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Thomas Kneib Conditionally Gaussian Hierarchical Models

Conditionally Gaussian Hierarchical Models

« Hierarchical models with conditionally Gaussian priors for regression coefficients define
a large class of flexible regression models.

« We will consider regression models with predictors of the form

T, = 33;,3 + fl(zil) + ...+ fr(zz'r)a

where x and 3 are potentially high-dimensional vectors of covariates and parameters,
while the generic functions f1, ..., f, represent different types of nonlinear regression
effects.
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o Examples:
— Nonlinear, smooth effects of continuous covariates = where f;(z,) = f(x).

— Interaction surfaces of two continuous covariates or coordinates xi,xs where
fi(zj) = f(z1,22).

— Spatial effects based on discrete spatial, i.e. regional information s € {1,...,5}
where fi(z;) = fspat(s).

— Varying coefficient models where f;(z;) = =1 f(z2).

— Random effects where f;(z;) = xb. with a cluster index c.

BayesX and INLA - Opponents or Partners? 3



Thomas Kneib Conditionally Gaussian Hierarchical Models

o Model the generic functions with basis function approaches:
K
fi(z5) =D veBir(z;).
k=1
o Yields a vector-matrix representation of the predictor:

nN=XB+2Z1v+...+ 27,

« Conditionally Gaussian priors:
Bl ~ N(b,B) and ~,[¥; ~N(g,,G;)

where b = b(’l?()), B = B(’ﬁo), gj = gj(’ﬁj), Gj = Gj<’l9j)
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« Most prominent examples of conditionally Gaussian priors in the context of estimating
smooth effects are of the (intrinsic) Gaussian Markov random field type where

rank(Kj)
2

1 1
p(7j|52-)0< I exp | —o 57K |
J 53 262 7

i.e. g; =0 and G’j_1 = 532-Kj.
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« Example 1: Bayesian P-Splines

() => wB(x).

where By (x) are B-spline basis functions of degree [ and ~ follows a random walk
prior such as
Ve = Ye—1 + ug, uglé® ~ N(0,57%)
or
Vi = 29K—1 — Yh—2 + ug, ugld” ~ N(0,8%).
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Conditionally Gaussian Hierarchical Models

E(yilyi-) =Vj2

E(YjlYj-1) = V-1 A

7

..................................

e

-1 i

o Usually, an inverse gamma prior is assigned to the smoothing variance:

6% ~ 1G(a,b).

« Bayesian P-splines include simple random walks as special cases (degree zero, knots

at each distinct observed covariate value).
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o Bayesian P-splines can be made more adaptive by replacing the homoscedastic
random walk with a heteroscedastic version:

Ve = Vh—1 + Uk, up|di ~ N(0,d7).
 Joint distribution of the regression coefficients becomes

p(7]d) x exp (—%’Y/DAD’Y)

where A = diag(d3,...,07).
o Different types of hyperpriors for A:
— Li.d. hyperpriors, e.g. 67 i.i.d. 1G(a,b,).

— Functional hyperpriors, e.g. 67 = g(k) with a smooth function g(k) modeled again
as a P-spline.

« Conditional on A the prior for ov remains of the same type and an MCMC updates
would not require changes.
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o Example 2: Markov random fields for regional spatial effects:

1 52
S T N NN TAT/7 NI T I AT/ NI
Ys|Yr, 7 € N(5) Nes)] Z Y TR

« Based on the notion of spatial adjacency:

« Again, a hyperprior can be assigned to the smoothing variance but the joint
distribution of the spatial effects remains conditionally Gaussian.
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o For regularised estimation of high-dimensional regression effects 3 we are considering
conditionally independent priors, i.e.

with b= 0 and B = diag(r¢,...,7;).

« While allowing for different variances, hyperpriors for 73-2 will typically be identical.
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« Example 1: Bayesian ridge regression

ﬂj|’7‘j2 ~ N(O,TjQ), 7'{7-2 ~ 1G(a,b).

« Note that the log-prior log p(8;|77) equals the ridge penalty 37 up to an additive
constant.

o Induces a marginal t-distribution with 2a degrees of freedom and scale parameter
a/b.
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 Informative priors provide the Bayesian analogon to frequentist regularisation.

o Example: Multiple linear model

y=X3+e, e ~ N(0,0°I).

« For high-dimensional covariate vectors, least squares estimation becomes increasingly
unstable.

