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Confidence bands

Assuming

yi = f (xi ) + εi , i = 1, . . . , n

for f ∈ F , xi ∈ X ⊂ R we aim to find a random interval I(x , α)

that depends on (yi , xi ) only and for the significance level α

inf
f ∈F

Pf

{
f (x) ∈ I(x , α), ∀x ∈ X

}
= 1− α,

X ⊂ R throughout the talk is a finite interval



Confidence bands

Typically I(x , α) is based on some (linear) estimator f̂ of f

and for x ∈ X has the form

{
f̂ (x)− zn,α

√
var f̂ (x), f̂ (x) + zn,α

√
var f̂ (x)

}

with zn,α satisfying

inf
f ∈F

Pf

 |f̂ (x)− f (x)|√
var f̂ (x)

> zn,α, ∀x ∈ X

 = α



Suprema of Gaussian processes

If f could be estimated unbiasedly with a linear estimator f̂ , that is

f ∈ F =
{
f : f (x) = E f̂ (x), ∀x

}
then

inf
f∈F

Pf

 |f̂ (x)− f (x)|√
var f̂ (x)

> zn,α,∀x ∈ X

 = P

sup
x∈X

|f̂ (x)− E f̂ (x)|√
var f̂ (x)

> zn,α


which can be approximated by

P

{
sup
x∈X
|Z (x)| > zn,α

}

for a differentiable zero mean unit variance Gaussian process Z (x)



Suprema of Gaussian processes

Under certain regularity conditions on cov{Z (x)}, it is known

(see e.g. Hall, 1991, PTRF)

lim inf
n→∞

log(n) inf
A,B

sup
z

∣∣∣∣P {sup
x∈X

Z (x)/B − A < z

}
− exp(−e−z)

∣∣∣∣ > 0

Independent of A, B the convergence can not be faster than log(n)−1

However, bootstrap approximations can achieve a faster rate:

for kernel estimators with bandwidth h it is (nh)−1/2(log n)2



Practical issues

If f is estimated with a bias, then

|f̂ (x)− E f̂ (x) + E f̂ (x)− f (x)|√
var f̂ (x)

≈

∣∣∣∣∣∣Z (x) +
E f̂ (x)− f (x)√

var f̂ (x)

∣∣∣∣∣∣
which depends on f

Moreover, any nonparametric estimator f̂ (x) = f̂ (x , λ),

with λ estimated with e.g. GCV, introducing extra variability

Smoothing parameter choice is crucial for bootstrap approximations



Volume-of-tube formula

V (Tr ) = V (Sn−1)P(U ∈ Tr )

r

S2

m

Tr tube of a radius r around m

m : X → Sn−1 regular curve

Sn−1 unit sphere in Rn

U uniformly distributed over Sn−1

V (Sn−1) = 2 πn/2/Γ(n/2)



Volume-of-tube formula

For U = (U1, . . . ,Un)t and m = {m1(x), . . . ,mn(x)}t , x ∈ X

V (Tr )/V (Sn−1) = P(U ∈ Tr ) = P

(
inf
x∈X
‖U −m(x)‖2 < r2

)
= P

(
2{1− sup

x∈X
Utm(x)} < r2

)
= P

(
sup
x∈X

Utm(x) > 1− r2/2

)



Supremum of a Gaussian process

Since any random variable uniformly distributed over Sn−1

U =
ε

‖ε‖
, ε = (ε1, . . . , εn)t ∼ N (0n, In)

P

{
sup
x∈X

εt

‖ε‖
m(x) > 1− r2

2

}
= P

{
sup
x∈X

εtm(x) > ‖ε‖
(

1− r2

2

)}
= P

{
sup
x∈X

Z (x) > ‖ε‖
(

1− r2

2

)}

for a zero mean unit variance Gaussian processes Z (x)

with cov{Z (x1),Z (x2)} = m(x1)tm(x2)



Putting together

Thus, it holds exactly

P

{
sup
x∈X

Z (x) > z

}
=

∫ ∞
z

P

{
sup
x∈X

Utm(x) > z/ξ

}
g(ξ, n)dξ

=

∫ ∞
z

V (Tr∗)/V (Sn−1)g(ξ, n)dξ

for r∗ =
√

2(1− z/ξ) and

g(ξ, n) as the density of a χn distributed random variable



Weyl’s (1939) formula

V (Tr ) =
π

n−2
2

Γ(n2 )
κ0

(
r2 − r4

4

) n−1
2

+
2π

n−1
2

Γ(n−12 )

