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Abstract
Diese Masterarbeit beschäftigt sich mit der Entwicklung und Untersuchung von schnellen
Simulationsmethoden von hadronischen Teilchenschauern. Für diesen Zweck wurden Test-
strahldaten der Ahcal-Gruppe der Calice-Kollaboration verwendet. Diese wurden in
drei Phasen im Jahr 2018 an der Europäischen Organisation für Kernforschung (Cern)
mit dem technologischen Detektorprototyp der Ahcal-Gruppe aufgenommen. Während
dieser Datenaufnahme wurde der Detektorprototyp Elektronen-, Myonen- und negativ
geladenen Pionenstrahlen verschiedenster Energien ausgesetzt. Für diese Masterarbeit
wurde der gesamte Pionendatensatz verwendet.
Die in dieser Arbeit präsentierte Simulation ist datenbasiert. Es wurden zunächst

longitudinale Energiedifferenzen zwischen einzelnen Pionenschauern und einer longitu-
dinalen Parametrisierung durchschnittlicher Pionenschauer berechnet. Danach wurden
zwei verschiedene Methoden für die Simulation besagter Energiedifferenzen analysiert:
Einerseits wurden Schauer mittels einer Hauptkomponentenanalyse und andererseits mit-
tels Kerndichteschätzern simuliert. Des Weiteren wurden, basierend auf den Ergebnissen
der Kerndichteschätzung, Interpolationen für simulierte longitudinale Energieverteilungen
zwischen verschiedenen Strahlenergien durchgeführt.

Abstract
This thesis presents the development and investigation of fast hadron shower simulation
methods. For this purpose, a test beam dataset of the Ahcal group of the Calice
Collaboration has been used. This dataset was recorded in 2018 at Cern, where the
Ahcal Technological Detector Prototype was exposed to electron, muon, and negatively
charged pion beams of various initial energies. For this thesis, only the pion dataset has
been used.
The fast simulation presented in this thesis is a data-driven simulation. For the simu-

lation of hadronic showers, differences in longitudinal energy distributions between single
pion showers and an average pion shower parameterisation were calculated. Then, two dif-
ferent shower simulation methods were analysed: On the one hand, a principal component
analysis was conducted, and on the other hand, kernel density estimators were applied to
data. Furthermore, based on the results of the kernel density estimation, interpolations
of simulated longitudinal energy distributions were implemented between different initial
energies.
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1. Introduction

With the beginning of the 20th century, an epoch of great advances and revolutionary
ideas in the field of physics began. The newly discovered theory of quantum mechanics and
its mathematical framework, for the first time described by physicists such as Max Planck,
Niels Bohr, and many more, as well as Albert Einstein’s General Theory of Relativity [1]
shaped our understanding of nature like never before. Today, General Relativity is one
of two theories that lay the foundation upon which modern science, and in particular
physics, rests, describing gravity on large, macroscopic scales.
While the pure geometric theory of General Relativity has not been changed since its

first publication in 1915, quantum mechanics has been continuously expanded upon and
improved over the course of the last century, until it became what is today known as the
Standard Model of particle physics (SM). The SM is a quantum field theory whose laws
govern the behaviour of matter particles (fermions) and force carrier particles (bosons)
on microscopic scales. Three of the four fundamental forces are incorporated into the SM,
which includes the strong nuclear force described by quantum chromodynamics [2, 3] as
well as the weak nuclear force and electromagnetism, which have been unified into the
theory of electroweak interactions [4–6]. Together with the Brout-Englert-Higgs mecha-
nism [7–10], which generates the masses of all massive SM constituents, many predictions
of the SM have been proven to be correct, the last major one being the existence of the
Higgs boson, which was discovered by the Atlas and Cms Collaborations in 2012 at
Cern [11, 12].
In order to detect particles such as the Higgs boson, and to claim a discovery, large and

highly granular particle detectors are crucial for high energy physics experiments. How-
ever, not all SM particles can be directly detected. The majority of all SM constituents is
unstable, and these particles decay before reaching the detector. Hence, physicists have
to infer properties of unstable particles through their decay products, which is usually
done in two ways: On the one hand, one can monitor trajectories of electrically charged
particles with tracking chambers. On the other hand, energies of electromagnetically
and strongly interacting particles can be measured with electromagnetic and hadronic
calorimeters, respectively, which allows to deduce from which parent particle detected
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1. Introduction

particles might have originated.
The principle of calorimeters is always the same: An incoming particle interacts with

the detector material, producing secondary particles that scatter within the calorimeter
as well. These secondary particles are copiously produced and therefore create a cascade
within the detector, called a particle shower, whose energy is then measured. Measuring
the energy of a shower is a disruptive measurement because the shower deposits most or
all of the initial particle’s energy within the calorimeter. After deposition, this energy is
first transformed into electric signals and after that into data, which contains valuable
information about the nature of particle interactions. By evaluating it, physicists are able
to put theoretical predictions of the SM to the test.
Predictions about the behaviour of particles are obtained by analysing the equations of

motion of the SM numerically. Such computations allow scientists to predict, for instance,
the distribution of energy deposition of a shower within the detector. However, simulat-
ing particle showers is often a very time- and computing-power-consuming task, since all
particle interactions at the relevant energy scale must be considered. For higher energies,
simulations therefore become more and more complex. A possibility to circumvent this
problem is to build so called fast simulations. The aim of fast simulations is to reduce the
amount of required computing resources significantly, while preserving as much informa-
tion about the shower as possible. Fast simulations become continuously more important
as physicists are currently exploring particle interactions at energies higher than ever be-
fore. This Master’s thesis describes the fast simulation of hadronic showers, in particular
pion showers, and compares its results to test beam data. The dataset that has been
used for this comparison was recorded by the Ahcal group of the Calice Collaboration
during a test beam run in 2018 at Cern.
This thesis is structured as follows. Chapter 2 begins with a theoretical overview of elec-

tromagnetic and hadronic showers. This includes their longitudinal and radial shapes, the
development of electromagnetic subshowers within hadronic showers, and the calorime-
ter responses to each type of shower. Following this, Chapter 3 introduces the Calice
Collaboration and the Ahcal detector prototype. In addition, a motivation underlining
the importance of fast simulations, is given. This Chapter also discusses two large test
beam campaigns which took place in 2018 and 2022, respectively, at Cern in Geneva. In
Chapter 4, simulations obtained by applying a principal component analysis to data are
presented. Chapter 5, on the other hand, presents simulation results of applying kernel
density estimators to data. After this, results of interpolating simulated longitudinal en-
ergy distributions between different initial pion energies are shown in Chapter 6. In the
end, a conclusion and an outlook are given in Chapter 7.
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2. Theoretical Background

Particle showers exhibit distinct shapes and develop differently within a particle detector,
depending on whether they originate from electromagnetic or strong (hadronic) processes.
This Chapter therefore introduces the theory behind particle showers, first for electromag-
netic showers in Section 2.1, and then for those emerging from hadronic interactions in
Section 2.2. For both shower types, their developments as well as their characteristic
longitudinal and radial shapes are covered. Furthermore, Section 2.2.2 also discusses the
production of electromagnetic subshowers within hadronic showers and how differently
calorimeters respond to each type of shower.

2.1. Electromagnetic Showers

2.1.1. Development of Electromagnetic Showers

The development of electromagnetic showers is governed by the laws of quantum elec-
trodynamics (QED). QED describes the behaviour and interactions between electrically
charged SM constituents and photons, the electrically neutral force carrier of QED. The
charges of electrically charged particles are usually given in units of the elementary charge,
e, and only differ by sign between particles and their corresponding antiparticles. Though
there are many elementary particles that can interact electromagnetically, not all of them
can also be part of an electromagnetic shower. In almost all cases, such a shower only com-
prises electrons, positrons, or photons [13], since only these particles deposit enough energy
within an electromagnetic calorimeter to be detected. All remaining electromagnetically
interacting particles are usually not detected because they decay before entering the de-
tector (tau leptons), are mainly detected by hadronic calorimeters (quarks/hadrons), or
deposit too little energy within electromagnetic calorimeters (muons).
At high energies, electrons and positrons lose energy via emission of bremsstrahlung,

due to their small masses. Photons, on the other hand, undergo electron-positron pair
production and thereby split their energy between the decay products. These two pro-
cesses, however, are only dominant above an energy threshold called the critical energy
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2. Theoretical Background

(per particle), Ec. Below the critical energy, ionisation becomes dominant for charged
particles. Non-linear processes are involved in electromagnetic shower development too,
for example multiple scattering, but they will not be discussed in this Chapter.

The size of an electromagnetic shower is commonly quantified by the mean free path of
a particle within the detector material, that is to say, the distance after which an electron
or a positron emits bremsstrahlung. This quantity is called the radiation length and is
denoted as X0. It is a material-dependent constant, and generally one finds that X0 ∼ 1

Z2

[14], where Z is the atomic number of the detector material. This proportionality implies
that electromagnetic showers are on average shorter in denser detector materials.

The length of an electromagnetic shower also depends on the initial energy, E0, of the
incoming particle that initiates the shower. This can be shown using a simplified model
of electromagnetic shower development. Suppose an incoming particle, for example an
electron, enters an electromagnetic calorimeter. After one radiation length, on average,
the electron will emit a photon, after two radiation lengths another, etc. Likewise, all
emitted photons will eventually decay into another electron and a positron. In reality,
this happens after one photon absorption length, λγ, the mean free path of a photon,
which differs from the radiation length and can be approximated via [13, 15]:

λγ ≈
9
7X0 . (2.1)

For this simplified model, though, λγ = X0 is assumed. This results in an electromagnetic
shower as schematically shown in Figure 2.1, which comprises on average 2n particles after
n radiation lengths.

When the critical energy is reached after ntot radiation lengths, one finds that Ec = E0
2ntot .

The shower’s total length is hence given by:

stot = ntotX0 =
log

(
E0
Ec

)
log(2) X0 . (2.2)

Thus, one finds that an electromagnetic shower’s length grows logarithmically as a func-
tion of the initial energy. Due to this, sizes of electromagnetic calorimeters grow loga-
rithmically too, which makes calorimetry particularly attractive for high energy physics
experiments, since a calorimeter with fixed size is able to detect particle showers with
energies ranging between several orders of magnitude.

This simplified model of electromagnetic shower development already describes most
general properties of electromagnetic showers but not all of them. The assumptions upon
which the simplified model is based (energy loss via ionisation is energy-independent,
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2.1. Electromagnetic Showers

Figure 2.1.: Schematic depiction of an electromagnetic shower with radiation length
X0 [13]. After each radiation length the number of particles doubles and
the energy per particle is halved. Electrons and positrons are indicated as
straight lines and photons as waves.

neglected multiple scattering, one-dimensional shower development, etc.) no longer hold
when dealing with real electromagnetic showers. For this reason, the following Section
introduces an empirical model of electromagnetic shower development that aims at en-
capsulating all relevant processes and dependencies.