= Add a penalty term to the least squares criterion, for example a ridge penalty

p
LSpen(B) = (y — XB)'(y — XB) + AZBJZ o mﬁin.
j=1

o Closed form solution: Penalised least squares estimate

B=(X'X+)"'X'y.
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« Bayesian version of the linear model:

y=Xp3+e, B~ N(0,7%1).

 Yields the posterior

pBly) x exp (550~ X8 (-~ XB) ) exp (55608 )

202

o Maximising the posterior is equivalent to minimising the penalised least squares
criterion

(y— XB)(y — XB) + 38

where the smoothing parameter is given by the signal-to-noise ratio
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« The posterior mode coincides with the penalised least squares estimate (for given
smoothing parameter).

o More generally:

— Penalised likelihood

Ipen(B) = I(B) — pen(B).

— Posterior:

p(Bly) = p(y|B)p(B).

o In terms of the prior distribution

Penalty = log-prior.
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« Example 2: Bayesian lasso prior:

)\2
2 2
Bj|T5, A ~ N(0, 75), 7‘ ~ Exp ( 2)

« Marginally, 8; follows a Laplace prior

p(B;) o< exp(—A|B;]).

« Hierarchical (scale mixture of normals) representation:

- ()

) Exp(0.52%) N(0, 72)

]
S

ap

o A further hyperprior can be assigned to the smoothing parameter such as a gamma
distribution A\ ~ Ga(a,b).
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Conditionally Gaussian Hierarchical Models

« Marginal Bayesian ridge and marginal Bayesian lasso:

log—prior

log—prior
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« Example 3: General L, priors

P(Bj|A) oc exp(—=A|5;]7)

with 0 < p < 2 (power exponential prior).

e Note that ,
oo B2\ 1 1\,
R A ) e = L

where s,(+) is the density of the positive stable distribution with index p.
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MCMC Inference in Conditionally Gaussian models

o The general structure of conditionally Gaussian models enables the construction of
general MCMC samplers.

« The conditionally Gaussian prior makes inference tractable in situations which are
difficult with direct estimation (such as the lasso).

o Suitable hyperpriors enable inference and uncertainty assessment for all model
parameters.

o« MCMC fully exploits the hierarchical nature of the models through the consideration
of full conditionals.
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For (latent) Gaussian responses, we obtain Gibbs sampling steps for the regression
coefficients.

For example, B|- ~ N(ug, ¥g) with

—~1
1 _ 1 _
pe=p—X'(y—n_p)+B 'b, Xg= (—X’X + B 1) ,

o2

For non-Gaussian responses, construct adaptive proposal densities based on iteratively
weighted least squares approximations to the full conditionals.

For example, 3 is proposed from a multivariate Gaussian distribution with expectation
and covariance matrix

pe=SsX'W(jG—n_g)+B ', Sg=(X'WX+B")

where W and vy are the usual generalised linear model weights and working responses.
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« Full conditionals for hyperparameters are independent of the observation model.

« Bayesian ridge:
2 C q | 132
73 N (a 2’ b 2 j)

« Bayesian lasso:

A 1 2
.~ InVGaUSS (%, )\2) , )\2| -~ Ga Qa _|_ q’b _|_ 527_]2
J

1
2
T-

J j=1

« Smoothing variances:

rank (K ,) 1

532‘ ~ IG (aj—l—
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BayesX

« Markov chain Monte Carlo approaches for conditionally Gaussian regression models
are implemented in BayesX.

P Bnest =loi=|

File Preferences Window Help
“ BREAK || pause | | suppressourPur | pRioRTY: | NORMAL  ~

Elcummanu.- ,..,Kz' Blreview 77 7 A

l:‘ dataset o

] 07\examplesiresulty
P Dbject-Yiewer

07examplesizamb
] outn

BayesX - Software for Bayesian Inference in Structured hdditive Re:

ap=m calor hel usi|

Wersion 1.50 (19.04.2007)

> dataset d

> d.infile using z:\talks\bath2007\examplesiresults £ district geo:
NOTE: 12 varisbles with 54 observations read from file
z:\talks\bath2007\ exanplesiresults £ district geospline.res

> map w

> m.infile using z:'talks\bathz007\exauples\zambia.bnd |
NOTE: §7 regions read from file z:)talks\bath2007\exauples’zambia.l
> graph o

> g.dravmap pmode district, map=m color hcl using d

NOTE: 3 missing valueis) plotted

373159 o 263166

BayesX and INLA - Opponents or Partners? 22



Thomas Kneib BayesX

o Available from

http://www.stat.uni-muenchen.de/ bayesx
o Numerical efficient implementation employing sparse matrix operations.

