Empirical Bayes Inference in Structured Hazard Regression

Thomas Kneib

Department of Statistics Ludwig-Maximilians-University Munich

Thomas Kneib Outline

Outline

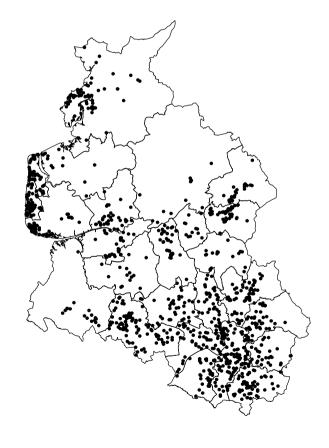
- Leukemia survival data.
- Structured hazard regression for continuous survival times.
- Empirical Bayes inference in structured hazard regression.
- Multi-state models.

Leukemia Survival Data

- Survival times of adults after diagnosis of acute myeloid leukemia.
- 1,043 cases diagnosed between 1982 and 1998 in Northwest England.
- 16 % (right) censored.
- Continuous and categorical covariates:

```
egin{array}{ll} age & {
m age at diagnosis,} \ wbc & {
m white blood cell count at diagnosis,} \ sex & {
m sex of the patient,} \ tpi & {
m Townsend deprivation index.} \ \end{array}
```

• Spatial information in different resolution.



Classical Cox proportional hazards model:

$$\lambda(t;x) = \lambda_0(t) \exp(x'\gamma).$$

- Baseline hazard $\lambda_0(t)$ is a nuisance parameter and remains unspecified.
- ullet Estimate γ based on the partial likelihood.
- Questions / Limitations:
 - Simultaneous estimation of baseline hazard rate and covariate effects.
 - Flexible modelling of covariate effects (e.g. nonlinear effects, interactions).
 - Spatially correlated survival times.
 - Non-proportional hazards models / time-varying effects.
- ⇒ Structured hazard regression models.

Replace usual parametric predictor with a flexible semiparametric predictor

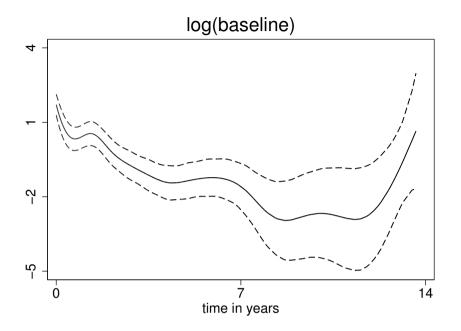
$$\lambda(t;\cdot) = \lambda_0(t) \exp[g_1(t)sex + f_1(age) + f_2(wbc) + f_3(tpi) + f_{spat}(s_i)]$$

and absorb the baseline

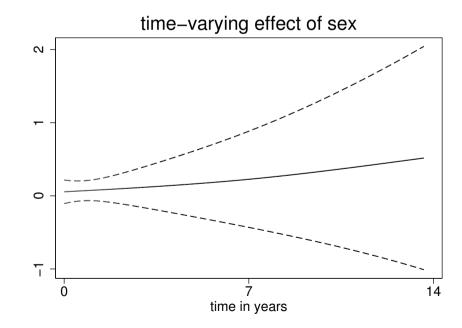
$$\lambda(t;\cdot) = \exp[g_0(t) + g_1(t)sex + f_1(age) + f_2(wbc) + f_3(tpi) + f_{spat}(s_i)]$$

where

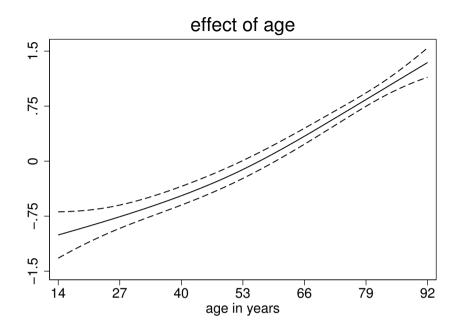
- $g_0(t) = \log(\lambda_0(t))$ is the log-baseline hazard,
- $-g_1(t)$ is a time-varing gender effect,
- $-f_1,f_2,f_3$ are nonparametric functions of age, white blood cell count and deprivation, and
- f_{spat} is a spatial function.



