.13)
rp(MY1:MY2) 0.740 (0.16) 0.845 (0.17) 0.691 (0.17) 0.766 (0.18)
rp(IH:MY2) 0.285 (0.13) 0.213 (0.12) 0.118 (0.12) 0.110 (0.13)

1M1 = standard linear mixed model, M2 = threshold mixed model, M3 = recursive linear mixed model,
M4 = recursive threshold mixed model.

recursive models. In a simulation study, Legarra and
Robert-Granié (2006) concluded that ignoring a re-
cursive relationship leads to an overestimation of the
genetic correlation. On the other hand, the genetic cor-
relation would be underestimated when fitting a re-
cursive model, if recursiveness does not exist. Wu et al.
(2007) applied simultaneous and recursive models to
infer relationships between milk yield and SCS of Nor-
wegian Red cows. Heritability estimates from SIR mod-
els were similar to those from the mixed models, but
some genetic correlations differed considerably
among models.

Genetic correlations between all claw disorders inves-
tigated and MY2 were positive in a range from 0.077
to 0.170 for DD (Table 2), 0.317 to 0.443 for SU (Table
3), 0.165 to 0.280 for WD (Table 4), and 0.171 to 0.394
for IH (Table 5) for the various models. As shown in
Tables 2 through 5, estimates of phenotypic correlations
between MY1 (or MY2) and claw disorders were also
positive, but generally lower than genetic correlations.
The incidence of any disorder was associated with a
substantial decrease of test-day milk yield on the phe-
notypic scale (Table 1); however, affected cows still pro-
duced more milk at the following test day than did

Table 6. Posterior means and standard deviations (in parentheses) of structural coefficients λ for 4 claw
disorders and milk yield applying recursive linear mixed model (M3) or recursive threshold mixed model
(M4)

Dermatitis digitalis Sole ulcer Wall disorder Interdigital hyperplasia

Parameter1 M3 M4 M3 M4 M3 M4 M3 M4

λ21 0.0244 0.0158 0.0060 0.0039 0.0044 0.0031 0.0189 0.0031
(0.0019) (0.0018) (0.0018) (0.0045) (0.0073) (0.0059) (0.0018) (0.0013)

λ32 −0.6771 −0.4418 −0.4515 −0.3410 −0.1233 −0.1172 −0.5602 −0.4568
(0.1931) (0.2158) (0.1570) (0.1555) (0.1299) (0.1221) (0.1880) (0.1443)

1λ21 = change in incidence of a particular claw disorder (trait 2) per 1-kg increase of test-day milk yield
(trait 1), λ32 = the change of milk yield (trait 3) at the following test day per 1-unit increase in the incidence
of a particular claw disorder.
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healthy cows. Higher susceptibility to disorders was
also associated with greater production at the genetic
level. Sizable positive genetic and phenotypic correla-
tions between MY1 and MY2 were found, which is con-
sistent with estimates from several studies dealing with
test-day models (e.g., Jamrozik and Schaeffer, 1997).
This means that genetically superior cows for milk pro-
duction at an early stage of lactation are also superior
at a later stage but, nevertheless, these cows have a
greater risk of being affected by any claw disorder. Heri-
tability estimates of MY1 and MY2 at individual test
days were identical to values found by König et al.
(2005b) when analyzing genetic parameters of individ-
ual test-day production in large-scale dairy farms in
eastern Germany.