∫ 1

1− r2

2

(1− x2)
n−3
2 dx

with κ0 =
∫
X ‖m

′
(x)‖dx as the length of a non-closed curve m

The formula is conservative if Tr has self-overlap



Tail approximation

Let Z (x) be a zero mean unit variance Gaussian process with

cov{Z (x1),Z (x2)} = m(x1)tm(x2), m ∈ C 1

Then for a non-closed curve m and z →∞

P

{
sup
x∈X
|Z (x)| > z

}
=
κ0
π

exp

(
−z2

2

)
+ 2{1− Φ(z)}+ o

(
e−z

2/2
)

with κ0 = |m| =
∫
X ‖m

′
(x)‖dx as the length of m and

Φ(·) as the c.d.f. of the standard normal distribution

Rigorous proofs and cases X ⊂ Rd , d > 1 are given in

Sun (1993, AoS) and Sun & Loader (1994, AoS)



Some references

In the regression context the simultaneous confidence bands

based on the volume-of-tube formula have been constructed using

local polynomials (Sun & Loader, 1994 AoS)

regression (least squares) splines (Zhou, Shen, Wolfe, 1998, AoS)

Both approaches ignored

data-driven smoothing parameter

bias

resulting in the coverage about 5− 10% less than the nominal



Spline estimators

From the data pairs (yi , xi ) that follow

yi = f (xi ) + εi , xi ∈ X , εi ∼ N (0, σ2), i = 1, . . . , n

we estimate f ∈W q
2 (X ) with penalized splines, that is solving

min
s∈S(p,k)

[
1

n

n∑
i=1

{yi − s(xi )}2 + λ

∫
X
{s(q)(x)}2dx

]

with S(p, k) as the spline space of degree p based on k knots

For p = 2q − 1, k = n the solution is the smoothing spline estimator



Spline estimators

Denoting with N(x) = {N1(x), . . . ,Nk+p+1(x)} some basis in

S(p, k), so that s(x) = N(x)β ∈ S(p, k), the spline estimator of f

f̂ (x) = N(x)β̂ = N(x)(NtN + λnD)−1NtY =: `(x , λ)tY

with D =
∫
X N(q)(x)N(q)(x)tdx and Y = (y1, . . . , yn)t

For a fixed λ > 0 spline estimator f̂ (x) is a linear estimator of f

In practice λ is estimated by GCV or AIC from the data



Some asymptotics

Reference: Claeskens, K., Opsomer (2009, Biometrika)

Low rank spline estimators (k � n) have two parameters: k and λ

Under standard assumptions (regularity of data and knots,

k = o(n), λ→ 0 with λn→∞) λ is identifiable if λ1/(2q)k →∞

k = c(q, f , σ)nν/(2q+1) for ν > 1 and c(q, f , σ) > 0 ensures that

λ is identifiable

bias due to approximation of f by s ∈ S(p, k) is negligible
decreasing with k−2qν



Some asymptotics

For k fixed and satisfying k = c(q, f , σ)nν/(2q+1) the rate for

λ0 = arg min
λ>0

Ef ‖f̂ (λ)− f ‖2n,2

with ‖f ‖2n,2 = n−1
∑n

i=1 f (xi )
2, depends on certain conditions on f

For f ∈ Aq
r =

{
f ∈W q

2 , n
−1∑k

i=1 f̃
2
i n

r i2qr < ar <∞
}

, r ∈ [1, 2]

λ0 = O
(
n−

2q
2qr+1

)
and Ef ‖f̂ (λ0)− f ‖2n,2 = O

(
n−

2qr
2qr+1

)
with f̃ as generalized Fourier coefficients of f



Some asymptotics

In particular, if f ∈W 2q
2 and natural or periodic boundary conditions

hold then f ∈ Aq
2 and

λ0 =
[
n 4q‖f (2q)‖22 c̃(q, σ){1 + o(1)}

]− 2q
4q+1

Summarizing

once large enough, k does not matter

spline estimators “adapt” to unknown (boundary) properties of f

larger λ0 (smaller bias) for “smoother” f



Confidence bands with spline estimators

As for any linear smoother for a spline estimator f̂ (x) = `(x , λ)tY

|f̂ (x)− f (x)|√
varf̂ (x)