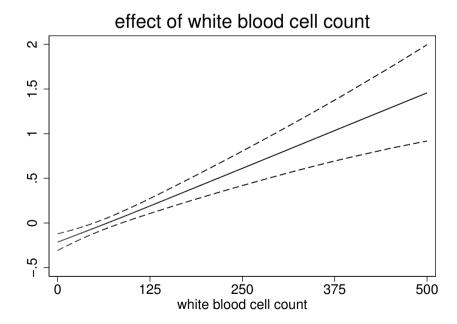
Log-baseline hazard.



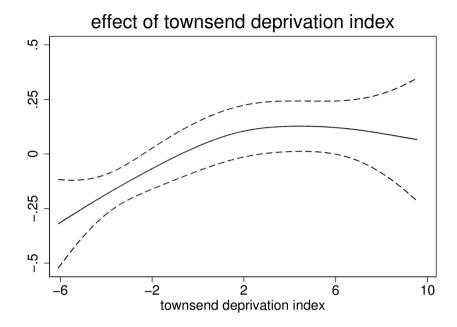
Time-varying gender effect.



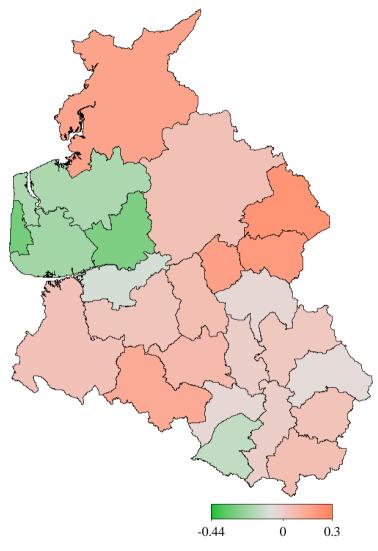
Effect of age at diagnosis.



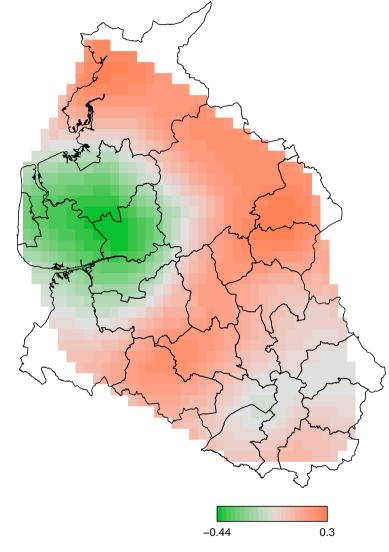
Effect of white blood cell count.



Effect of deprivation.



District-level analysis



Individual-level analysis

Structured Hazard Regression

- A general structured hazard regression model consists of an arbitrary combination of the following model terms:
 - Log baseline hazard $g_0(t) = \log(\lambda_0(t))$.
 - Time-varying effects $g_l(t)u_l$ of covariates u_l .
 - Nonparametric effects $f_j(x_j)$ of continuous covariates x_j .
 - Spatial effects $f_{spat}(s)$ of a spatial location variable s.
 - Interaction surfaces $f_{i,k}(x_i,x_k)$ of two continuous covariates.
 - Varying coefficient interactions $u_j f_k(x_k)$ or $u_j f_{spat}(s)$.
 - Frailty terms b_g (random intercept) or $x_j b_g$ (random slopes).
- All covariates are themselves allowed to be (piecewise constant) time-varying.

- Penalised splines for the baseline effect, time-varying effects, and nonparametric effects:
 - Approximate f(x) (or g(t)) by a weighted sum of B-spline basis functions