2.1.2. Longitudinal and Radial Shapes of Electromagnetic
Showers

The previously presented simplified model is useful for understanding electromagnetic
shower development conceptually. However, in order to predict energy distributions
(both longitudinal as well as radial) of electromagnetic showers within an electromagnetic
calorimeter, empirical models are necessary, particularly because the mean free path of a
photon differs from the radiation length of an electron or a positron.
For the longitudinal development of electromagnetic showers, the following formula is

commonly used for parameterising longitudinal energy distributions [16]:

dE
dn = E0

ba

Γ(a)n
a−1e−bn . (2.3)

Here, the left-hand side is the change in energy, E, over the number of radiation lengths,
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n. On the right-hand side, E0 is the initial energy of the shower, and Γ is the gamma
function defined as

Γ(x) =
∫ ∞

0
tx−1e−tdt . (2.4)

Moreover, a and b are two empirical parameters that determine the position of the shower
maximum in numbers of radiation lengths:

nmax = a− 1
b

. (2.5)

Longitudinal energy distributions of electromagnetic showers described by Equation (2.3)
look like those shown in Figure 2.2. This Figure shows longitudinal energy distributions,
initiated by electrons, for four different initial energies within a block of copper, where
the energy deposition per centimetre is given as a function of the shower depth. All
distributions exhibit a steep increase in deposited energy, followed by the shower maximum
and a slow exponential decrease. Note that the position of the shower maximum shifts
only slowly to larger depths, even though the initial energy is increased by orders of
magnitude.

Figure 2.2.: Longitudinal energy distributions of electron showers in copper for four
different initial energies [17]. The upper x-axis represents the depth given
in radiation lengths, the lower one in centimetres. The y-axis shows the
relative fraction of initial energy deposited within one centimetre of copper.

Unlike the longitudinal development of electromagnetic showers, their lateral develop-
ment is neither dominated by emission of bremsstrahlung nor by electron-positron pair
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2.2. Hadronic Showers

production. The scattering angles of both processes are proportional to 1
γ
[13], where γ is

the Lorentz factor of the scattered particles. For highly boosted particles, the scattering
angles are thus very small. It is multiple scattering between low-energy electrons and
positrons, as well as Compton scattering of low-energy photons, that causes the shower
to expand laterally. However, even though the lateral expansion is driven by different
processes, the shower’s width can still be very accurately quantified by a single parameter
called the Molière radius, ρM . The reason why the Molière radius is so useful is because
on average already 90 % of the initial energy are contained within a cylinder of radius ρM
around the shower axis. It is defined as

ρM = Es
Ec
X0 , (2.6)

where X0 and Ec are the already well-known radiation length and critical energy, respec-
tively. Es, on the other hand, is a new empirical parameter which is approximately equal
to 21 MeV [15].
Figure 2.3 shows simulated radial energy distributions of electron-initiated electromag-

netic showers in different detector materials (aluminium, copper, and lead), where the
energy deposition within 0.1ρM is given as a function of the distance to the shower axis.
The distributions fall off quickly and less than 0.1 % of the initial energy is deposited
beyond approximately 3.5ρM [15].
The ratio of Molière radius to radiation length scales linearly with the atomic number:

ρM
X0
∼ Z [13]. Consequently, electromagnetic showers are slimmer, in relation to their

length, in lighter detector materials than in denser ones. In terms of absolute values,
though, a shower is wider in aluminium than in lead, as shown in Table 2.1. Small
radiation lengths as well as Molière radii are the reason why modern calorimeters are
usually made of heavy elements, such as tungsten or lead, because those materials keep
calorimeter sizes small as well.

2.2. Hadronic Showers

2.2.1. Spallation and Evaporation

In contrast to electromagnetic showers, hadronic showers are not primarily created via
electron-positron pair production or bremsstrahlung. Instead, inelastic scattering between
highly energetic hadrons and the atomic nuclei of the detector material cause an exponen-
tial production of secondary particles, which in turn scatter with other atomic nuclei as
well. Such a secondary particle can be another hadron or an electrically charged lepton.
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2. Theoretical Background

Figure 2.3.: Simulations of lateral energy distributions of electron-initiated electromag-
netic showers within aluminium (blue), copper (black), and lead (red) [17].
The x-axis represents the distance from the shower axis in units of Molière
radii. The y-axis shows the relative percentage of initial energy deposited
within 0.1 Molière radii.

Table 2.1.: Values of different electromagnetic shower parameters for various detector
materials [15]. The atomic number Z, the critical energy Ec, the radiation
lengthX0, the Molière radius ρM , and the ratio of Molière radius to radiation
length ρM

X0
are shown.

Material Z Ec for e− [MeV] Ec for e+ [MeV] X0 [mm] ρM [mm] ρM/X0

Al 13 42.7 41.5 89 44 0.49
Fe 26 21.7 21.0 18 17 0.94
W 74 8.0 7.7 3.5 9.3 2.66
Pb 82 7.4 7.1 5.6 16 2.86
U 92 6.7 6.4 3.2 10 3.13

The latter possibility is the reason why hadronic showers also comprise electromagnetic
subshowers. Furthermore, neutrinos can be produced in hadronic interactions too. How-
ever, since they barely interact with matter, neutrinos are not detected, but only carry
(significant) amounts of energy away, which makes the energy reconstruction of hadronic
showers particularly difficult.
Hadronic shower development happens in two phases. The first one is called spallation
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2.2. Hadronic Showers

and takes place approximately 10−22 seconds [13] after the initial collision. The incoming
hadron scatters inelastically with a nucleon (either proton or neutron), which produces
large amounts of secondary particles. Very light hadrons, such as kaons or pions, are
the most frequent produced in such collisions. These secondary particles scatter within
the atomic nucleus as well, creating an intra-nuclear cascade. Eventually, the secondary
particles escape the atom, leaving the nucleus highly excited. By emitting core fragments
(protons or neutrons), α-particles, or strong X- or gamma radiation, all of them with en-
ergies between about 100 MeV and 1 GeV [13], the nucleus de-excites. Both core fragment
emissions as well as secondary particles escaping the nucleus make up the first phase of
hadronic shower development. Figure 2.4 shows a schematic representation of spallation.

Figure 2.4.: Schematic depiction of the first phase of hadronic shower development
(spallation) [13]. The hadronic shower is initiated by an incoming hadron
that hits a nucleus and scatters inelastically. Secondary particles are pro-
duced and escape the nucleus, hitting other atoms of the detector material.
Electromagnetic subshowers from neutral pion decays are also shown.

The second phase of hadronic shower development is called evaporation. Approximately
10−18 seconds [13] after the initial collision, atomic nuclei are still highly excited. In order
to de-excite even further, a nucleus can undergo two processes: it either emits more core
fragments, this time with energies of O(10 MeV) [13], or it splits into lighter atoms via
nuclear fission. Both of these processes are shown in Figure 2.5. Of course, the daughter
nuclei can evaporate or fissure into lighter elements as well if they are still energetic
enough.

9



2. Theoretical Background

Figure 2.5.: Schematic depiction of low energy core fragment emission (left) and nuclear
fission (right) [13]. Together, these processes form the second phase of
hadronic shower development (evaporation).

Even though evaporation already starts 10−18 seconds after the initial hadron has struck
the first nucleus, it can take up to microseconds before it ends. The reason for this are
neutrons which barely interact with the electromagnetic field of a nucleus and therefore
travel (mostly) unimpededly through the detector. Only when neutrons are caught by
other nuclei, they emit photons and thereby deposit energy within the hadronic calorime-
ter. These photons are detected with a delay of multiple microseconds and can therefore,
in addition to neutrinos, seriously deteriorate the energy reconstruction of the hadronic
calorimeter. In the case of the Lhc, for example, where proton bunches collide every
25 nanoseconds [18], 40 bunch crossings take place every single microsecond. It is thus
not unlikely to detect photons in an event that belong to a previous one. One has to be
aware of this issue when measuring energies of hadronic showers and react appropriately
to ensure little to no data distortion.

2.2.2. Electromagnetic Subshowers and Calorimeter Responses

As already mentioned and shown in Figure 2.4, hadronic showers are able to develop
electromagnetic subshowers. These are caused by neutral pions which, in almost 99 % of
all cases [15], decay into two photons. They are copiously produced in hadronic interac-
tions, since they are one of the lightest hadrons, and therefore make up a large fraction
of all secondary particles in a hadronic cascade. Hence, electromagnetic subshowers con-
tribute a non-negligible fraction to the total deposited shower energy, Edep, which can be
mathematically described as

Edep = (fEM + fhad)E0 . (2.7)
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2.2. Hadronic Showers

Here, fEM and fhad are the electromagnetic and hadronic fractions of the hadronic shower,
respectively. The latter accounts for the energy that is deposited within the hadronic
calorimeter by pure hadronic interactions, the former accounts for energy from electro-
magnetic subshowers and is therefore closely related to the total number of neutral pions
produced in a hadronic shower.
Since the amount of neutral pions is in principle unbounded (as long as conservation laws

are satisfied), the electromagnetic fraction can take on any value between 0 % and 100 %,
which makes it prone to strong fluctuations. This is emphasised by Figure 2.6(a), where
a distribution of the electromagnetic fraction of hadronic showers initiated by 150 GeV
pions in a Pb-fiber calorimeter is shown. One can see that the distribution does not have
a sharply defined peak, but is spread out from 0.4 to 1, even though neither the initial
energy nor the initial particle were altered between events.

(a) (b)

Figure 2.6.: (a) Distribution of the electromagnetic fraction of hadronic showers initi-
ated by 150 GeV pions, which were detected in a Pb-fiber calorimeter. The
x-axis shows the relative electromagnetic fraction and the y-axis the num-
ber of events per bin. (b) The average electromagnetic fraction (y-axis) as
a function of the initial pion energy (x-axis). The two black curves repre-
sent the theoretical prediction of Equation (2.8) for copper (dashed) and
lead (continuous). Measurement results from calorimeters are also shown,
one with copper absorber (triangles) and one with lead absorber (circles)
[19].

Even though the electromagnetic fraction cannot be predicted very well for single events,
its average value, 〈fEM〉, is well described by the following approximation [19]:

〈fEM〉 ≈ 1−
(
E

E0

)k−1
. (2.8)
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Here, E is the initial energy, E0 is the average energy needed to produce a pion (material-
dependent), and k is an empirical parameter approximately equal to 0.82 [13, 19]. Figure
2.6(b) shows the curves of Equation (2.8) for copper and lead as a function of the initial
energy E. Furthermore, measurements of the average electromagnetic fraction are also
shown for copper and lead.

Strong fluctuations of the electromagnetic fraction are the most important reason why
one has to distinguish between electromagnetic and hadronic components, since hadronic
calorimeter responses are very sensitive to changes in fEM. Even tiny changes can have
significant impacts on how well a hadronic calorimeter can detect electromagnetically and
hadronically deposited energy. This becomes apparent when one describes calorimeter re-
sponses mathematically. The signal an electromagnetic shower induces within a hadronic
calorimeter can be written as [13]

S(e) = fEMεEMEe , (2.9)

where Ee is the initial energy of an electromagnetically interacting particle, and εEM is
the electromagnetic efficiency of the detector. A detector is never an ideal machine, and
εEM therefore accounts for energy loss due to the imperfectness of the detector. Hence,
S(e) is just the total energy of an electromagnetic shower that a hadronic calorimeter is
able to detect. Similarly, the hadronic signal can be written as [13]

S(π) = (fEMεEM + fhadεhad)Eπ , (2.10)

where εhad plays the same role as εEM, but for hadronic interactions. Eπ is the initial
energy of a hadronically interacting particle. Combining Equations (2.9) and (2.10), and
assuming equal initial energies (Ee = Eπ), then yields:

S(e)
S(π) =

εEM
εhad

1− fEM
(
1− εEM

εhad

) . (2.11)

Typically, one finds that εEM
εhad

> 1 [13] because hadronic showers have invisible components
(neutrinos as well as binding energy needed to split up atomic nuclei), which implies that
the right-hand side of Equation (2.11) is not equal to one but is a function of fEM.
Therefore, one can see that extreme fluctuations in the hadronic energy resolution are an
unavoidable problem for hadronic calorimeters because the electromagnetic fraction has
direct influence on the electromagnetic and hadronic signals and varies strongly between
single events.
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2.2. Hadronic Showers

2.2.3. Longitudinal and Radial Shapes of Hadronic Showers

Hadronic showers distribute their energy similarly to electromagnetic showers, both in
the longitudinal as well as the radial direction. Their lengths can be parameterised by a
single quantity, just like for electromagnetic showers. This quantity is called the nuclear
absorption length, λ. The nuclear absorption length can be approximated via [13]

λ ≈ λ0

3
√
A

ρ
, (2.12)

where A and ρ are the atomic weight and the density of the detector material, respectively.
Moreover, λ0 is a constant approximately equal to 35 g cm−2 [13]. The length of a hadronic
shower grows logarithmically too, as it is the case for electromagnetic showers, and it scales
with λ (or X0) [13].
By comparing radiation lengths with nuclear absorption lengths, one can notice that

the ratio of nuclear absorption length to radiation length scales approximately linearly
with the atomic number Z as [13]

λ

X0
≈ aZ , (2.13)

where a ≈ 0.37 [13]. This relation implies that λ is much larger than X0 in very dense
detector materials, which also means that hadronic showers are on average much longer
than electromagnetic showers. Hence, hadronic calorimeters have to be much larger than
electromagnetic calorimeters. To emphasise this point, Table 2.2 shows values for the
radiation length, the nuclear absorption length, their ratio, and the density of different
detector materials. One can see very clearly that λ becomes much larger than X0 in
detectors made of heavy elements.