=
|`(x , λ)tY − `(x , λ)t f + `(x , λ)t f − f (x)|

σ‖`(x , λ)‖

=

∣∣∣∣ εt`(x , λ)

σ‖`(x , λ)‖
+
`(x , λ)t f − f (x)

σ‖`(x , λ)‖

∣∣∣∣
= |Z (x , λ) + δ(x , λ, f )|

for ε = {y1 − f (x1), . . . , yn − f (xn)}t and standardized bias δ(x , λ, f )



Confidence bands

If λ were known and δ(x , λ, f ) = 0 then

α = P

{
sup
x∈X

|εt`(x , λ)|
σ‖`(x , λ)‖

> z

}
= P

{
sup
x∈X

|f̂ (x)− f (x)|
σ‖`(x , λ)‖

> z

}

=
κ0
π

exp

(
−z2

2

)
+ 2{1− Φ(z)}+ o

(
e−z

2/2
)

with κ0 as the length of `(x , λ)/‖`(x , λ)‖, resulting in

{
f̂ (x , λ)− zσ‖`(x , λ)‖, f̂ (x , λ) + zσ‖`(x , λ)‖

}



Confidence band width

The width of the confidence band is determined by

zσ‖`(x , λ)‖ with z =
√

log(κ20{1 + O(1)})

It is straightforward to show that for c1(p), c2(p) > 0

κ0 = c1(p)k and ‖`(x , λ)‖ ≤ c2(p)n−1λ−1/(2q)

So that the width of the band is

Op

(
n−1λ−1/(2q)

√
log k2

)



Confidence band width

If the band is constructed with λ0, then its width varies between

Op

(
n−q/(2q+1)

√
log k2

)
and Op

(
n−2q/(4q+1)

√
log k2

)
being narrower for “smoother” functions

A narrower band can also be obtained by taking a smaller k ,

which satisfies k = c(q, f , σ)nν/(2q+1), ν > 1, c(q, f , σ) > 0



Variability due to λ̂

Under mild regularity assumptions

`(x , λ̂)tε

σ‖`(x , λ̂)‖
=

`(x , λ)tε

σ‖`(x , λ)‖
+ Op

(
λ

1
4q

)

with a smaller error term for smaller q and smaller λ



Simulation setting

The volume-of-tube formula is applied ignoring the bias and the
variability due to estimation of λ with GCV to the three functions
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Spline estimators are based on B-splines basis with p = 3, q = 2

Residual variance is taken σ = 0.3,
similar results were obtained for σ = 0.1 and σ = 0.6



Simulation results

For the nominal coverage of 0.95 using 1000 Monte Carlo samples

n = 50 n = 250 n = 500
k = 15 40 k = 40 100 k = 40 200

f1 0.91 0.86 0.88 0.90 0.90 0.89
(0.91) (0.91) (0.44) (0.45) (0.33) (0.33)

f2 0.85 0.86 0.73 0.81 0.88 0.88
(0.70) (0.71) (0.32) (0.33) (0.25) (0.25)

f3 0.93 0.91 0.88 0.92 0.92 0.92
(0.64) (0.69) (0.29) (0.29) (0.20) (0.20)

undercoverage independent of n

k has little influence



Simulation results

Centering around E f̂

n = 50 n = 250 n = 500
k = 15 40 k = 40 100 k = 40 200

f1 0.91 0.86 0.88 0.90 0.90 0.89

E f̂1 0.96 0.97 0.96 0.94 0.95 0.94

f2 0.85 0.86 0.73 0.81 0.88 0.88

E f̂2 0.95 0.95 0.96 0.94 0.95 0.94

f3 0.93 0.91 0.88 0.92 0.92 0.92

E f̂3 0.94 0.94 0.95 0.95 0.93 0.94



Bayesian model for smoothing

Representing s(x) = N(x)β = X (x)α + B(x)b, where

X (x) =
∑q−1

i=0 αix
i , dim(b) = k + p + 1− q =: k̃ and assuming

yi = X (xi )α + B(xi )b + εi , b ∼ N (0k , σ
2
bD
−1
k̃

), εi ∼ N (0, σ2)

leads to a standard linear mixed model (or empirical Bayes model)