$$f(x) = \sum \xi_j B_j(x).$$

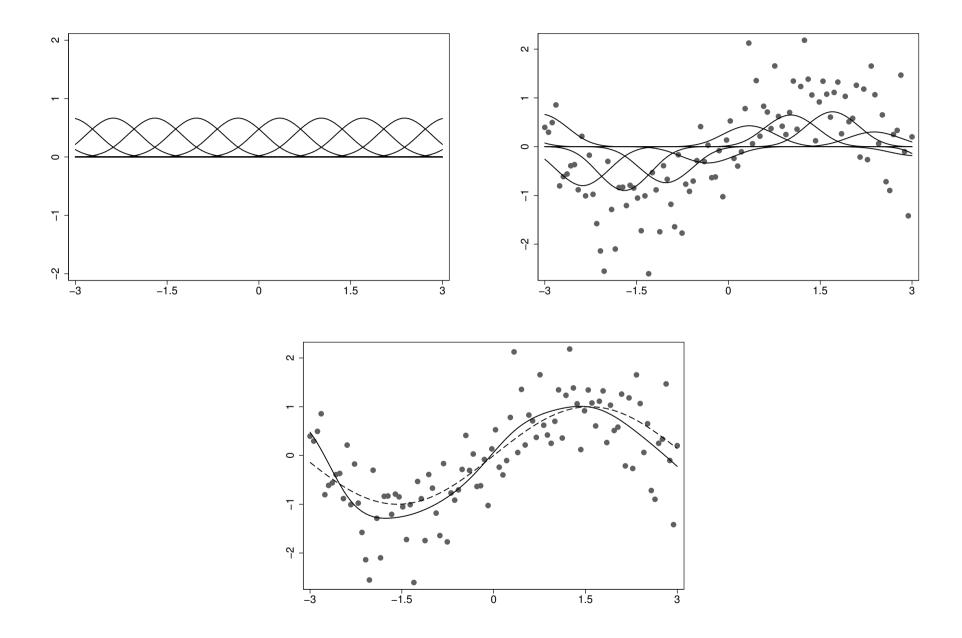
- Employ a large number of basis functions to enable flexibility.
- Penalise differences between parameters of adjacent basis functions to ensure smoothness:

$$Pen(\xi|\tau^2) = \frac{1}{2\tau^2} \sum_{j} (\Delta_k \xi_j)^2.$$

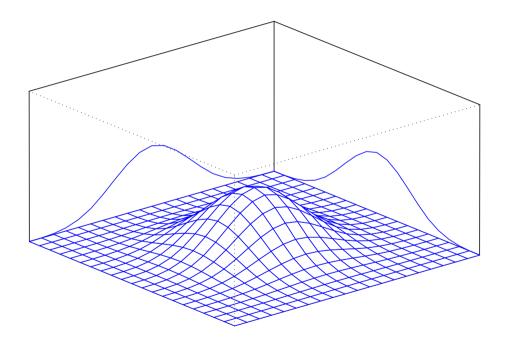
- Bayesian interpretation: Assume a k-th order random walk prior for ξ_i , e.g.

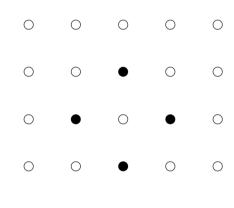
$$\xi_j = \xi_{j-1} + u_j, \quad u_j \sim N(0, \tau^2)$$
 (RW1).

$$\xi_j = 2\xi_{j-1} - \xi_{j-2} + u_j, \quad u_j \sim N(0, \tau^2)$$
 (RW2).



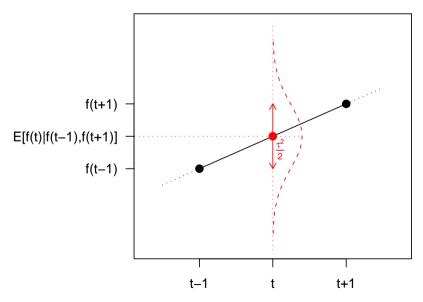
- Bivariate Tensor product P-splines for interaction surfaces:
 - Define bivariate basis functions (Tensor products of univariate basis functions).
 - Extend random walks on the line to random walks on a regular grid.