Structural Equation Coefficients

The analysis of milk yield at test days before and
after the occurrence of a disorder, plus the application
of recursive models produce a clearer picture of the
interplay between production and disorders than that
attained in previous studies (König et al., 2005a; Swalve
et al., 2005). Structural coefficients λ measure recur-
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Figure 3. Posterior means for the effects of test-day milk yield (MY1 = trait 1) on the incidences of digital dermatitis (DD), sole ulcer
(SU), wall disorders (WD), and interdigital hyperplasia (IH) obtained from the recursive threshold mixed model (M4). Six classes of test-
day milk yield (C1, C2, ..., C6) were created within the range from 28 to 34 kg in increments of 1-kg. The effect of adjacent classes (C2:C1,
C3:C2, etc.) on the incidence of claw disorders is depicted.

siveness at the phenotypic level (Gianola and Sorensen,
2004), and λ21 values describing the effect of MY1 on
claw disorders were in the range from 0.006 to 0.024
when applying model M3, and between 0.003 and 0.016
when applying model M4 (Table 6). Under model M4,
the structural coefficient λ21 is the gradient of the liabil-
ity of the respective disease with respect to MY1; for
model M3, the gradient is on the observed scale. For
instance, a structural coefficient λ21 of 0.024 for DD in
model M3 leads to the prediction that a 1-kg increase
in MY1 results in an increase of incidence of DD of
2.4%. Structural coefficients for MY1 and the other 3
disorders were below 1% when applying model M3.
When comparing structural coefficients λ21 for different
claw disorders, the largest effect was found for DD (Ta-
ble 6). A 1-kg increase in milk yield (MY1) increased
the incidence of DD by nearly 2.5%. In contrast to the
other disorders, DD is caused by a specific bacteria and
it is expected that a high level in milk yield is associated
with a low defense mechanism against the pathogen.
Among all disorders, DD is of most concern when com-
paring mean incidences in recent years. For instance,
Somers et al. (2003) studied Holstein cows in the Neth-
erlands, and all herds investigated had cows infected
by DD, resulting in an average cow level prevalence
of 30%.

Structural equation coefficients λ21 on the underlying
liability scale obtained from model M4 were in fair
agreement with those estimated on the visible scale
with model M3. To illustrate the impact of incidences
of claw disorders on MY1 when applying a recursive
threshold model, results using the approach of López
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de Maturana et al. (2007) are shown in Figure 3. For
all classes of MY1 defined, an increase of test-day milk
yield elevated the incidence of any claw disorder, with
the largest effects for DD. The rate of change in inci-
dences for adjacent classes was, on average, 1.14% for
DD, 0.50% for SU, 0.44% for WD, and 0.38% for IH. A
structural coefficient λ32 of −0.68 (Table 6) for DD and
MY2 obtained from model M3 predicted that a 1% in-
crease in the incidence of DD on the visible scale results
in a reduction of 0.68 kg in MY2. A similar impact
of claw disorders was observed for SU, WD, and IH.
Coefficients λ32 from the recursive threshold model M4
were also negative (i.e., −0.442 for DD, −0.341 for SU,
−0.117 for WD, and −0.457 for IH), but indicating the
association between milk yield and the increase of the
disorder by 1 unit on the underlying liability scale.
Associations of the same magnitude compared with
milk yield and claw disorders were reported by Wu et
al. (2007) when inferring relationships between milk
yield and SCS in SIR models. In their study, direct
effects from SCS to milk yield were strong and negative,
but varied with different production levels.

Selection Response and Sire Effects

The practical impact of different models was assessed
via selection response, correlations between posterior
sire effects, and the rank of sires in distinct top-10 lists.
The choice of the model had consequences on prediction
of response to selection. For direct comparison of re-
sults, heritabilities on the liability scale obtained from
models M2 and M4 were transformed to the observed
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Table 7. Rank correlation between sire posterior means estimated
with 4 different models for 4 claw disorders1

Dermatitis Sole Wall Interdigital
Model2 digitalis ulcer disorder hyperplasia

M1:M2 0.93 0.92 0.92 0.93
M1:M3 0.91 0.90 0.88 0.92
M1:M4 0.86 0.86 0.88 0.85
M2:M3 0.85 0.86 0.87 0.84
M2:M4 0.93 0.92 0.93 0.95
M3:M4 0.95 0.97 0.98 0.98

1Only estimates from 511 sires with recorded daughters for claw
disorders were considered.