Table 2.2.: Values of shower parameters for different detector materials [15]. The atomic
number Z, the density ρ, the radiation length X0, the nuclear absorption
length λ, and the ratio of nuclear absorption length to radiation length λ

X0
are shown for different elements.

Material Z ρ [g cm−3] X0 [cm] λ [cm] λ/X0

Al 13 2.7 8.9 39.7 4.5
Fe 26 7.9 1.8 16.8 9.3
W 74 19.3 0.35 9.9 28.3
Pb 82 11.4 0.56 17.6 31.4
U 92 19.0 0.32 11.0 34.4
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2. Theoretical Background

To parameterise a hadronic shower longitudinally, Equation (2.3) can be generalised
such that it now describes the energy deposition of a shower comprising a hadronic long
component and an electromagnetically dominated short component. This parameterisa-
tion is of the form [20]

dE
dz = E0 ·

{
fEM

Γ(αs)
·
(
z

βs

)αs−1

· e
− z
βs

βs︸ ︷︷ ︸
short component

+ 1− fEM

Γ(αl)
·
(
z

βl

)αl−1

· e
− z
βl

βl︸ ︷︷ ︸
long component

}
, (2.14)

where the left-hand side is the change in energy along the direction of propagation, z
(parallel to the shower axis). Here, z is measured in units of the nuclear absorption length.
Furthermore, fEM is the electromagnetic fraction that now accounts for the fractional
contribution of the short component to the whole energy deposition. The parameters αi
and βi (both for the short and long component) are similar to a and b in Equation (2.3).
In particular, αi corresponds to a and βi to 1

b
. They both determine the shape and the

slope, respectively, of Equation (2.14).

Showers described by Equation (2.14) look like those depicted in Figure 2.7, which shows
measurements of longitudinal energy distributions of 80 GeV pion- and proton-initiated
hadronic showers. In addition to the data points, the short and long components of
Equation (2.14) are shown too, each separately, as well as their sum. The x-axes represent
the distance from the shower start in units of nuclear absorption lengths and the y-axes
the energy deposited in one detector layer. Note that the energy is given in units of
minimal ionising particles (MIPs) instead of GeV.

Similar to the Molière radius of electromagnetic showers, a radius, comprising 95 % of
the shower’s total energy, can be defined for hadronic showers too. It is approximately
equal to the nuclear absorption length [13]:

R95 % ≈ λ . (2.15)

Together with this radius, one can define, in a similar manner to Equation (2.14), a radial
parameterisation of hadronic showers, encompassing an electromagnetically dominated
core region surrounded by a hadronic halo [20]:

∆E
∆S = Acore exp

(
− r

βcore

)
+ Ahalo exp

(
− r

βhalo

)
. (2.16)

Here, the left-hand side is the energy density as a function of the radius r measured from
the shower axis. The energy density is defined as the energy, ∆E, divided by the area,
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2.2. Hadronic Showers

Figure 2.7.: Longitudinal energy distributions (in MIP) of 80 GeV pion- (left) and
proton-initiated (right) hadronic showers as a function of the shower depth
(in nuclear absorption lengths, here denoted as λI) [20]. Data points are
shown as well as the fit of Equation (2.14) to the data (black curve). Fur-
thermore, the short (red, dotted curve) and the long (blue, dashed curve)
components of the fit are plotted separately too.

Figure 2.8.: Radial energy density distributions (in MIP mm−2) of 30 GeV pion- (left)
and proton-initiated (right) hadronic showers as a function of the distance
to the shower axis (in millimetres) [20]. Data points are shown as well as
the fit of Equation (2.16) to the data (black curve). Furthermore, the core
(red, dotted curve) and the halo (blue, dashed curve) components of the
fit are plotted separately too.
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2. Theoretical Background

∆S, of a ring with width ∆r and radius r around the shower axis within which the energy
is deposited. On the right-hand side, two scaling factors, Acore and Ahalo, are included as
well as two slope parameters, βcore and βhalo. Distributions of this shape look like those
depicted in Figure 2.8, obtained from measurements of 30 GeV pion- and proton-initiated
hadronic showers. The x-axes represent the radius from the shower axis in millimetres
and the y-axes show ∆E

∆S in units of MIP mm−2. The hadronic radial energy distributions
fall off as quickly as those of electromagnetic showers.
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3. The CALICE Collaboration and
the AHCAL Prototype

Sophisticated particle detectors are an essential tool of modern high energy particle
physics. In order to detect (elementary) particles and to study their properties, par-
ticle detectors comprise multiple components, each fulfilling a different purpose. Such
detector components are carefully developed, built, and tested to ensure correct function-
ality, high performance, as well as fine resolution. A collaboration that dedicates itself to
the research and development of highly granular calorimeters is the Calice Collabora-
tion, which is the subject of this chapter. In the following, a short introduction to Calice
and a motivation for fast hadron shower simulations, the topic of this thesis, are given,
which are then followed by a description of the Ahcal detector prototype in Section 3.1
as well as two test beam campaigns in Sections 3.2 and 3.3.
Calice stands for “Calorimeter for Linear Collider Experiment”. It is an interna-

tional collaboration of more than 300 physicists and engineers working on the research
and development of high granularity and high performance detectors for a future Inter-
national Linear e+e− Collider. Calice is divided into different groups, with each group
focusing on the construction and testing of one specific detector component (electromag-
netic calorimeter, hadronic calorimeter, or tail catcher and muon tracker). For this thesis,
work has been done in close cooperation with the Ahcal group (“Analogue Hadronic
Calorimeter”) for which test beams were taken in 2018 and 2022.
Before test beam runs, such as those in 2018 and 2022, can take place, extensive simula-

tions of test beam particles interacting with the detector material and producing showers
have to be conducted. Based on simulated particle interactions with matter, one can
enhance the detector design by evaluating which material is suited best for a certain part
of a detector. However, simulations also allow for a sensible interpretation of data taken
during a test beam run. Without simulations, one cannot tell whether a detector works
properly and records data as expected or if there are too many disturbances caused by
malfunctioning detector parts. Furthermore, testing a theoretical hypothesis does not
make sense and is not possible if one does not know what to expect as an outcome of an
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3. The CALICE Collaboration and the AHCAL Prototype

experiment. Particularly in high energy particle physics, detailed simulations are crucial
in order to ensure correct functionality of detectors and to provide predictions which can
be compared with data.
Currently, Geant4 (“Geometry and tracking”) is used as a platform for the simu-

lation of particle passages through matter in high energy physics experiments. Based
on Monte-Carlo methods, Geant4 is able to generate event kinematics, track single
particles through simulated detectors, simulate interactions between particles and mat-
ter while taking into account all possible physics processes, and much more. While all
these features yield highly accurate predictions about nature, they also require very large
amounts of computational power and a lot of computing time. To counteract this issue,
fast simulations can be used, for they are a useful tool to capture and provide the most
important information about physical processes, for instance the energy distributions of a
particle shower, without relying on large amounts of resources and computing time. Such
simulations can be implemented as data-driven simulations, which, for instance, renders
computations of highly complex equations of motion in full simulations unnecessary.

3.1. The AHCAL Prototype

As already mentioned previously, the Calice Collaboration works on the development
and construction of highly granular calorimeters. For this purpose, the Ahcal group
has built its own prototype of a hadronic calorimeter called the Ahcal Technological
Prototype (henceforth only referred to as “the Ahcal”). The Ahcal is a sampling
calorimeter, using non-magnetic stainless steel as an absorber with a total of 38 active
scintillator layers placed within the absorber structure. Figure 3.1 shows a picture of the
fully assembled prototype. One absorber layer has a thickness of 17 mm, corresponding
to about one radiation length or 0.1 nuclear absorption lengths, whereas a single active
layer has a thickness of only 3 mm. In total, the thickness of the Ahcal amounts to 4.4
nuclear absorption lengths.
One active layer of the Ahcal is formed by four HCAL Base Units (HBUs), each with

an area of 36 × 36 cm2. Together, they are arranged quadratically, such that one active
layer covers an area of 72 × 72 cm2. Furthermore, one HBU is made of 144 (12 × 12)
active scintillator tiles, each with a size of 3 × 3 cm2, which means that one active layer
encompasses a grid of 576 (24× 24) scintillator tiles. Thus, the whole Ahcal comprises
21 888 channels that are read out individually via silicon photomultipliers (SiPMs). The
SiPM model selected for the Ahcal is the Hamamatsu MPPC of type S13360-1325PE.
In addition, every tile is individually wrapped in reflector foil in order to minimise optical
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3.1. The AHCAL Prototype

Figure 3.1.: Top view of the fully assembled 38-layer Ahcal stack [21].

(a) (b)

Figure 3.2.: (a) A picture of one active layer of the Ahcal with scintillator tiles and
integrated read-out electronics [22]. All scintillator tiles are wrapped in
reflector foil. (b) A picture of two naked SiPMs (bottom left and right)
and two SiPMs with scintillator tiles on top (top left unwrapped, top right
wrapped in foil) [23].

crosstalk between the tiles. Figure 3.2 shows a picture of an active layer on the left and
one of single SiPMs on the right.

SiPMs are a relatively new technology compared to other photomultiplier models, and
they are used for the sensing, timing, and quantifying of light signals (even down to single
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3. The CALICE Collaboration and the AHCAL Prototype

photons) via the creation and amplification of electric signals. They are silicon-based
arrays of self-quenching single-photon avalanche photodiodes (SAPDs) with a p+-i-p-n+

doping profile as shown in Figure 3.3, meaning that a single SAPD is designed such that
a heavily p-doped layer (p+) is followed by a slightly p-, almost undoped intrinsic layer
(i), which itself in turn is followed by a normally p-doped (p) and a heavily n-doped (n+)
layer. The latter two layers make up the multiplication zone of the SAPD. Due to an
external reverse bias that operates at a few volts above the breakdown voltage, an electric
field is created, and the p+-, i-, and p-layer become negatively charged, whereas the n+-
layer becomes positively charged. The strength of the electric field grows only slowly from
the p+- to the p-layer, but experiences a sudden increase within the multiplication zone
with its maximum located at the p-n+ junction.