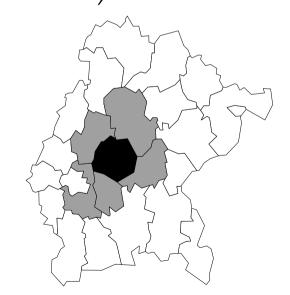




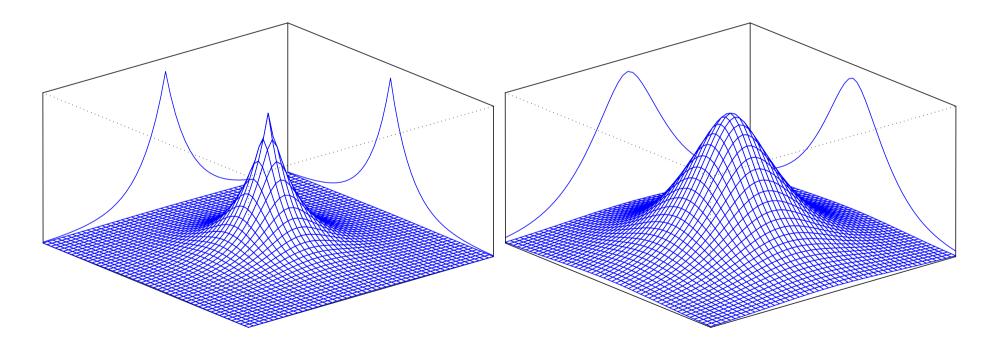
- Spatial effects for regional data $s \in \{1, \dots, S\}$: (Intrinsic Gaussian) Markov random fields.
 - Bivariate extension of a first order random walk on the real line.
 - Define appropriate neighbourhoods for the regions.
 - Assume that the expected value of $f_{spat}(s) = \xi_s$ is the average of the function evaluations of adjacent sites:

$$\xi_s|\xi_{s'}, s' \neq s, \tau^2 \sim N\left(\frac{1}{N_s} \sum_{s' \in \partial_s} \xi_{s'}, \frac{\tau^2}{N_s}\right).$$





- Spatial effects for point-referenced data: Stationary Gaussian random fields.
 - Well-known as Kriging in the geostatistics literature.
 - Spatial effect follows a zero mean stationary Gaussian stochastic process.
 - Correlation of two arbitrary sites is defined by an intrinsic correlation function.
 - Can be interpreted as a basis function approach with radial basis functions.



- Cluster-specific frailty terms:
 - Account for unobserved heterogeneity.
 - Easiest case: i.i.d Gaussian frailty.
- All covariates in the discussed model terms are allowed to be piecewise constant time-varying.

Empirical Bayes Inference

Generic representation of structured hazard regression models:

$$\lambda(t) = \exp \left[x(t)' \gamma + f_1(z_1(t)) + \ldots + f_p(z_p(t)) \right]$$

• For example:

$$\begin{split} f(z(t)) &= g(t) & z(t) = t & \text{log-baseline effect,} \\ f(z(t)) &= u(t)g(t) & z(t) = (u,t) & \text{time-varying effect of } u(t), \\ f(z(t)) &= f(x(t)) & z(t) = x(t) & \text{smooth function of a continuous covariate } x(t), \\ f(z(t)) &= f_{spat}(s) & z(t) = s & \text{spatial effect,} \\ f(z(t)) &= f(x_1(t), x_2(t)) & z(t) = (x_1(t), x_2(t)) & \text{interaction surface,} \\ f(z(t)) &= b_g & z(t) = g & \text{i.i.d. frailty } b_g, \ g \ \text{is a grouping index.} \end{split}$$

• The generic representation facilitates description of inferential details.

• All vectors of function evaluations f_i can be expressed as

$$f_j = Z_j \xi_j$$

with design matrix Z_j , constructed from $z_j(t)$, and regression coefficients ξ_j .

• Generic form of the prior for ξ_i :

$$p(\xi_j|\tau_j^2) \propto (\tau_j^2)^{-\frac{k_j}{2}} \exp\left(-\frac{1}{2\tau_j^2}\xi_j'K_j\xi_j\right)$$

- $K_j \ge 0$ acts as a penalty matrix, $\operatorname{rank}(K_j) = k_j \le d_j = \dim(\xi_j)$.
- $\tau_i^2 \ge 0$ can be interpreted as a variance or (inverse) smoothness parameter.
- Relation to penalized likelihood: Penalty terms

$$P_{\lambda_j}(\xi_j) = \log[p(\xi_j | \tau_j^2)] = -\frac{1}{2} \lambda_j \xi_j' K_j \xi_j, \qquad \lambda_j = \frac{1}{\tau_j^2}.$$

• Likelihood contributions for right- and uncensored survival times:

$$\lambda(T)^{\delta} \exp\left(-\int_0^T \lambda(t)dt\right),$$

where δ is the censoring indicator.