Putting priors on α, σ2b and σ2 leads to a full Bayesian model for s



Bayesian estimator

The best linear predictor (BLUP) of f is known to have the form

f̃ (x) = N(x)β̃ = N(x)(NtN + σ2/σ2bD)−1NtY = `(x , λb)tY

with λb = σ2/(nσ2b) estimated either

from the likelihood (empirical Bayes) with a mixed model software or

using full Bayesian techniques based on MCMC



Bayesian confidence bands

With respect to the marginal distribution of Y

Zb(x) =
f̃ (x)− f (x)√

var
{
f̃ (x)− f (x)

} ≈ N(x)(β̃ − β)√
var
{
N(x)(β̃ − β)

} ∼ N (0, 1)

Denoting `b(x , λb) = (NtN + σ2/σ2bD)−1/2N(x)t and

εb = (NtN + σ2/σ2bD)1/2(β̃ − β) ∼ N (0, σ2Ik̃)

Zb(x) =
`b(x , λb)tεb
σ‖`b(x , λb)‖

∼ N (0, 1)



Bayesian confidence bands

For a known λb it holds

α = P

{
sup
x∈X
|Zb(x)| > zb

}

= P

{
sup
x∈X

|f̃ (x , λb)− f (x)|
σ‖`b(x , λb)‖

> zb

}

=
κb,0
π

exp

(
−
z2b
2

)
+ 2{1− Φ(zb)}+ o

(
e−z

2
b/2
)

κb,0 is the length of `b(x , λb)/‖`b(x , λb)‖ (dimension k + p + 1)



Bayesian confidence bands

The Bayesian confidence band for x ∈ X

{
f̃ (x , λb)− zbσ‖`b(x , λb)‖, f̃ (x , λb) + zbσ‖`b(x , λb)‖

}

Note ‖`b(x , λb)‖2 = N(x)(N tN + λbD)−1N(x)t while

‖`(x , λ)‖2 = N(x)(N tN + λD)−1N tN(N tN + λD)−1N(x)t

How much the variability due to estimation of λb matters?



Simulation results

n = 50 n = 250 n = 500
k = 15 40 k = 40 100 k = 40 200

f1 EB 0.96 0.97 0.98 0.99 0.99 0.99
(0.97) (1.04) (0.56) (0.58) (0.43) (0.44)

f1 FB 0.95 0.96 0.98 0.99 0.99 1.00
(0.96) (1.01) (0.56) (0.57) (0.43) (0.44)

f2 EB 0.97 0.97 0.98 0.99 1.00 1.00
(0.75) (0.78) (0.42) (0.42) (0.32) (0.32)

f2 FB 0.96 0.97 0.99 0.99 0.99 0.99
(0.76) (0.78) (0.42) (0.43) (0.32) (0.33)

f3 EB 0.97 0.98 0.99 1.00 0.99 0.99
(0.70) (0.71) (0.37) (0.37) (0.28) (0.28)

f3 FB 0.97 0.98 1.00 1.00 0.99 0.99
(0.71) (0.72) (0.38) (0.38) (0.29) (0.29)



Simulation results

The confidence bands were obtained

from the MCMC samples in the full Bayesian model

from the volume-of-tube formula in the empirical Bayesian model

The results suggest that

the volume-of-tube formula is the attractive alternative to MCMC

both bands are conservative for f ∈W q
2 independent of n and k



Bayesian bands

Bayesian bands are based on the posterior probability that a particular

realisation of a given stochastic process is in the band, given the data

Nβ|y1, . . . yn ∼ N
(
Nβ̃, σ2N(NtN + σ2/σ2bD)−1Nt

)
It is known that the sample paths of Bayesian smoothing splines

are not in W q
2 with probability 1 (e.g. Wahba, 1978, JRSSB)

Hence, the Bayesian bands consist a.s. of functions outside W q
2



Bayesian nonparametric regression

Zhao (2000, AoS) considered a Gaussian white noise mode,

assuming the regression function to lay in W q and found that

“ there is no independent normal prior ... with support on W q such

that the corresponding Bayes estimator attains the optimal rate ...“

A certain mixture of Gaussians is proved to have these properties,

but it depends crucially on the unknown q



Smoothing parameters

Define
λ0b = arg min

λb>0
Ef {−lp(λb; y1, . . . , yn)}

with lp(λb; y) as the profiled log-likelihood in the Bayesian model

Then for f ∈ Aq
r , r ∈ [1, 2]