Figure 3.3.: Structure of an SAPD [24]. Its doping profile comprises a heavily p-doped,
an intrinsic, a p-doped, and a heavily n-doped layer (from top to bottom).
An external electric field charges the p+-, i-, and p-doped layers negatively,
whereas the n+-layer is positively charged. The field strength increases
slowly from the p+- to the p-layer. From here, it rises quickly, reaches a
maximum at the p-n+ junction, and afterwards falls off quickly again.

A photon that enters an SAPD is completely absorbed by the intrinsic layer. During this
process, an electron-hole pair is created. Due to the external electric field, the electron is
drawn towards the multiplication zone, whereas the hole travels in the opposite direction.
Within the multiplication zone, the electron is accelerated to high velocities by the strong
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electric field, which enables it to create other electron-hole pairs via impact ionisation.
These secondary charges are also accelerated and ionise the material even further, creating
an “avalanche” of electrons, i.e. a measurable electric current. While the holes travel
towards the negatively charged p+-layer, the electrons are collected at the n+-layer where
they are read out as electric signals. Via this process, the initial light signal can be
amplified by an amplification factor of the order of multiple millions [25], depending
on the difference between breakdown voltage and reverse bias (called the overvoltage).
Electric signals can, however, also be initiated by thermal electrons, the main source
of noise within an SiPM [25]. The rate at which such signals are generated is called
the dark count rate (DCR). Since the DCR is also overvoltage-dependent, a trade-off
between increasing the amplification factor as well as the DCR is created. It is thus more
advantageous to operate SiPMs at low temperatures in order to keep the DCR as small
as possible [26].

3.2. Test Beam Run in 2018

The test beam run in 2018 was conducted in three single data-taking periods in the H2
test beam line at the Cern Super Proton Synchrotron beam test facility. The first one
took place in May 2018, where the Ahcal was setup with all 38 active layer modules,
integrated within the first 38 gaps of the absorber structure. Furthermore, the detector
was placed on a movable platform that allowed to move the detector up and down or left
and right in the x-y plane perpendicular to the beam axis. An event was then recorded
by the detector if two external trigger scintillators, placed in the beam line, coincided
with each other. The Ahcal was exposed to three different particle types during the run:
electrons, muons, and negatively charged pions. For electrons, data was recorded within
the energy range from 10 GeV and 100 GeV, whereas for pions, energies between 10 GeV
and 160 GeV were measured. For muons, data with beam energies between 40 GeV and
120 GeV was acquired.
The second data-taking period took place in June 2018 for which the 38th active de-

tector layer was exchanged by a module with scintillator tiles of size 6 × 6 cm2 instead
of 3 × 3 cm2. The layer that had been previously integrated into the 38th gap was then
installed within the 41st. Moreover, a single HBU was installed in front of the detector,
acting as a pre-shower layer, and a tail catcher was setup in the rear as well. The tail
catcher was made of twelve single-HBU active layers in total, alternated with 7.4 mm
thick steel absorber layers. In this period, data was again recorded for muons and nega-
tive pions. For muons, only 40 GeV events were recorded, and for pions, energies between
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3. The CALICE Collaboration and the AHCAL Prototype

10 GeV and 200 GeV were measured. In addition to that, positron test beams with energies
ranging from 10 GeV and 100 GeV were also recorded.
For the data-taking period that took place in October 2018, the Ahcal with 39 layers

was tested together with the prototype of the silicon part of the Cms Hgcal (“High-
Granularity Calorimeter Upgrade”) [27, 28], which were now both mounted on a fixed
platform. Since the Ahcal was placed behind the Hgcal prototype, which has a thick-
ness of approximately five nuclear absorption lengths, only tails of hadronic showers and
muons reached the Ahcal, which limited the data taking rate to approximately 50 events
per second.
In total, about 93 million events were recorded during the test beam run in 2018 at

Cern. For this thesis, only the data acquired for negatively charged pions has been used,
limited to the following nine initial energies: Einitial = {10, 20, 30, 40, 60, 80, 120, 160,
200} GeV.

3.3. Test Beam Run in 2022

The test beam run at Cern in June 2022 was similar to that four years prior. The
only difference, though, was that the Ahcal was not tested solely this time. Instead,
the 2022 test beam run was a combined run of the Ahcal and the SiW Ecal group
(“Silicon-tungsten (W) Electromagnetic Calorimeter”) [29] of Calice. The SiW Ecal
was mounted in front of the Ahcal, and both of them were again positioned on a movable
platform, adjustable within the x-y plane perpendicular to the particle test beam. Figure
3.4 shows pictures of the detector setup, the beam pipe, and of the workplace from where
the data recording was monitored.
During the data-taking period, electron beams with energies between 10 GeV and

150 GeV as well as positively charged pion beams with energies in the range of 20 GeV to
200 GeV were measured. Furthermore, 150 GeV muon data was acquired. In total, ap-
proximately ten million events were recorded in 2022. Significant contributions in terms of
data-taking shifts were provided to the test beam campaign in the context of this thesis.
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3.3. Test Beam Run in 2022

(a) (b)

(c)

Figure 3.4.: (a) Diagonal aerial perspective onto the whole detector setup. The detector
is mounted on a movable platform (with orange-yellow railing) and covered
with a black blanket. The beam pipe is visible, too, at the right edge of
the picture. (b) A picture of a workplace from where the data taking
was controlled. (c) View onto the front of the detector (black cube in the
background) along the beam pipe (centre of the picture).
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4. Longitudinal Simulation of Pion
Showers using a Principal
Component Analysis

The aim of this thesis is to develop a data-based fast simulation of pion showers. For this
purpose, two simulation techniques have been investigated. One of these two methods is a
principal component analysis (PCA) whose application to differences between longitudinal
energy distributions of single pion showers and an average pion shower parameterisation
is presented in this Chapter.
To begin with, Section 4.1 introduces the average pion shower parameterisation. More-

over, an explanation of how longitudinal energy differences per layer were calculated is
given, and probability density functions (PDFs) of energy differences1 are shown. Fol-
lowing this, Section 4.2 presents the results of the conducted PCA. First, the theoretical
background behind principal component transformations is introduced. Then, the results
of the PCA are presented, including variance plots, correlation factors, as well as PDFs
and simulations of the principal components. In the end, results of converting simulated
principal components back into simulated energy differences are shown in Section 4.3.

4.1. Average Longitudinal Pion Showers and
Distributions of Individual Shower Energies

The following Section is based upon average shower shape studies conducted by Olin
Pinto at Desy [30]. Average shower shapes are necessary for this research because they
allow to transform absolute energies into energy differences by subtracting the energy of
single pion showers from the average shower energy per layer. This simplifies the analysis
considerably, since the mean of all energy differences is centred around zero, independent
of the initial pion energy, which also makes it easier to compare the behaviour of the

1The terms “energy difference per layer” and “energy difference” are used equivalently in this thesis.
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simulation between different initial energies.
The idea behind the application of a PCA to energy differences is schematically shown

in Figure 4.1. After energy differences were computed, they are centred around zero and
normalised to their standard deviations. After that, all energy differences are transformed
into uncorrelated principal components. Vanishing correlation factors are important for
the simulation because a single principal component can then be simulated without having
to consider influence of other principal components.
The simulation occurs, first by simulating principal components according to their

PDFs. The inverse transformation is then applied to them, resulting in centred and
normalised simulated energy differences. Lastly, the respective standard deviations are
multiplied and the respective means added to all centred and normalised simulated energy
differences, which will yield the desired simulated energy differences. The energy in each
calorimeter layer is thus simulated, in principle with correlations preserved.

Energy differences Centred & normalised
energy differences Principal components

Analysis

Simulation

Principal components Simulated principal
components

Simulated centred &
normalised energy differences

Simulated energy
differences

Centre &
normalise

Transform

PDFs

Inverse transform

Multiply standard deviation
& add mean

Figure 4.1.: Diagrams that schematically depict the principal component analysis and
the simulation of longitudinal energy differences.

The dataset used for this thesis was recorded in 2018 at Cern by the Ahcal group of
the Calice Collaboration. It contains pion shower data of various initial energies, namely
10 GeV, 20 GeV, 30 GeV, 40 GeV, 60 GeV, 80 GeV, 120 GeV, 160 GeV, and 200 GeV, and
it was also refined before being used during this and the following analyses. The criteria
by which showers either passed or failed the selection are the following: First, a particle
identification [31], based on boosted decision trees, was applied to the whole dataset in
order to remove beam contamination. Furthermore, the first physical layer of the Ahcal
was excluded due to uncertainties in the shower start finding algorithm [31]. Then, showers
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with a shower start beyond the sixth physical detector layer were excluded to minimise
leakage loss, and those that fulfilled the requirement had to have exactly one track and a
matching hit within the first three layers of the detector. It is important to mention here
that due to the shower start finding algorithm, pre-shower energies, i.e. energies deposited
before the calculated shower start layer, are not considered in this thesis. Lastly, a gap
rejection of two millimetres was applied to prevent that the impact point of a shower lies
between two tiles within a single layer. This event selection is necessary for this thesis
in order to be able to correctly use the average pion shower parameterisation that is
presented next.
To obtain an average longitudinal energy distribution of pion showers, one has to average

the shower energy layerwise for all events in a dataset. The resulting distribution shows
how a pion shower on average distributes its energy longitudinally through all detector
layers. The equation

EA(z) = E0 ·
{

fEM

Γ(αs)
·
(
z

βs

)αs−1

· e
− z
βs

βs︸ ︷︷ ︸
short component

+ 1− fEM

Γ(αl)
·
(
z

βl

)αl−1

· e
− z
βl

βl︸ ︷︷ ︸
long component

}
(4.1)

can then be fitted to all data points in order to describe the shower’s behaviour quanti-
tatively. Figure 4.2 shows an example of how this parameterisation appears for 60 GeV
pions. It is important to note here that, from this point on, z is no longer expressed
in units of nuclear absorption lengths (as in Figure 2.7) but in layers (of the Ahcal)
measured from the shower start (thus, z ∈ N0). The conversion factor from GeV to MIPs
used for this thesis was determined to be fGeV→MIP = 37.3 MIP GeV−1 [32].
The parameterisation represented by Equation (4.1) has two components: a short and

a long component, each with its own shape and slope parameters. The short component
accounts for energy deposited by electromagnetic subshowers close to the beam axis,
whereas the long component represents energy deposited by hadronic interactions which
usually have a wider range than electromagnetic interactions.
For each initial energy, energy differences, ∆E, with the average shower deposition were

computed via
∆E = EA − ES , (4.2)

where EA is the average energy in layer z from Equation (4.1). ES, on the other hand, is
the energy of a single event in the same layer2. The above computation was performed
layerwise for the first 32 layers of the Ahcal (layers 0 to 31), where layer 0 represents the

2The term “event” henceforth means “shower”.
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Figure 4.2.: A depiction of the parameterisation Equation (4.1) for 60 GeV pion show-
ers. The energy deposited by the hadronic shower within each detector
layer is shown in units of MIPs as a function of the calorimeter layer.

shower start layer. For the remaining seven layers, all energy differences were summed
up and combined into a single variable, representing the energy differences in layers 32
to 38, since only a small fraction of the initial energy is deposited at the very end of the
detector.
Equation (4.2) implies two things: First of all, energy differences are either positive

or negative (in the former case, they are bounded from above by EA because ES ≥ 0),
depending on whether ES is greater than average or less. Secondly, when averaging over
many events, the mean of all energy differences is close to zero, independent of the initial
energy (the reason why energy differences were chosen over absolute energies). This
becomes clear when calculating and plotting average longitudinal energy distributions of
pion showers, obtained from data, together with Equation (4.1) in one coordinate system,
as shown in Figure 4.3. This Figure shows Equation (4.1) (orange curve) and average
longitudinal energy distributions obtained from pion shower data (blue curve). For each
initial energy, differences between both curves are small, which emphasises the validity of
Equation (4.1).
The PDFs of energy difference distributions are well described by the product of a

Gaussian and a Landau distribution:

f(x) = A · 1
σ
√

2π
exp

{
−1

2

(
x− x̄
σ

)}
︸ ︷︷ ︸

Gaussian

· 1
πc

∫ ∞
0

e−t cos
{
t
(
x− µ
c

)
+ 2t
π

log
(
t

c

)}
dt︸ ︷︷ ︸

Landau

. (4.3)

The parameters of this function include the mean, x̄, and standard deviation, σ, of the
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Figure 4.3.: Distributions of average longitudinal energy depositions of 30 GeV, 60 GeV,
120 GeV, and 160 GeV pion showers, calculated from data (blue), as a
function of the detector layer. In addition, Equation (4.1) (orange) is also
plotted in order to allow for a direct comparison between data and theory.