• Likelihood contributions for interval-censored observations:

$$P(T \in [T_{lower}, T_{upper}]) = S(T_{lower}) - S(T_{upper})$$

$$= \exp \left[-\int_0^{T_{lower}} \lambda(t)dt \right] - \exp \left[-\int_0^{T_{upper}} \lambda(t)dt \right].$$

- ⇒ Derivatives of the log-likelihood become much more complicated for intervalcensored survival times.
- In general, numerical integration has to be used to evaluate the cumulative hazard rate (e.g. the trapezoidal rule).
- Left truncation can easily be included.

- Principal idea of empirical Bayes estimation:
 - Differentiate between parameters of primary interest and hyperparameters.
 - Estimate the hyperparameters up-front from their marginal posterior.
 - Plug the resulting estimates back into the joint posterior and maximize with respect to the parameters of primary interest (yields posterior mode estimates).
- In structured hazard regression models:
 - regression coefficients are parameters of primary interest,
 - variance components are hyperparameters.
- Employ mixed model methodology to perform empirical Bayes inference: Consider ξ_j a correlated random effect with multivariate Gaussian distribution.
- Problem: In most cases partially improper random effects distribution ($k_j = \operatorname{rk}(K_j) < \dim(\xi_i) = d_i$).

Mixed model representation: Decompose

$$\xi_j = X_j \beta_j + Z_j b_j,$$

where

$$p(\beta_j) \propto const$$
 and $b_j \sim N(0, \tau_j^2 I_{k_j}).$

 $\Rightarrow \beta_j$ is a fixed effect and b_j is an i.i.d. random effect.

This yields the variance components model

$$\lambda(t;\cdot) = \exp\left[x'\beta + z'b\right],\,$$

where in turn

$$p(\beta) \propto const, \qquad b \sim N(0, Q),$$

and

$$Q = \operatorname{blockdiag}(\tau_1^2 I, \dots, \tau_p^2 I).$$

- Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
 - Penalized maximum likelihood for the regression coefficients β and b.
 - Restricted Maximum / Marginal likelihood for the variance parameters in Q:

$$L^{marg}(Q) = \int L(\beta, b, Q)p(b)d\beta db \to \max_{Q}.$$

• Penalized score function and penalized Fisher information:

$$s_p(\beta, b) = \begin{pmatrix} \frac{\partial l(\beta, b)}{\partial \beta} \\ \frac{\partial l(\beta, b)}{\partial b} - Q^{-1}b \end{pmatrix}$$

$$F_p(\beta, b) = \begin{pmatrix} \frac{\partial^2 l(\beta, b)}{\partial \beta \partial \beta'} & \frac{\partial^2 l(\beta, b)}{\partial \beta \partial b'} \\ \frac{\partial^2 l(\beta, b)}{\partial b \partial \beta'} & \frac{\partial^2 l(\beta, b)}{\partial b \partial b'} - Q^{-1} \end{pmatrix}.$$

- Marginal likelihood estimation corresponds to REML estimation of variances in Gaussian mixed models.
- ullet The marginal likelihood can not be derived analytically \Rightarrow Apply a Laplace approximation.
- This yields the approximate marginal log-likelihood

$$l^{marg}(Q) \approx l(\hat{\beta}, \hat{b}) - \frac{1}{2}\log|Q| - \frac{1}{2}\hat{b}'Q^{-1}\hat{b} - \frac{1}{2}\log|F_p|,$$

where F_p is the penalised Fisher information matrix.

• If both $l(\hat{\beta},\hat{b})$ and \hat{b} vary only slowly when changing the variance components we can further reduce the marginal log-likelihood to

$$l^{marg}(Q) \approx -\frac{1}{2}\log|Q| - \frac{1}{2}\log|F_p| - \frac{1}{2}b'Q^{-1}b,$$

where b denotes a fixed value, e.g. a current estimate.

• This allows to device a Fisher Scoring algorithm based on matrix differentiation rules.

Thomas Kneib Software

Software

• Implemented in BayesX, a software package for Bayesian inference in geoadditive and related models.

• Available from

http://www.stat.uni-muenchen.de/~bayesx

Thomas Kneib Software

More features:

Fully Bayesian inference based on MCMC in comparable model classes.

- Univariate responses from exponential families (Gaussian, Binomial, Poisson, Negative Binomial, Gamma, . . .).
- Categorical responses (multinomial regression models, cumulative models, sequential models).
- Latest development: Multi-state models.