2M1 = standard linear mixed model, M2 = threshold mixed model,
M3 = recursive linear mixed model, M4 = recursive threshold mixed
model.

scale using the formula of Robertson and Lerner (1949).
As an illustration, consider selection on MY1 and the
correlated selection response in IH for models M1 and
M4. Applying model M1, the predicted direct response
per generation for MY1 is ∆G(MY1) = ih(MY1)σA(MY1) =
i(0.106) and the predicted correlated response for IH
when selecting on MY1 is ∆G(IH,MY1) =
ih2

(MY1)σA(MY1)rg(IH, MY1) = i(0.0037). In comparison, for
the recursive linear-threshold model (M4), the corre-
lated selection response in IH would be equal to
i(0.0016). For the same selection intensity, model M1
leads to an overstatement of correlated selection re-
sponse of 1.1% per generation in incidence of IH, com-
pared with that expected from model M4. This simple
scenario illustrates the impact of model assessment and
selection on estimates of genetic parameters, and on
predicted selection response.

Rank correlations (Table 7) between sire posterior
means within disorders applying different models M1,
M2, M3, and M4 were >0.84 for all pairs of models, but
there were substantial changes in rank for top-ranked

Table 8. The top-10 sires based on sire posterior mean for 4 claw disorders estimated with model M1 and
their ranking applying models M2, M3, and M41,2

Dermatitis digitalis Sole ulcer Wall disorder Interdigital hyperplasia

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

1 3 9 11 1 5 8 10 1 9 1 11 1 4 10 15
2 5 5 3 2 4 2 8 2 7 13 13 2 9 2 11
3 11 10 14 3 9 6 11 3 10 9 5 3 1 11 14
4 6 1 7 4 16 13 16 4 2 18 20 4 10 16 1
5 16 24 12 5 15 10 17 5 11 3 9 5 11 19 20
6 8 11 13 6 8 3 13 6 12 2 10 6 17 4 24
7 2 8 10 7 1 12 9 7 8 12 14 7 2 12 13
8 1 14 5 8 10 5 1 8 15 20 1 8 8 20 4
9 19 7 15 9 3 18 5 9 1 7 5 9 3 19 6
10 10 20 6 10 11 24 20 10 18 14 21 10 26 3 19

1Only estimates from 79 sires with >30 recorded daughters for claw disorders were considered.
2M1 = standard linear mixed model, M2 = threshold mixed model, M3 = recursive linear mixed model,

M4 = recursive threshold mixed model.
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sires (Table 8). For example, for IH, the best sire when
applying model M1 was ranked as number 15 when
using model M4. The rank correlations between sire
posterior means were greatest between recursive mod-
els M3 and M4, and lowest between the standard linear
model M1 and the recursive threshold model M4 (Table
7). In the global market of Holstein dairy cattle breed-
ing, only the top-ranked sires are competitive, even if
differences in predicted breeding values with lower-
ranked bulls are minor (Dekkers et al., 1996). Again,
this underlines the importance of model choice in breed-
ing value estimation, and ongoing studies should ad-
dress this topic.

The question of how the impact of mutual effects
between distinct traits on prediction of breeding values
should be handled is of increasing interest in animal
breeding. In the case of production and fertility, several
authors (e.g., Olori et al., 1997; Bormann et al., 2002)
observed a significant impact of pregnancy status on
test-day milk yield, depending on lactation stage. An
analysis of Bohmanova et al. (2006) considered the ef-
fect of days open as well as state of pregnancy (i.e.,
traits describing fertility) on the prediction of breeding
values for milk yield with a random regression test-
day model. Recursive models constitute an appealing
alternative for dealing with this problem. If needed, the
model can be expanded into one with simultaneous or
feedback (even time-lagged) relationships.