Gaussian distribution, a location parameter, µ, and a scale parameter, c, for the Landau
distribution, and a multiplicative factor, A. Figures 4.4 and 4.5 show examples of the
PDFs of energy differences and their corresponding fit functions for different detector
layers for 60 GeV pions. All Figures are given on linear as well as logarithmic scale
and exhibit very good agreement between the histograms and their corresponding fit
curves. Deviations are visible at the tails of the distributions, but these do not exceed a
relative fraction of 0.1 % or more. Furthermore, Figure 4.6 shows distributions of energy
differences within the same detector layer, but for different initial pion energies. Here, the
PDFs exhibit similar shapes and behaviour and clearly show that Equation (4.3) describes
energy differences of various initial pion energies.
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Figure 4.4.: PDFs of energy differences for 60 GeV pions. The left column shows dis-
tributions and their corresponding fit functions for layers 0, 5, and 10
(measured from the shower start) on linear scale. The right column shows
the same distributions but on logarithmic scale.
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Figure 4.5.: PDFs of energy differences for 60 GeV pions. The left column shows dis-
tributions and their corresponding fit functions for layers 12, 15, and 18
(measured from the shower start) on linear scale. The right column shows
the same distributions but on logarithmic scale.
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Figure 4.6.: PDFs of energy differences for 40 GeV (upper row), 120 GeV (middle row),
and 200 GeV (bottom row) pions. The left column shows distributions and
their corresponding fit functions for layer 5 (measured from the shower
start) on linear scale. The right column shows the same distributions but
on logarithmic scale.
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4.2. Principal Component Analysis

4.2.1. Principal Component Transformation

A principal component transformation (PCT) is a linear transformation that transforms
a set of correlated variables into a set of uncorrelated principal components. This trans-
formation is done in the following way. Consider an n × p data matrix, X, whose rows
represent n events (or repetitions of an experiment) and its columns p variables, some-
times also called “features”. For each column, one can find a mean, x̄j, and a standard
deviation, σj (j = 1, ..., p), which are used to centre and normalise all matrix elements
via

xnorm, ij = xij − x̄j
σj

. (4.4)

The resulting matrix, Xnorm, contains data of p variables, fi, with entries that have a
mean of zero column-wise. From this, a covariance matrix, C, is then constructed. This
p× p matrix is of the form

C =


Cov(f1, f1) Cov(f1, f2) . . . Cov(f1, fp)
Cov(f2, f1) Cov(f2, f2) . . . Cov(f2, fp)

... ... . . . ...
Cov(fp, f1) Cov(fp, f2) . . . Cov(fp, fp)

 . (4.5)

Since Cov(x, x) = 1 and Cov(x, y) = Cov(y, x), C is symmetric.
With the covariance matrix C, the transformation matrix, V, can now be determined.

For this, all eigenvalues and normalised eigenvectors of C have to be found. There are
p pairs of eigenvalues, λi, and eigenvectors, vi, in total because C has dimensions p× p.
Each eigenvalue corresponds to a principal component, and its value is proportional to the
amount of information about the initial variables that is carried by the respective principal
component. Hence, by sorting all eigenvalues in descending order, one can easily see which
principal components are the most and the least significant. Depending on this order, all
eigenvectors are arranged similarly in a matrix whose jth column is the eigenvector vj,
which forms the transformation matrix V that is required for the PCT.
The matrix of principal components, Y, is now computed via

Y = XnormV . (4.6)

Due to the laws of matrix multiplication, one can notice two things: firstly, Y is an n× p
matrix; secondly, all principal components are superpositions of the initial variables. Since
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the initial variables might not all have the same physical dimensions or meanings, it is
difficult to assign sensible physical interpretations to the principal components.
In the case discussed above, the dimensionality of the analysis remains unchanged. If,

however, one decides to reduce the dimensionality and simplify the problem, only a subset
of size k of eigenvectors may be used to construct V. Usually, eigenvectors with small
corresponding eigenvalues are discarded in this case because this minimises the inevitable
information loss. The shape of V is then reduced to a p× k matrix, and Y will therefore
only be an n× k matrix.
The inverse PCT is done in a similar manner to Equation (4.6):

X̃norm = YVT = XnormVVT . (4.7)

Here, VT is the transposed of the matrix V. Note that X̃norm = Xnorm is only true
if the dimensionality is not decreased. Otherwise, X̃norm differs from Xnorm due to the
aforementioned information loss. Lastly, in order to obtain X̃, one can just invert Equation
(4.4) and exchange all x with x̃:

x̃ij = σjx̃norm, ij + x̄j . (4.8)

4.2.2. Determination and Simulation of Principal Components

For each initial energy, all energy differences, introduced in Section 4.1, were transformed
into uncorrelated principal components. Since 33 initial variables were transformed, 33
principal components were obtained from the PCT. The variances of the principal com-
ponents are shown in descending order in Figure 4.7.
Figure 4.7 shows that the first eight principal components already possess a significant

amount of information about the initial variables, as their corresponding bars are much
larger compared to those of higher principal components. Therefore, only the first eight
principal components were considered during the following analysis. Those that remained
were neglected, and as a consequence thereof, information loss was accepted. The relevant
principal components were then displayed as PDFs and a double crystal ball function
[33, 34] was fitted to the distributions in order to describe them analytically. In terms of
four parameters, the crystal ball function is defined as

f(µ, σ, α, n;x) = N ·


exp

{
−1

2

(
x− µ
σ

)2
}

if x− µ
σ

> −α

A ·
(
B − x− µ

σ

)−n
if x− µ

σ
≤ −α

, (4.9)
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Figure 4.7.: Variances of principal components for 30 GeV, 60 GeV, 120 GeV, and
160 GeV shown in descending order. The variances fall quickly off for the
first eight principal components and remain almost constant afterwards.
Moreover, the higher the initial energy is, the larger is the contribution of
the first eight principal components to the total sum of variances.

with A being defined as

A =
(
n

|α|

)n
· exp

(
−|α|

2

2

)
(4.10)

and B as
B = n

|α|
− |α| . (4.11)

N is a function of σ and other constants C and D:

N = 1
σ(C +D) . (4.12)
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The constants C and D are of the form

C = n

|α|
· 1
n− 1 · exp

(
−|α|

2

2

)
(4.13)

and
D =

√
π

2 ·
[
1 + erf

(
|α|√

2

)]
, (4.14)

where “erf” is the error function:

erf(x) = 2√
π

∫ x

0
e−t

2dt . (4.15)

The resulting histograms and fit curves are displayed in Figures 4.8 and 4.9 for 60 GeV
and 120 GeV, respectively. One can see good agreement between the data histograms
and the corresponding fit curves. The shapes around the maxima are well described by
Equation (4.9) and minor deviations are only noticeable at the tails of the distributions.
Furthermore, the vanishing correlation factors of these principal components can be seen
in Figure 4.10 (also for 60 GeV and 120 GeV pions). As expected, all correlations are close
to zero, except those on the diagonal which are equal to one.
The principal component distributions were used as input PDFs for a random number

generator. With this, 100 000 events were randomly generated, each event containing
eight values that correspond to eight simulated principal components. These events were
then transformed back via Equations (4.7) and (4.8) into simulated energy differences.
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Figure 4.8.: PDFs of principal components for 60 GeV pions. The left column shows
distributions and their corresponding fit functions for principal components
1, 3, and 5 on linear scale. The right column shows the same distributions
but on logarithmic scale.
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Figure 4.9.: PDFs of principal components for 120 GeV pions. The left column shows
distributions and their corresponding fit functions for principal components
1, 3, and 5 on linear scale. The right column shows the same distributions
but on logarithmic scale.
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Figure 4.10.: Correlation factors between principal components for 60 GeV (upper plot)
and 120 GeV (lower plot) pions. Only those correlation factors that lie on
the diagonal are, as expected, equal to one; all others are close to zero.
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4.3. Simulation of Individual Shower Energies

From the previously conducted PCA, 100 000 events (each event containing 33 simulated
energy differences) were obtained. Based on these events, simulated energy differences
were compared with data layerwise. For each detector layer, histograms of data and
simulation were first normalised and then plotted together. The results of this procedure
are shown in Figure 4.11 for 60 GeV and in Figure 4.12 for 120 GeV pions, both on linear
and logarithmic scales. In both cases, one can see that the simulation does not agree very
well with data. In particular, the simulated PDFs have shapes that are too broad around
their respective maxima compared to those from data. Furthermore, the simulation is
not able to recreate the correct fraction of negative energy differences, which causes its
distributions to fall off too quickly for negative values. Lastly, all simulated PDFs include
energy differences larger than the upper bounds of their respective data histograms. Such
energy differences correspond to negative energies, which are unphysical values, and are
therefore undesired.
One might argue now that the information loss due to neglecting 25 principal com-

ponents in Section 4.2.2 might be the reason for the disagreement between data and
simulation, or that the functional fits should have been used instead of the principal com-
ponent PDFs in order to generate simulated principal components. To investigate this,
the whole PCA has been conducted again twice, once without neglecting any principal
components and once with functional fits as input for a random number generator. En-
ergy differences were then simulated in the same manner as has been described previously,
and the combined results are shown in Figure 4.13 for 60 GeV pions. By comparing all
distributions in Figure 4.13, one can notice that the functional fits do not seem to have a
significant impact on the goodness of the simulation, nor do they improve it in any other
way. The distributions stemming from the analysis with all principal components, on the
other hand, yield improvement, though it still does not match with expectations. One
reason is that information about moments of second order or higher of the data energy
difference distributions is lost during the PCA.
To check whether the simulation agrees on average with data, simulated average lon-

gitudinal energy distributions were obtained. The resulting distributions are depicted in
Figure 4.14. It is clearly visible that the simulation is, at least on average, able to re-
produce the data exactly because both the simulation and the data curve are congruent
to each other. Similar results were also achieved for distributions of the centre of gravity
of pion showers along the z-axis of the detector (the beam axis), which are shown in
Figure 4.15. Here, good agreement between data and simulation is visible, although the
simulation is not exactly able to reproduce the expected distributions.
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Figure 4.11.: Comparison of 60 GeV energy difference PDFs between data (black) and
simulation (red). The left column shows energy difference distributions
in layers 0, 5, and 10 on linear scale, whereas the right column shows the
same plots on logarithmic scale. These histograms were obtained from a
PCA where only eight principal components were considered.
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Figure 4.12.: Comparison of 120 GeV energy difference PDFs between data (black) and
simulation (red). The left column shows energy difference distributions
in layers 0, 5, and 10 on linear scale, whereas the right column shows the
same plots on logarithmic scale. These histograms were obtained from a
PCA where only eight principal components were considered.
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Figure 4.13.: Comparison of 60 GeV energy difference PDFs between data (black), sim-
ulations obtained from principal component PDFs with eight (red) and
all principal components (green), and simulations with eight principal
components obtained from functional fits (blue). The left column shows
energy difference distributions in layers 5 and 10 on linear scale, whereas
the right column shows the same plots on logarithmic scale. The red
curve is almost not visible because it is congruent to the blue one.