Thomas Kneib Multi-State Models

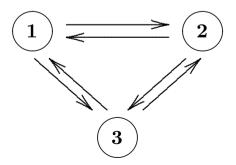
Multi-State Models

 Multi-state models form a general class for the description of the evolution of discrete phenomena in continuous time.

• We observe paths of a process

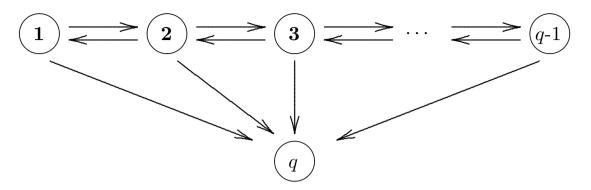
$$X = \{X(t), t \ge 0\}$$
 with $X(t) \in \{1, \dots, q\}$.

- Yields a similar data structure as for Markov processes.
- Examples:
 - Recurrent events:

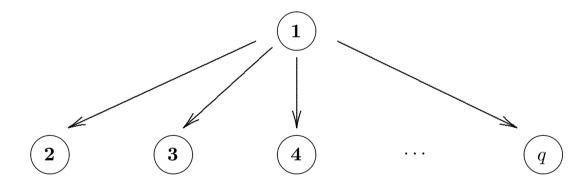


Thomas Kneib Multi-State Models

Disease progression:



– Competing risks:



(Homogenous) Markov processes can be compactly described in terms of the transition intensities

$$\lambda_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j | X(t) = i)}{\Delta t}$$

Thomas Kneib Multi-State Models

- Often not flexible enough in practice since
 - The transition intensities might vary over time.
 - The transition intensities might be related to covariates.
 - The Markov model implies independent and exponentially distributed waiting times.

Thomas Kneib Human Sleep Data

Human Sleep Data

 Human sleep can be considered an example of a recurrent event type multi-state model.

• State Space:

Awake Phases of wakefulness

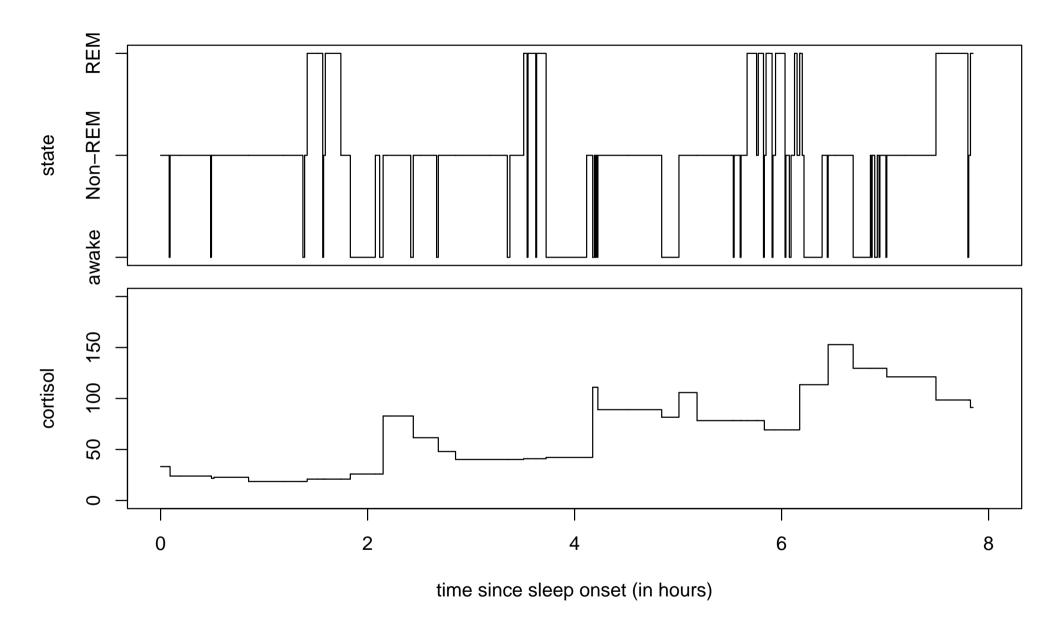
REM Rapid eye movement phase (dream phase)

Non-REM Non-REM phases (may be further differentiated)

- Aims of sleep research:
 - Describe the dynamics underlying the human sleep process.
 - Analyse associations between the sleep process and nocturnal hormonal secretion.
 - (Compare the sleep process of healthy and diseased persons.)