CONCLUSIONS

Claw disorders are of increasing concern within the
German Holstein dairy cattle population and suitable
data recording systems are just becoming available.
Therefore, appropriate models for estimation of genetic
parameters should be developed to make selection as
effective as possible. In the case of disorders and produc-
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tion traits, recursiveness between traits as discussed
by Gianola and Sorensen (2004) should be investigated
further. The present study showed that ignoring re-
cursive relationships between traits can lead to overes-
timation of the genetic correlation between claw disor-
ders and test-day milk yield. Differences in values of
genetic parameters among different models have conse-
quences on predicted responses to selection, as illus-
trated for interdigital hyperplasia, and on the ranking
of top sires based on predicted breeding values. As
shown in this study, the methodology, although rela-
tively new in the field of dairy cattle breeding, can also
be extended for categorical traits. Recursive threshold
models in a Bayesian framework are useful for investi-
gating similar questions in animal breeding. Dairy cat-
tle breeding schemes are moving toward the use of more
complex breeding goals involving a multiplicity of bi-
nary-coded health-related traits. Hence, evaluation of
recursive or even recursive threshold models for non-
Gaussian traits is an important area of future research.
A recursive threshold model seems to provide an ap-
pealing statistical specification for genetic evaluation
of traits that are affected in a manner similar to that
shown in Figure 1.

ACKNOWLEDGMENT

The DFG (German Research Foundation) Mercator
scholarship to D. Gianola and the DFG scholarship to
S. König are gratefully acknowledged. D. Landmann,
Experimental Station for Animal Husbandry (Lower
Saxony, Echem, Germany) is thanked for providing the
claw disorder database. Support for methodological and
software development by grants NRICGP/USDA 2003-
35205-12833, NSF DEB-0089742, and NSF DMS-
044371 is acknowledged.

REFERENCES

Andersen-Ranberg, I. M., B. Heringstad, D. Gianola, Y. M. Chang,
and G. Klemetsdal. 2005. Comparison between bivariate models
for 56-day nonreturn and interval from calving to first insemina-
tion in Norwegian Red. J. Dairy Sci. 88:2190–2198.

Bohmanova, J., F. Miglior, M. Kelly, G. Kistemaker, and S. Loker.
2006. Effect of pregnancy on milk yield of Canadian dairy cattle.
Dairy Cattle Breeding and Genetics Committee Meeting, Univer-
sity of Guelph, Ontario, Canada.

Bormann, J., G. R. Wiggans, T. Druet, and N. Gengler. 2002. Estimat-
ing effects of permanent environment, lactation stage, age, and
pregnancy on test-day yield. J. Dairy Sci. 85:3765–3775.

Collard, B. L., P. J. Boettcher, J. C. M. Dekkers, D. Petit, and L. R.
Schaeffer. 1999. Relationships between energy balance and
health traits of dairy cattle in early lactation. J. Dairy Sci.
83:2683–2690.

de los Campos, G., D. Gianola, P. Boettcher, and P. Moroni. 2006a.
A structural equation model for describing relationships between
somatic cell score and milk yield in dairy goats. J. Anim. Sci.
84:2934–2941.

de los Campos, G., D. Gianola, and B. Heringstad. 2006b. A structural
equation model for describing relationships between somatic cell

Journal of Dairy Science Vol. 91 No. 1, 2008

score and milk yield in first-lactation dairy cows. J. Dairy Sci.
89:4445–4455.

Dekkers, J. C. M., G. E. Vandervoort, and E. B. Burnside. 1996.
Optimal size of progeny groups for testing programs by artificial
insemination firms. J. Dairy Sci. 79:2056–2070.

Dempster, E. R., and M. Lerner. 1950. Heritability of threshold char-
acters. Genetics 35:212–286.

Enting, H., D. Kooij, A. A. Dijkhuizen, R. B. M. Huirne, and E.
N. Nordhuizen-Stassen. 1997. Economic losses due to clinical
lameness in dairy cattle. Livest. Prod. Sci. 49:259–267.