Next to average longitudinal energy distributions, simulated correlation factors were
compared with data, which can be seen in Figure 4.16 for 60 GeV and in Figure 4.17 for
120 GeV pions. One can already see here that the simulated correlation factors do not
agree well with data. In particular, positive simulated correlation factors are too large,
whereas negative ones are too small, in comparison with the expectation from data. This
becomes even clearer by subtracting the data correlation matrix from that obtained from
simulations. The result is another matrix whose entries are correlation differences, ∆C,
of energy differences in layers x and y:

∆C = Corrsim(x, y)− Corrdata(x, y) . (4.16)

43



4. Longitudinal Simulation of Pion Showers using a Principal Component Analysis

0 5 10 15 20 25 30
Layer Number from Shower Start

0

20

40

60

80

M
ea

n 
En

er
gy

 p
er

 L
ay

er
 [M

IP
]

Simulated Mean Shower of 30 GeV Pions

Data
Simulation
Parametrization

0 5 10 15 20 25 30
Layer Number from Shower Start

20

40

60

80

100

120

140

M
ea

n 
En

er
gy

 p
er

 L
ay

er
 [M

IP
]

Simulated Mean Shower of 60 GeV Pions

Data
Simulation
Parametrization

0 5 10 15 20 25 30
Layer Number from Shower Start

50

100

150

200

250

M
ea

n 
En

er
gy

 p
er

 L
ay

er
 [M

IP
]

Simulated Mean Shower of 120 GeV Pions

Data
Simulation
Parametrization

0 5 10 15 20 25 30
Layer Number from Shower Start

50

100

150

200

250

300
M

ea
n 

En
er

gy
 p

er
 L

ay
er

 [M
IP

]

Simulated Mean Shower of 160 GeV Pions

Data
Simulation
Parametrization

Figure 4.14.: These plots show average longitudinal energy depositions of pion showers,
obtained from data (simulation), in blue (orange) as a function of the
detector layer. In addition, Equation (4.1) is plotted too (green) in order
to compare it with data and simulation. The data curve is not visible
because it lies exactly beneath the simulation curve.

These matrix elements were visually displayed of which those from 60 GeV and 120 GeV
pions are, as examples, shown in Figure 4.18. One can notice that for low initial pion
energies differences between simulation and data are more pronounced, and the simulation
preserves correlation factors better for higher initial energies than for lower.
To summarise, the PCA was able to simulate average longitudinal energy distributions

of pion showers, but did not give accurate simulations at the single-shower level. Both the
distributions of simulated energy differences as well as the simulated correlation matrices
did not yield good agreement with data and deviated too much from their corresponding
expectations that were obtained from the dataset. Therefore, other methods for pion
shower simulation have to be investigated.
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Figure 4.15.: Comparisons of centre of gravity (z-axis) distributions between data
(black) and simulation (red) for 30 GeV, 60 GeV, and 120 GeV pions.
Apart from smaller deviations, the distributions are in good agreement
with each other.
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Figure 4.16.: Comparison of correlation factors between data (upper plot) and simula-
tion (lower plot) for 60 GeV pions. The simulated (anti-)correlations are
much stronger than their expectations from data.
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Figure 4.17.: Comparison of correlation factors between data (upper plot) and simula-
tion (lower plot) for 120 GeV pions. The simulated (anti-)correlations are
much stronger than their expectations from data.
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Figure 4.18.: Correlation differences, ∆C, calculated via Equation (4.16), between sim-
ulation and data for 60 GeV (upper plot) and 120 GeV (lower plot) pions.
These heatmaps show that for low initial energies simulated correlations
differ more from data than for higher energies.
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5. Longitudinal Simulation of Pion
Showers using Kernel Density
Estimators

Next to the PCA presented in the previous Chapter, a second method for simulating
pion showers longitudinally was investigated, namely the application of kernel density
estimators (KDEs) to the already computed energy differences. From the PDFs that were
obtained from this procedure, 100 000 events were again simulated. Each event contains
the same 33 energy differences, which were then compared with data.
The theoretical background behind KDEs is introduced in Section 5.1. After this,

Section 5.2 explains how KDEs were applied to energy differences obtained from data, as
already introduced in Chapter 4, and how estimated PDFs were then used to simulate
energy difference distributions. The simulations themselves and their correlation factors
were then compared to data, as well as histograms of two kinematic shower variables: the
total energy of the pion shower and the centre of gravity along the z-axis (COGZ) of the
detector (the shower axis).
For this analysis, the pion dataset was split into equally sized parts. One part (the

training sample) was used as basis upon which KDEs were built. The other part (the
validation sample) was then used for comparisons of simulation with data. Therefore,
all following figures that show such comparisons only include data from the validation
sample.

5.1. Kernel Density Estimators

When dealing with large datasets, one may, for many reasons, not always be able to
describe randomly distributed data points with an analytical PDF. Usually, when this is
the case, it is because the actual underlying mathematical shape of the distribution is
unknown or does not even exist. Instead, one has to rely on methods of estimating PDFs
of such random variables. This can be done with the help of KDEs.
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5. Longitudinal Simulation of Pion Showers using Kernel Density Estimators

Consider a set of n data points (x1, x2, ..., xn), for example results of a measurement
of a certain physical variable, x, repeated n-times whose underlying PDF is unknown. In
order to estimate this unknown distribution, its KDE is defined in the following way:

f(x) = 1
nh

n∑
i=1

K
(
x− xi
h

)
. (5.1)

Here, the left-hand side of the equation represents the estimated distribution of the
dataset. The right-hand side includes a parameter h > 0 called the bandwidth and a
sum of kernels, K, running over all data points xi. The kernel function K can be any
non-negative density function that describes a single data point adequately. For this
thesis, a Gaussian normal distribution was used:

K(x) = 1√
2π

exp
(
−1

2x
2
)
. (5.2)

Hence, the right-hand side of Equation (5.1) is a sum of normal distributions centred
around each data point xi, normalised to the bandwidth h, and all of it scaled to the
product of bandwidth and number of data points. Figure 5.1 shows an example of how
this estimation works graphically. In this plot, ten data points and their corresponding
centred and normalised Gaussian kernels are shown (red curves). The areas under the
kernels are all equal to one. Furthermore, the estimated PDF, computed via Equation
(5.1), is shown in blue, also normalised to unity. In this example, the bandwidth was
chosen to be equal to five.
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Figure 5.1.: An example of a PDF estimation using Gaussian kernels. First, ten data
points were generated randomly. Then, Gaussian distributions were cen-
tred around them and normalised to the bandwidth (red curves). Finally,
all Gaussian kernels were added up, yielding the final PDF (blue curve).
For this example, h = 5 was chosen.
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5.2. Simulation of Individual Shower Energies

The bandwidth is an important parameter because it has significant impact on the
smoothness of the estimation. If the bandwidth is chosen to be too small, every data
point of the dataset becomes visible as a peak in the final distribution, which results in a
curve that is not smooth enough. On the contrary, if h is too large, then the bandwidth
obscures much of the underlying structure of the PDF by flattening it too much. Examples
of how strongly results might differ, depending on the choice of bandwidth, are shown in
Appendix A.
Equation (5.1) can be easily generalised to d dimensions. Instead of n single values, one

is now dealing with a set of n d-dimensional vectors (x1, x2, ..., xn). The corresponding
KDE is then defined as

f(x) = 1
n

n∑
i=1
|H|−

1
2K

(
H−

1
2 (x− xi)

)
, (5.3)

where H is the symmetric, positive definite d × d bandwidth matrix and |H| is its cor-
responding determinant. Furthermore, H− 1

2 is the inverse of the square root of H. For
this thesis, a standard multivariate distribution has been used as kernel function in this
generalised case:

K(x) = 1
(2π) d2

exp
(
−1

2x
Tx
)
. (5.4)

Here, xT is the transposed of vector x. In principle, H can be chosen to be any symmetric,
positive definite matrix. However, the amount of parameters that need to be chosen grows
with d(d+1)

2 . That is why it is often convenient to chose a more simplified form for H. For
this thesis, the bandwidth matrix

H = h2C (5.5)

has been used, where h is an arbitrarily chosen bandwidth and C is the covariance matrix
of the training sample as defined by Equation (4.5). Substituting Equation (5.5) into
Equation (5.3) then yields the KDE definition that has been applied to the training
sample of this analysis:

f(x) = 1
nhd

n∑
i=1
|C|−

1
2K

C− 1
2 (x− xi)
h

 . (5.6)

5.2. Simulation of Individual Shower Energies

In order to simulate energy differences, as defined in Chapter 4, Equation (5.6) was
applied layerwise to histograms of energy differences. As the bandwidth, h = 0.01 was
chosen. The resulting PDFs were then used to generate 100 000 events, each containing 33
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5. Longitudinal Simulation of Pion Showers using Kernel Density Estimators

simulated energy differences (one for each layer). To make comparisons with data, these
simulated events were visually displayed. The resulting PDFs are shown in Figure 5.2
for 60 GeV and in Figure 5.3 for 120 GeV pions. Both the data as well as the simulation
curves are in very good agreement, for all detector layers and for all initial energies.
Theoretically, these results allow for a layerwise investigation of the energy deposition

within layers 32 to 38. For this purpose, one would have to infer the energy difference
PDF of each layer from the PDF of the combined variable. This can be done as follows.
For each layer i (32 ≤ i ≤ 38), Equation (4.1) has to be integrated from i to i+ 1, giving
seven areas, Ai, in total, corresponding to the seven layers that are being considered. After
that, every layer has to be divided by the total area of Equation (4.1) between layers 32
and 38. Each of these results then represents the fraction of energy, fi, deposited within
layer i, of the total energy that is distributed between layers 32 and 38 according to the
longitudinal profile of an average shower. By multiplying the combined energy difference
∆E32−38 with each fraction fi, one obtains the energy difference ∆Ei in layer i. By doing
this for every event, individual energy difference PDFs of layers 32 to 38 can be created,
whose shapes are similar to the PDFs of all other layers.
In addition to Figures 5.2 and 5.3, one can compare (anti-)correlations between data

and simulation in Figure 5.4 for 60 GeV and in Figure 5.5 for 120 GeV pions. Both
Figures demonstrate that the KDE is also able to recreate the correlation factors between
detector layers almost exactly. To emphasise this even more, one can calculate differences
in correlation factors between data and simulation, according to Equation (4.16). The
results of this procedure are also shown for 60 GeV and 120 GeV pions in Figure 5.6. Since
all possible correlation differences are very close to zero, these plots clearly show that all
linear correlation factors are correctly simulated.
Lastly, kinematic shower variables were compared between data and simulation to en-

sure correct kinematic behaviour of the simulation. In particular, the shower’s total
energy (in MIPs) and its COGZ (measured from the shower start and given in layers)
were computed. The total energy was calculated via

Etot =
∑

layers i
{∆Ei + EA(i)} , (5.7)

where the sum runs over all detector layers for a certain event. Furthermore, ∆Ei is the
energy difference in layer i and EA(i) is the value of Equation (4.1) in the same layer.
The COGZ, on the other hand, was then determined via

COGZ = 1
Etot

∑
layers i

{∆Ei + EA(i)} · i . (5.8)
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Figure 5.2.: Comparison of 60 GeV energy difference distributions between data (black)
and simulations obtained from KDEs (red) for layers 0, 5, and 10. All layers
exhibit very good agreement between data and simulation, both on linear
(left) as well as on logarithmic scale (right).
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Figure 5.3.: Comparison of 120 GeV energy difference distributions between data
(black) and simulations obtained from KDEs (red) for layers 0, 5, and
10. All layers exhibit very good agreement between data and simulation,
both on linear (left) as well as on logarithmic scale (right).
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Figure 5.4.: Comparison of correlation factors between data (upper plot) and simula-
tions obtained from KDEs (lower plot) for 60 GeV pions. Both plots show
very good agreement between their correlation factors.