Thomas Kneib

Human Sleep Data



Thomas Kneib Human Sleep Data

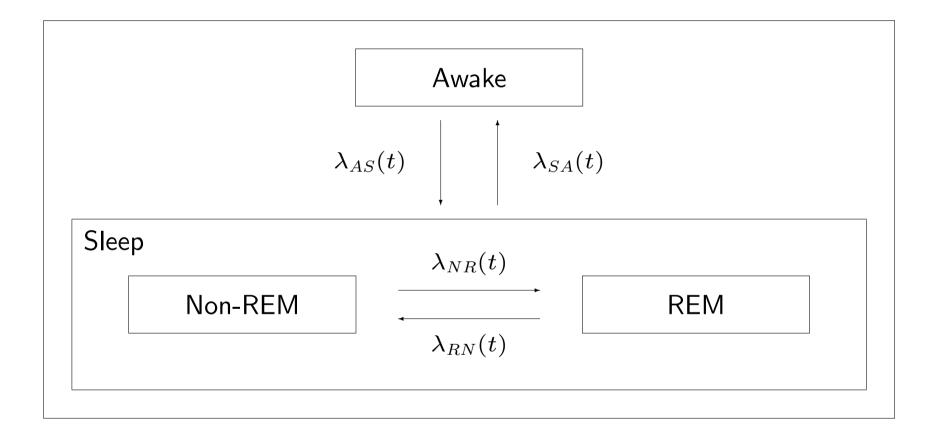
Data generation:

 Sleep recording based on electroencephalographic (EEG) measures every 30 seconds (afterwards classified into the three sleep stages).

- Measurement of hormonal secretion based on blood samples taken every 10 minutes.
- A training night familiarises the participants of the study with the experimental environment.
- \Rightarrow Sleep processes of 70 participants.
- Simple parametric approaches are not appropriate in this application due to
 - Changing dynamics of human sleep over night.
 - The time-varying influence of the hormonal concentration on the transition intensities.
 - Unobserved heterogeneity.
- ⇒ Model transition intensities nonparametrically.

Specification of Transition Intensities

• To reduce complexity, we consider a simplified transition space:



Model specification:

$$\lambda_{AS,i}(t) = \exp \left[\gamma_0^{(AS)}(t) + b_i^{(AS)} \right]$$

$$\lambda_{SA,i}(t) = \exp \left[\gamma_0^{(SA)}(t) + b_i^{(SA)} \right]$$

$$\lambda_{NR,i}(t) = \exp \left[\gamma_0^{(NR)}(t) + c_i(t) \gamma_1^{(NR)}(t) + b_i^{(NR)} \right]$$

$$\lambda_{RN,i}(t) = \exp \left[\gamma_0^{(RN)}(t) + c_i(t) \gamma_1^{(RN)}(t) + b_i^{(RN)} \right]$$

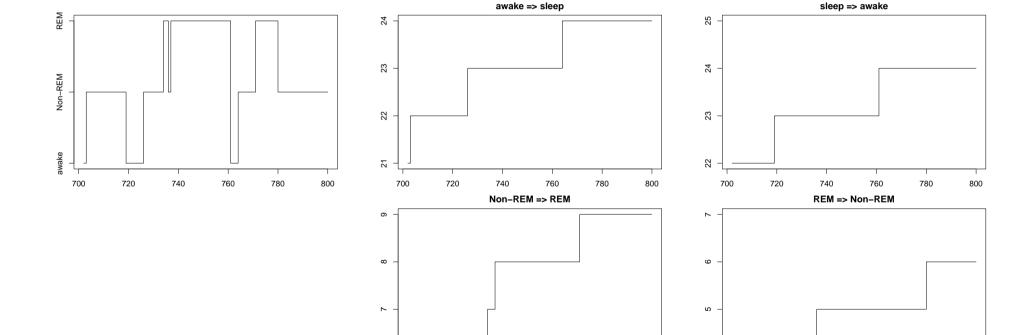
where

$$c_i(t) \quad = \quad \begin{cases} 1 & \text{cortisol} > 60 \text{ n mol/l at time } t \\ 0 & \text{cortisol} \leq 60 \text{ n mol/l at time } t, \end{cases}$$

$$b_i^{(j)} \sim N(0, \tau_j^2) \quad = \quad \text{transition- and individual-specific frailty terms.}$$