Freund, J. E., and R. E. Walpole. 1980. Mathematical statistics. Pren-
tice Hall, Englewood Cliffs, NJ.

Gernand, E., R. Wassmuth, U. U. v. Borstel, and S. König. 2007.
Heterogeneity of variance components for production traits in
large-scale dairy farms. Livest. Sci. 112:78–89.

Gianola, D. 1982. Theory and analysis of threshold characters. J.
Anim. Sci. 54:1079–1096.

Gianola, D., and J. L. Foulley. 1983. Sire evaluation for ordered
categorical data with a threshold model. Genet. Sel. Evol.
15:201–223.

Gianola, D., and D. Sorensen. 2004. Quantitative genetic models
for describing simultaneous and recursive relationships between
phenotypes. Genetics 167:1407–1424.

Haavelmo, T. 1943. The statistical implications of a system of simulta-
neous equations. Econometrica 11:1–2.

Haldane, J. B. S., and J. G. M. Priestley. 1905. The regulation of the
lung-ventilation. J. Physiol. 32:225–266.

Heringstad, B., G. Klemetsdal, and J. Ruane. 2000. Selection for
mastitis resistance in dairy cattle–A review with focus on the
situation in Nordic countries. Livest. Prod. Sci. 64:95–106.

Huang, Y. C., and R. D. Shanks. 1995. Within herd estimates of
heritabilities for six hoof characteristics and impact of dispersion
of discrete severity scores on estimates. Livest. Prod. Sci.
44:107–114.

Jamrozik, J., and L. R. Schaeffer. 1997. Estimates of genetic parame-
ters for a test day model with random regressions for yield traits
of first lactation Holsteins. J. Dairy Sci. 80:762–770.

König, S., G. Dietl, I. Raeder, and H. H. Swalve. 2005b. Genetic
relationships between dairy performance under large-scale farm
and family farm conditions. J. Dairy Sci. 88:4087–4096.

König, S., S. Schierenbeck, B. Lind, and H. Simianer. 2006. Breeding
value for auction price – A total merit index in dairy cattle? Proc.
58th EAAP meeting, Antalya, Turkey. Wageningen Acad. Publ.,
Wageningen, the Netherlands.

König, S., A. R. Sharifi, H. Wentrot, D. Landmann, M. Eise, and H.
Simianer. 2005a. Genetic parameters of claw and foot disorders
estimated with logistic models. J. Dairy Sci. 88:3316–3325.

Korsgaard, I. R., M. S. Lund, D. Sorensen, D. Gianola, P. Madsen,
and J. Jensen. 2003. Multivariate Bayesian analysis of Gaussian,
right censored and binary traits using Gibbs sampling. Genet.
Sel. Evol. 35:159–183.

Kossaibati, M. A., and R. J. Esslemont. 2000. The incidence of lame-
ness in 50 dairy herds in England. Pages 160–163 in Proc. 11th
Int. Symp. Disorders of the Ruminant Digit, Parma, Italy.

Landmann, D., J. Burmester, S. König, and H. Simianer. 2006. Utiliz-
ing data from PC – supported documentation to reveal the impact
of housing systems on claw diseases. Presented at 14th Int. Symp.
Lameness in Ruminants, Colonia, Uruguay.

Legarra, A., and C. Robert-Granié. 2006. Computations of recursive
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López de Maturana, E., A. Legarra, L. Varona, and E. Ugarte. 2007.
Analysis of fertility and dystocia in Holsteins using recursive
models, handling censored and categorical data. J. Dairy Sci.
90:2012–2024.

Miglior, F., B. L. Muir, and B. J. Van Dormaal. 2005. Selection indices
in Holstein cattle of various countries. J. Dairy Sci. 88:1255–1263.

Olori, V. E., S. Brotherstone, W. G. Hill, and B. J. McGuirk. 1997.
Effect of gestation length on milk yield and composition in Hol-
stein Friesian dairy cattle. Livest. Prod. Sci. 52:167–176.
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