It is hence the weighted sum of all absolute energies per layer, weighted by their respective
layer number and divided by the total energy of the event. PDFs of these kinematic
variables are shown in Figure 5.7 (total energies) and in Figure 5.8 (COGZs) for various
initial energies. The distributions of both kinematic variables exhibit very good agreement
between data and simulation and show that the simulation reproduces a real shower’s
behaviour accurately.

Apart from the very good agreement between data and simulation, one can notice
shoulders in all plots on the right-hand side in Figure 5.7 (logarithmic scale). These only
appear at energies far above the beam energy and are of the order of approximately 0.1 %
of all events. Furthermore, they are much more pronounced at medium energies, such
as for example 40 GeV, than at very small or very large pion energies. There may be
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Figure 5.5.: Comparison of correlation factors between data (upper plot) and simula-
tions obtained from KDEs (lower plot) for 120 GeV pions. Both plots show
very good agreement between their correlation factors.

many causes for these additional peaks, the most significant are probably two or more
simultaneously detected particles, beam contamination, or the rate at which test beam
particles enter the detector. What might have caused these peaks, however, was not
further investigated for this thesis.

In summary, a very accurate, data-based simulation of energy differences was designed.
The simulation exhibits very good agreement with the data, and correlation factors be-
tween different calorimeter layers are correctly simulated too. The latter becomes appar-
ent by looking at correlation differences between data and simulation which, as has been
shown, are all close to zero. Furthermore, kinematic variables of simulated pion showers
are also in very good agreement with their expectations. In particular, the total energy
and the centre of gravity along the beam axis of simulated pion showers have been inves-
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Figure 5.6.: Correlation differences, ∆C, between simulation and data for 60 GeV (up-
per plot) and 120 GeV (lower plot) pions. Both heatmaps show correlation
differences very close to zero for all possible layer combinations.

tigated. Their distributions match their data counterparts almost exactly, and deviations
are only minor.
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Figure 5.7.: Comparison of total energy distributions between data (black) and simu-
lation (red) for 30 GeV, 60 GeV, and 120 GeV pions. All energies exhibit
very good agreement between data and simulation.
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Figure 5.8.: Comparison of COGZ distributions between data (black) and simulation
(red) for 30 GeV, 60 GeV, and 120 GeV pions. All energies exhibit very
good agreement between data and simulation.
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6. Interpolation Studies of
Longitudinal Energy
Distributions of Pion Showers

Since the simulations presented in the previous Chapter showed very good agreement
with their expectations, interpolations of simulated pion showers between different initial
energies are now investigated. Interpolations are an important part of a fast simulation
of pion showers because once it is finished, this data-based fast simulation should be
able to predict the behaviour of pion showers at any initial energy, not only those from
the pion shower dataset. However, since one has to ensure that the interpolation works
as expected, it was only conducted between energies of the pion shower dataset for this
thesis.
This Chapter presents the results of how the KDEs introduced in Chapter 5 were used

to interpolate simulated longitudinal energy distributions of single pion showers between
various initial energies. The method and the mathematical procedures behind the inter-
polation are first introduced in Section 6.1. After that, interpolated longitudinal energy
distributions are shown and compared with simulated longitudinal energy distributions,
that were obtained from KDEs, in Section 6.2.

6.1. Mathematical Approach for Energy
Interpolations

The objective of an interpolation is not only to predict distributions of energy differences
correctly, but also to preserve the (anti-)correlations between the simulated energy differ-
ences for each calorimeter layer as precisely as possible. For this reason, the interpolation
was done in the following way.
In order to interpolate simulated longitudinal energy distributions to a certain target

energy, Einterpolate, the cumulative longitudinal energy difference distributions of two ener-
gies, Esmall and Elarge, which are equidistant from Einterpolate (Esmall < Einterpolate < Elarge),
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were used. A single event, containing 33 energy differences (∆Esmall, 0, ∆Esmall, 1, ...,
∆Esmall, 32) was first randomly generated, according to the KDE of Esmall. Then, for each
layer i, the value of the cumulative longitudinal energy difference PDF at ∆Esmall, i was
determined. Since this was done for all 33 PDFs, a set of 33 real numbers between zero
and one (A0, A1, ..., A32) was obtained. This procedure corresponds to integrating the
longitudinal energy difference PDF in layer i from the left (the smallest bin) to ∆Esmall, i,
as schematically shown in the upper plot in Figure 6.1.

Figure 6.1.: Example plots of integrated arbitrary energy difference distributions. The
upper curve corresponds to the integration of the PDF of Esmall in layer i,
until ∆Esmall, i is reached. The lower curve corresponds to the integration
of the PDF in the same layer but for Elarge, until both orange shaded areas
are equal, which is the case at ∆Elarge, i.

Next, the cumulative longitudinal energy difference distributions of Elarge were consid-
ered. The cumulative distribution of layer i was used to determine the energy difference
at which its y-value (i.e. the area integrated from the left of the respective energy differ-
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6.2. Distributions of Interpolated Individual Shower Energies

ence PDF) equals Ai. This was also done for each layer, yielding another set of 33 energy
differences (∆Elarge, 0, ∆Elarge, 1, ..., ∆Elarge, 32). This process corresponds to integrating
the energy difference PDF of Elarge in layer i from the left, until the covered area equals
Ai, as schematically shown in the lower plot in Figure 6.1.
To obtain interpolated energy differences, the two sets of energy differences were aver-

aged pairwise:
∆Einterpolate, i = ∆Esmall, i + ∆Elarge, i

2 . (6.1)

Doing this for all 33 layers yields one complete, interpolated event for the target energy
Einterpolate. The whole procedure was then also repeated vice versa, meaning that the
indices “small” and “large” were now interchanged. In the end, another event was obtained
for Einterpolate. Both procedures were done 100 000 times, resulting in a total of 200 000
events.
Of course, all of the previous steps can be conducted analogously if Esmall and Elarge

are not equidistant from Einterpolate. Equation (6.1) is then generalised to be

∆Einterpolate, i = wsmall ·∆Esmall, i + wlarge ·∆Elarge, i , (6.2)

where wsmall and wlarge satisfy
wsmall + wlarge = 1 . (6.3)

In this generalised case, wsmall and wlarge are now unequal weights. Depending on the
difference to Einterpolate, larger weights are chosen for closer energies, and vice versa. For
this thesis,

wi = 1− |Einterpolate − Ei|
Elarge − Esmall

(6.4)

has been used, where the index i can be either “small” or “large”. With this method-
ology, the (anti-)correlations between calorimeter layers are preserved, since each energy
difference ∆Elarge, i is determined as a function of all energy differences ∆Esmall, i, and
vice versa, which means that all energy difference dependencies are considered during the
interpolation.

6.2. Distributions of Interpolated Individual Shower
Energies

First interpolation attempts were conducted on three neighbouring, equidistant initial en-
ergies, which excluded 10 GeV and 200 GeV as target energies, since they mark the low and
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high energy “ends”, respectively, of the whole dataset. Only the energies Einterpolate = {20,
30, 40, 60, 80, 120, 160} GeV were used as target energies, following the procedure de-
scribed in the previous Section. Results of the interpolation procedure are shown in Fig-
ure 6.2 for 60 GeV (interpolated from 40 GeV and 80 GeV) and in Figure 6.3 for 120 GeV
(interpolated from 80 GeV and 160 GeV) pions which compare interpolated PDFs of sim-
ulated energy differences with their directly simulated expectations. Furthermore, the
corresponding histograms of Esmall and Elarge are also shown. By comparing the interpo-
lation with expectations, one can notice very good agreement between the curves. Minor
fluctuations around the maxima of the distributions can be seen, however. Apart from
these fluctuations, though, the shapes of the interpolation curves match those that have
been directly simulated from KDEs.
In addition to distributions of interpolated, simulated energy differences, one can also

compare correlation factors between interpolation and expectation by looking at Figures
6.4 (60 GeV pions) and 6.5 (120 GeV pions). These Figures also show very good agreement
between each other, and the correct implementation of the interpolation becomes even
more apparent by considering differences of correlation factors. These were calculated via

∆C = Corrinterpolation(x, y)− CorrKDE(x, y) (6.5)

and are depicted in Figure 6.6, also for 60 GeV and 120 GeV. In this Figure, both plots
show correlation differences close to zero, which demonstrates that the interpolation is
not only able to recreate distributions of simulated energy differences correctly, but also
preserves correlations and anticorrelations of these energy differences between different
layers.
The interpolation also does not seem to deteriorate too much if the target energy is

kept constant, but Esmall and Elarge are altered (while keeping them equidistant). This
can be seen by comparing Figure 6.3 with Figure 6.7, the latter showing interpolated
PDFs for 120 GeV pions with Esmall = 60 GeV and Elarge = 200 GeV. Even though the
difference between Einterpolate and Esmall (as well as Elarge) was increased from 40 GeV in
Figure 6.3 to 60 GeV in Figure 6.7, the performance of the interpolation in Figure 6.7 is
still acceptable. However, the shapes around the maxima do not match exactly between
interpolation and expectation, and all interpolated distributions are slightly shifted to
larger energy differences. This confirms that it is better to base the interpolation on
energies as close to Einterpolate as possible.
Similar results for simulated energy difference distributions and correlation heatmaps

can be obtained if non-equidistant initial energies are used for the interpolation. For
example, Figures 6.8 (linear scale) and 6.9 (logarithmic scale) compare results of two
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Figure 6.2.: Comparisons of interpolated simulation PDFs (black) with expected simu-
lation PDFs (red) in layers 0, 5, and 10 for 60 GeV pions with linear scale
on the left- and logarithmic scale on the right-hand side. The distributions
of Esmall = 40 GeV and Elarge = 80 GeV, from which interpolations were
conducted, are also shown in blue and green, respectively.
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Figure 6.3.: Comparisons of interpolated simulation PDFs (black) with expected simu-
lation PDFs (red) in layers 0, 5, and 10 for 120 GeV pions with linear scale
on the left- and logarithmic scale on the right-hand side. The distributions
of Esmall = 80 GeV and Elarge = 160 GeV, from which interpolations were
conducted, are also shown in blue and green, respectively.
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Figure 6.4.: Comparison of correlation factors between expectation (upper plot) and
interpolation (lower plot) for 60 GeV pions. Both plots show very good
agreement between each other.

80 GeV interpolations where one uses Esmall = 40 GeV and Elarge = 120 GeV, whereas
the other uses Esmall = 60 GeV and Elarge = 120 GeV. For both equidistant energies,
wsmall = wlarge = 1

2 was assumed, whereas for the non-equidistant interpolation, wsmall = 2
3

and wlarge = 1
3 . On both linear as well as logarithmic scale, one can see that the KDE and

the interpolated PDFs are in very good agreement, and deviations between the equidistant
and non-equidistant curves are small. Furthermore, the left-hand sides of Figures 6.8 and
6.9, together with Figure 6.3, also show that the interpolation still performs well for
constant distances from Einterpolate, while the target energy is decreased or increased.