Counting Process Representation

• A multi-state model with k different types of transitions can be equivalently expressed in terms of k counting processes $N_h(t)$, $h = 1, \ldots, k$ counting these transitions.



ullet From the counting process representation we can derive the likelihood contributions for individual i:

$$l_{i} = \sum_{h=1}^{k} \left[\int_{0}^{T_{i}} \log(\lambda_{hi}(t)) dN_{hi}(t) - \int_{0}^{T_{i}} \lambda_{hi}(t) Y_{hi}(t) dt \right]$$

$$= \sum_{j=1}^{n_{i}} \sum_{h=1}^{k} \left[\delta_{hi}(t_{ij}) \log(\lambda_{hi}(t_{ij})) - Y_{hi}(t_{ij}) \int_{t_{i,j-1}}^{t_{ij}} \lambda_{hi}(t) dt \right].$$

k number of possible transitions.

 $N_{hi}(t)$ counting process for type h event and individual i.

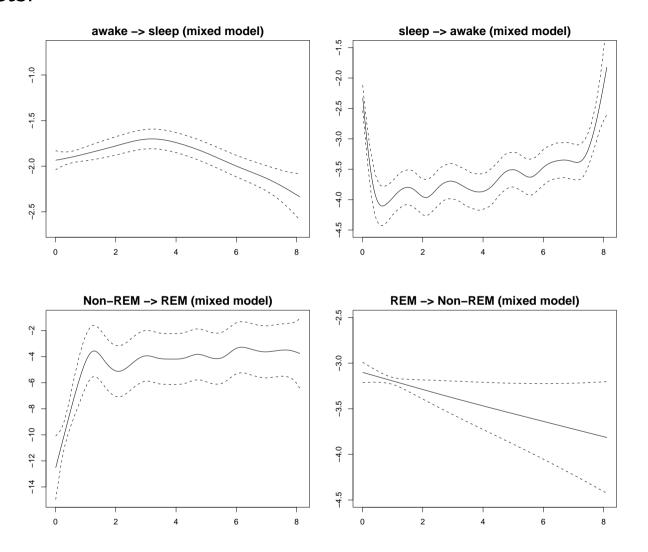
 $Y_{hi}(t)$ at risk indicator for type h event and individual i.

 t_{ij} event times of individual i.

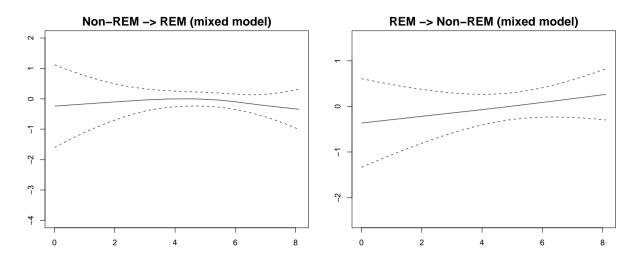
 n_i number of events for individual i.

 $\delta_{hi}(t_{ij})$ transition indicator for type h transition.

Baseline effects:



• Time-varying effects for a high level of cortisol:



 Individual-specific variation is only detected for the transition between REM and Non-REM. Thomas Kneib Conclusions

Conclusions

 Unified framework for general regression models describing the hazard rate of survival models.

- Empirical Bayes inference based on mixed model methodology.
- Extendable to models for transition intensities in multi state models.
- Future work:
 - More general censoring mechanisms for multi-state models.
 - Conditions for propriety of posteriors.
 - Joint modelling of covariates and duration times.

Thomas Kneib References

References

• Brezger, Kneiß & Lang (2005). BayesX: Analyzing Bayesian structured additive regression models. *Journal of Statistical Software*, **14** (11).

- FAHRMEIR, KNEIB & LANG (2004). Penalized structured additive regression for space-time data: a Bayesian perspective. *Statistica Sinica* **14**, 731–761.
- KNEIB & FAHRMEIR (2006). A mixed model approach for geoadditive hazard regression. $Scandinavian\ Journal\ of\ Statistics$, to appear.
- KNEIB (2006). Geoadditive hazard regression for interval censored survival times. Computational Statistics and Data Analysis, **51**, 777-792.
- Kneiß & Hennerfeind (2006). Bayesian semiparametric multi-state models. In preparation.