« Also contains mixed model based inference for the same class of models (comparable
to INLAs Gaussian approximation).
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Credit Scoring Data

e Data on the defaults of 1,000 consumer credits from a German bank.

« Response variable is a binary indicator y; that specifies whether the credit has been
paid back (y; = 1, credit-worthy) or not (y; = 0, not credit-worthy).

« Covariates include age of the client, credit amount and duration of the credit.
« Consider binary logit models with nonparametric effects of these three covariates.

o Compare different approximations available in INLA with MCMC-based estimation in
BayesX.
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Credit Scoring Data

o Effects of amount obtained with the complete data:
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Credit Scoring Data

 Effects of age obtained with one outlier excluded:

INLA Gaussian Approximation
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o Effects of duration obtained with one outlier excluded:

INLA Gaussian Approximation INLA Simplified Laplace
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o Effects of amount obtained with one outlier excluded:

INLA Gaussian Approximation INLA Simplified Laplace
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Credit Scoring Data

o Effects of amount based on rounded data with

INLA Simplified Laplace
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Credit Scoring Data

o Effects of amount after standardising covariates with one outlier excluded:

INLA Gaussian Approximation, RW1, a=b=0.001

INLA Simplified Laplace
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Credit Scoring Data

o Effects of age after standardising covariates with one outlier excluded:

INLA Gaussian Approximation, RW1, a=b=0.001
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o« Effects of duration after standardising covariates with one outlier excluded:

Model3_g Modellr_s_r
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Modellr_|_r
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« Computing times for some selected models (in seconds, very rough estimates):
— INLA with Gaussian approximation: 200s.
— INLA with simplified Laplace: 240s.
— INLA with Laplace (amount rounded): 2540s.
— BayesX with RW prior and 12,000 iterations: 60s.
— BayesX with RW prior and 103,000 iterations: 510s.
— BayesX with P-spline prior and 12,000 iterations: 90s.
— BayesX with P-spline prior and 103,000 iterations: 790s.
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« Effects of age obtained with one outlier excluded: Different random walk orders and
hyperparameters for Gaussian Approximation
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Credit Scoring Data

o Effects of amount obtained with one outlier excluded: Different random walk orders
and hyperparameters for Gaussian Approximation

INLA Gaussian Approximation, RW1, a=b=0.001
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« Effects of age obtained with one outlier excluded: Different random walk orders and
hyperparameters for Simplified Laplace

INLA Simplified Laplace, RW1, a=b=0.001 INLA Simplified Laplace, RW1, a=1, b=0.001
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o Effects of amount obtained with one outlier excluded: Different random walk orders
and hyperparameters for Simplified Laplace

INLA Simplified Laplace, RW1, a=b=0.001 INLA Simplified Laplace, RW1, a=1, b=0.001

20

-20

-60
|

T T T T T T T T
0 5000 10000 15000 0 5000 10000 15000

INLA Simplified Laplace, RW2, a=b=0.001 INLA Simplified Laplace, RW2, a=1, b=0.001

20
I

-20

-60
|
-60

0 5000 10000 15000 0 5000 10000 15000

BayesX and INLA - Opponents or Partners? 37



Thomas Kneib

Credit Scoring Data

« Effects of age obtained with one outlier excluded: Different random walk orders and

hyperparameters for BayesX

BayesX, RW1, a=b=0.001
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o Effects of amount obtained with one outlier excluded: Different random walk orders
and hyperparameters for BayesX
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Summary and Discussion

« Conditionally Gaussian models provide a rich class of regression models.

« BayesX and INLA provide comparable estimates in well-behaved examples but results
may differ substantially in difficult situations.

« In particular, covariates with outliers seem to yield highly variable estimates with
INLA.

« Differences in computing times not always as expected (full Laplace approximation
may be slow).

o In particular, covariates with a large number of different covariate values yield long
computing times.
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« Suggestions for improving INLA:
— Provide characterisations for “difficult” data sets?

— Implement Bayesian P-splines instead of random walk priors (faster and more
stable)?

— Revise default prior choice for hyperparameters?
o Further questions:
— Flexibility in terms of hyperprior choices (further hierarchical levels)?

— Partial impropriety of the conditionally Gaussian priors and model choice quantities.
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