In Figures 6.10 and 6.11, which show comparisons of correlation factors between in-
terpolation and expectation for 80 GeV pions, one can notice that both the equidistant
(Esmall = 40 GeV, Elarge = 120 GeV) and non-equidistant (Esmall = 60 GeV, Elarge =
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Figure 6.5.: Comparison of correlation factors between expectation (upper plot) and
interpolation (lower plot) for 120 GeV pions. Both plots show very good
agreement between each other.

120 GeV) interpolations are able to reproduce the correlation factors correctly. One can
also see, however, that the non-equidistant interpolation performs slightly better than
the equidistant one, recognisable by, for example, the broadening of the red diagonal in
Figure 6.11, which is closer to expectation than Figure 6.10.

In addition to the previous paragraph, Figure 6.12 compares correlation factor dif-
ferences (computed according to Equation (6.5)) of the equidistant and non-equidistant
interpolations. In both cases, all differences are close to zero. However, even though
both heatmaps depict correctly interpolated, simulated correlation factors, the equidistant
heatmap is not as evenly coloured as its non-equidistant counterpart, recognisable by light
blue shades around the diagonal, indicating negative correlation differences. Therefore, in
this specific example the non-equidistant interpolation seems to perform better at preserv-
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Figure 6.6.: Correlation differences, ∆C, between interpolation and expectation for
60 GeV (upper plot) and 120 GeV (lower plot) pions. Both plots show cor-
relation differences very close to zero for all possible layer combinations.

ing correlation factors than the equidistant interpolation, which is due to Esmall = 60 GeV
having a larger influence on the final distributions than Esmall = 40 GeV. In general,
though, the performance of the interpolation depends on the choice of Esmall and Elarge,
not on whether an equidistant or non-equidistant interpolation was chosen. Nevertheless,
a better performance of the non-equidistant interpolation is not recognisable in Figures
6.8 and 6.9, and since the overall improvement is only minor, one can safely assume that
both interpolations work almost equally well.

To summarise, the presented interpolation method performs very well. Interpolated
distributions of simulated energy differences show very good agreement with their expec-
tations, though this is only the case if the distance between Einterpolate and Esmall as well as
Elarge is as small as possible. For larger distance, the interpolation worsens but only slowly.
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Figure 6.7.: Comparisons of interpolated simulation PDFs (black) with expected simu-
lation PDFs (red) in layers 0, 5, and 10 for 120 GeV pions with linear scale
on the left- and logarithmic scale on the right-hand side. The distributions
of Esmall = 60 GeV and Elarge = 200 GeV, from which interpolations were
conducted, are also shown in blue and green, respectively.
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Figure 6.8.: Comparison of simulated energy difference distributions between equidis-
tant and non-equidistant interpolations in layers 0, 5, and 10 for 80 GeV
pions. The left-hand side shows simulated energy difference PDFs from
the equidistant interpolation (Esmall = 40 GeV, Elarge = 120 GeV), and the
right-hand side shows the same results but for the non-equidistant case
(Esmall = 60 GeV, Elarge = 120 GeV). All plots are shown with linearly
scaled y-axes.
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Figure 6.9.: Comparison of simulated energy difference distributions between equidis-
tant and non-equidistant interpolations in layers 0, 5, and 10 for 80 GeV
pions. The left-hand side shows simulated energy difference PDFs from
the equidistant interpolation (Esmall = 40 GeV, Elarge = 120 GeV), and the
right-hand side shows the same results but for the non-equidistant case
(Esmall = 60 GeV, Elarge = 120 GeV). All plots are shown with logarithmi-
cally scaled y-axes.
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Figure 6.10.: Comparison of correlation factors between expectation (upper plot) and
interpolation (lower plot) for 80 GeV pions. The interpolation was con-
ducted with equidistant initial energies (Esmall = 40 GeV and Elarge =
120 GeV). Both plots show good agreement between each other.

As has been shown, even distances (|Esmall−Einterpolate| as well as |Elarge−Einterpolate|) up
to 60 GeV still gave acceptable results. Interpolated correlation factors also showed very
good agreement with expected correlation factors. Furthermore, the correlation factors
showed that interpolations with non-equidistant energies also work as expected and that
Equation (6.2), together with Equation (6.4), seems to be the correct, generalised method
for interpolating simulated energy differences. Therefore, in order to be able to chose
energies as close to the target energy as possible, a non-equidistant interpolation can be
used as well.
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Figure 6.11.: Comparison of correlation factors between expectation (upper plot) and
interpolation (lower plot) for 80 GeV pions. The interpolation was con-
ducted with non-equidistant initial energies (Esmall = 60 GeV and Elarge =
120 GeV). Both plots show even better agreement between each other
compared to those depicted in Figure 6.10.
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Figure 6.12.: Correlation differences, ∆C, between interpolation and expectation for
the equidistant (upper plot; Esmall = 40 GeV, Elarge = 120 GeV) and non-
equidistant (lower plot; Esmall = 60 GeV, Elarge = 120 GeV) interpolation
for 80 GeV pions. Both heatmaps show correlation differences very close
to zero for all possible layer combinations. Yet, the non-equidistant plot
is more evenly coloured, indicating slightly better performance.
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7. Conclusion

An investigation of fast hadron shower simulation methods was presented in this thesis.
The fast simulation was implemented based on a pion shower dataset recorded in June
2018 at Cern by the Ahcal group of the Calice Collaboration with the Ahcal Tech-
nological Detector Prototype. In total, the dataset comprised nine initial pion energies,
ranging from 10 GeV to 200 GeV. From this dataset, differences in longitudinal energy
distributions between single pion showers and a parameterisation of average pion showers
were calculated.
A PCA was then conducted, for which all energy differences were transformed into

uncorrelated principal components of which only the first eight were kept for every en-
ergy. The remaining ones were discarded. Distributions of principal components were
then created and used as input for a random number generator. With this generator,
principal components were simulated for each initial energy. These simulated principal
components were finally transformed back into simulated energy differences and compared
with data. The comparison showed that the PCA did not yield ideal results. Distribu-
tions of simulated energy differences exhibited shapes that were too broad around their
maxima, too few negative energy differences, as well as unphysical values, corresponding
to negative absolute energies. Furthermore, correlation factors between layers deviated
too much between simulation and data. The results also did not improve significantly if
no principal components were rejected or if fit functions, which agreed well with principal
component PDFs, were used as input for the random number generator. Based on this,
the conclusion that a PCA would not be further used for simulating pion showers was
drawn.
A second method of simulating energy differences was examined, namely the application

of Gaussian KDEs to the aforementioned energy differences. For this, multidimensional
Gaussian normal distributions, centred at each data point, were summed and normalised
to a chosen bandwidth. After that, the resulting PDFs were used for simulating energy
differences. The simulations showed very good agreement with data, and correlation
factors between energy differences were accurately preserved too. Furthermore, the KDE
simulations were also able to recreate a pion shower’s kinematic behaviour correctly. In
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7. Conclusion

particular, distributions of the total shower energy and the centre of gravity along the
z-axis of the detector showed little to no deviations between simulation and expectation,
both around their maxima and their tails.

Based on the results of the KDE application, interpolations of simulated energy differ-
ence distributions were conducted on three initial pion energies, first for three equidistant,
neighbouring initial energies, which yielded very good agreement between interpolation
and expectation, both for the distributions of simulated energy differences as well as for
their correlation factors. The distance between the initial energies was then increased,
while keeping the target energy Einterpolate constant, which showed that an increased dis-
tance deteriorated the interpolation, but not significantly. Doing this vice versa (constant
distance, but altering the target energy) showed as good results as the equidistant, neigh-
bouring case did (for both the PDFs as well as the correlation factors). Lastly, the inter-
polation was conducted with unequal weights on three neighbouring, but non-equidistant
initial energies. The results of this method are in agreement with their respective expec-
tations too, suggesting that the closer the initial energies are, the better the interpolation
between them will be. Thus, the chosen interpolation method also seems suitable for in-
terpolations to energies for which neither data nor simulations are available. Therefore, in
summary, the simulation and interpolation of single pion showers with the help of KDEs
works well and gives the expected results.

In order to improve this simulation even further, pre-shower energies also have to be
considered, and bias due to the event selection mentioned in Chapter 4 needs to be min-
imised. If these two conditions are fulfilled, the analysis can be analogously conducted
for radial energy distributions of pion showers, which would allow both simulations to be
merged into one. Correlations between longitudinal and radial variables could then be
investigated, and in the near future, the implementation of a complete, properly func-
tioning fast simulation of pion showers, able to simulate individual cell hits, for instance,
should become feasible. Moreover, the fast simulation is not restricted to pions only, but
can be similarly extended to other particle types, such as electrons, for example, by con-
sidering test beam data of the corresponding particle. In a similar manner to what has
been presented in this thesis, energy difference distributions and correlation factor plots
can be simulated via KDEs and compared with data.

With calorimeters becoming more and more granular, simulations of particle showers
have to become as precise as never before. With these high standards, the requirement
of computational resources is growing steadily, as well as the need for resource-saving
alternatives. Data-based fast simulations provide such alternatives by encapsulating the
most crucial shower information, while neither relying on long computation times nor
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large amounts of working storage. Their importance grows larger and larger with each
year, and with more test beam runs and more recorded data, it should therefore soon
become possible to predict the behaviour of electromagnetic as well as hadronic showers
with unprecedented high precision and comparatively low effort.
Future plans for the design and construction of an International Linear Collider, where

electron-positron collisions are going to take place, are already in development. It is
supposed to reach a centre-of-mass energy of 500 GeV at a total length of approximately
34 kilometres. Such a collider would provide a great opportunity for Calice, for example,
to fully deploy the potential of its highly granular detector prototypes. Detecting particles
and measuring their properties with very high precision requires finer and finer detectors,
such as the Ahcal Technological Prototype, and with more and more data collected,
scientists might soon gain insight into the physics of the smallest building blocks of nature
as deeply as never before.
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A. Visualisation of different
Bandwidth Choices

In order to visualise the impact of the bandwidth on the final distribution of a KDE, a set
of 1000 values was generated according to the sum of two normal distributions centred at
x = 2 and x = 7, respectively:

f(x) = 1√
8π
·
[
exp

(
−1

2(x− 2)2
)

+ exp
(
−1

2(x− 7)2
)]

. (A.1)

Equation (A.1) is normalised to unity which is the reason why the scaling factor is equal
to 1√

8π instead of 1√
2π . Three KDEs with three different bandwidths (h = {5, 0.1, 0.0001})

were then applied to the 1000-points dataset, yielding the estimates shown in Figure A.1.
One can see that h = 0.1 seems to be the best of the three choices, reproducing the true
function the most accurately. h = 5, on the other hand, yields, as expected, a very flat,
almost constant distribution, whereas h = 0.0001 exhibits many more peaks than the
other two KDEs, clearly undersmoothing the PDF.
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Figure A.1.: Examples of KDEs with different bandwidths. Three KDEs with different
bandwidths were applied to a set of 1000 values, generated according to
Equation (A.1), yielding the distributions shown above. Clearly, h = 5
(h = 0.0001) flattens (undersmooths) the distribution too much, whereas
h = 0.1 reproduces the original function to a high accuracy and therefore
seems to be the closest to the optimal choice of bandwidth.
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