λ0b =
[
n c̃(q, σ)‖f (q)‖22{1 + o(1)}

]− 2q
2q+1

Thus, for f ∈ Aq
r , r ∈ [1, 2]

λ0
λ0b

= O

{
n

4q2(r−1)
(2qr+1)(2q+1)

}



Smoothing parameter estimators

Let λ̂b and λ̂0 be the estimators of λ0b and λ0

Many simulation studies (e.g. Kohn, Ansley, Tharm, 1991, JASA)

show that in finite samples λ̂b is competitive with λ̂0

This can be attributed to the huge variance of λ̂0 (K., 2011)

var(λ̂0)

var(λ̂0b)
≈ 11q

(
λ0
λ0b

)2+1/(2q)

Thus, using λ̂0b for confidence bands may be preferable



Corrected bands

The Bayesian bands are based on the marginal distribution of the data

α = P

{
sup
x∈X

|`(x , λb)ty − f (x)|
σ‖`b(x , λb)‖

> zb

}

= P

{
sup
x∈X

|`(x , λb)ty − f (x)|
σ‖`(x , λb)‖

‖`(x , λb)‖
‖`b(x , λb)‖

> zb

}

If the bands are build based on the conditional distribution then

α = Pf

{
sup
x∈X

|`(x , λb)ty − f (x)|
σ‖`(x , λb)‖

> z∗b

}



Corrected bands

If one would still use a zb ≤ z∗b as a critical value in the band

{
f̂ (x , λb)− zbσ‖`(x , λb)‖, f̂ (x , λb) + zbσ‖`(x , λb)‖

}

then it would be too narrow for a stochastic f

If f ∈W q
2 then λ0b undersmooths f̂ (λ0b) for about the “right” amount

|`(x , λ0b)ty − f (x)|
σ‖`(x , λ0b)‖

=
|`(x , λ0)ty − f (x)|

σ‖`(x , λ0)‖
‖`(x , λ0)‖
‖`b(x , λ0)‖

{1 + op(1)}



Simulation results

n = 50 n = 250 n = 500
k = 15 40 k = 40 100 k = 40 200

f1 0.92 0.94 0.96 0.95 0.96 0.96
(0.90) (0.93) (0.50) (0.50) (0.38) (0.39)

f2 0.93 0.93 0.96 0.94 0.96 0.95
(0.68) (0.69) (0.37) (0.37) (0.28) (0.28)

f3 0.95 0.95 0.96 0.97 0.97 0.97
(0.63) (0.64) (0.33) (0.33) (0.25) (0.25)

Very similar results were obtained for samples sizes n up to 5000,

different signal-to-noise ratios and different functions



Extensions

In case of heteroscedastic data, the residual variance can be modelled

as a smooth function with the (empirical) Bayesian splines

yi = X (xi )α + B(xi )b + εi , b ∼ N
(

0k , σ
2
bD
−1
k̃

)
εi ∼ N (0, exp {Xε(xi )γ + Bε(xi )d}) , d ∼ N

(
0, σ2εD

−1
ε

)
Similarly σ2b can be estimated as a smooth function,

leading to a spatially adaptive smoothing parameter

All model parameters are estimated from the corresponding likelihood

and the volume-of-tube formula can be applied as usual



Extensions

Simultaneous confidence bands can also be used to test

H0 : f (x) = X (x)α vs H1 : f (x) = X (x)α + B(x)b, ∀x ∈ X

for a (q − 1)-degree polynomial X (x)

The goodness-of-fit test is performed by building a confidence band

around B(x)b and checking if it uniformly encloses the zero line

Simulations showed that this test is at least as good as,

or even outperforms, the likelihood-ratio test

All bands and tests are implemented in the R-package AdaptFitOS



Conclusion

Confidence bands based on the volume-of-tube formula

are very simple and fast to obtain in practice

relay on ε ∼ N (0n, σ
2In)

can be used in the Bayesian framework

Combination with (empirical) Bayesian spline estimators allows

to use a more stable smoothing parameter estimator

for a simple (but slightly conservative) bias correction

for simple extensions to more complicated models
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