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Outline

e |Leukemia survival data.
e Structured hazard regression for continuous survival times.
e Empirical Bayes inference in structured hazard regression.

e Multi-state models.
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Leukemia Survival Data
e Survival times of adults after diagnosis of acute myeloid leukemia.

e 1,043 cases diagnosed between 1982 and 1998 in Northwest England.
e 16 % (right) censored.

e Continuous and categorical covariates:

age age at diagnosis,

wbc  white blood cell count at diagnosis,
sex  sex of the patient,

tpt  Townsend deprivation index.

e Spatial information in different resolution.
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e Classical Cox proportional hazards model:

A(t; ) = Ao(t) exp(x'y).
e Baseline hazard A\y(t) is a nuisance parameter and remains unspecified.
e Estimate « based on the partial likelihood.

e Questions / Limitations:
— Simultaneous estimation of baseline hazard rate and covariate effects.
— Flexible modelling of covariate effects (e.g. nonlinear effects, interactions).
— Spatially correlated survival times.

— Non-proportional hazards models / time-varying effects.

= Structured hazard regression models.
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e Replace usual parametric predictor with a flexible semiparametric predictor

A(t;-) = Ao(t) explgi(t)sex + fi(age) + fo(wbe) + fs(tpi) + fopar(si)]

and absorb the baseline

A(t;+) = explgo(t) + g1(t)sex + fi(age) + fa(wbe) + f3(tpi) + fspat(Si)]

where
— go(t) = log(Ao(t)) is the log-baseline hazard,
— ¢1(t) is a time-varing gender effect,

— f1, fo, f3 are nonparametric functions of age, white blood cell count and
deprivation, and

— fspat i @ spatial function.
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Leukemia Survival Data
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District-level analysis
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Structured Hazard Regression

e A general structured hazard regression model consists of an arbitrary combination of
the following model terms:

— Log baseline hazard go(t) = log(Ao(2)).

— Time-varying effects g;(t)u; of covariates w;.

— Nonparametric effects f;(x;) of continuous covariates z;.

— Spatial effects fspq:(s) of a spatial location variable s.

— Interaction surfaces f; x(x;, %) of two continuous covariates.
— Varying coefficient interactions u; fx(zr) or u; fspat(S).

— Frailty terms b, (random intercept) or x,b, (random slopes).

e All covariates are themselves allowed to be (piecewise constant) time-varying.

Empirical Bayes Inference in Structured Hazard Regression 9



Thomas Kneib Structured Hazard Regression

e Penalised splines for the baseline effect, time-varying effects, and nonparametric
effects:

— Approximate f(x) (or g(t)) by a weighted sum of B-spline basis functions
=) &B

— Employ a large number of basis functions to enable flexibility.

— Penalise differences between parameters of adjacent basis functions to ensure
smoothness:

Pen(&|T2) =53 Z Aré;)?

— Bayesian interpretation: Assume a k-th order random walk prior for &;, e.g.
Sj :fj_l—FUj, Uy ~ N(O,TQ) (RW].)

Ei =261 —& o+uy, uj~ N(0,7%) (RW2).
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e Bivariate Tensor product P-splines for interaction surfaces:
— Define bivariate basis functions (Tensor products of univariate basis functions).

— Extend random walks on the line to random walks on a regular grid.
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Structured Hazard Regression

Thomas Kneib
e Spatial effects for regional data s € {1,...,S5}: (Intrinsic Gaussian) Markov random

fields.
— Bivariate extension of a first order random walk on the real line.

— Define appropriate neighbourhoods for the regions.
— Assume that the expected value of fs,q:(s) = &5 is the average of the function

evaluations of adjacent sites:
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e Spatial effects for point-referenced data: Stationary Gaussian random fields.
— Well-known as Kriging in the geostatistics literature.
— Spatial effect follows a zero mean stationary Gaussian stochastic process.
— Correlation of two arbitrary sites is defined by an intrinsic correlation function.

— Can be interpreted as a basis function approach with radial basis functions.
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e (Cluster-specific frailty terms:
— Account for unobserved heterogeneity.
— Easiest case: i.i.d Gaussian frailty.

e All covariates in the discussed model terms are allowed to be piecewise constant
time-varying.
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Empirical Bayes Inference

Empirical Bayes Inference

e Generic representation of structured hazard regression models:

At) = exp [z(t)'y + fi(z1(t)) + - .. + fip(2p(1))]

e For example:

log-baseline effect,
time-varying effect of u(t),

smooth function of a continuous
covariate x(t),

spatial effect,

interaction surface,

Li.d. frailty by, g is a grouping
index.

e The generic representation facilitates description of inferential details.
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e All vectors of function evaluations f; can be expressed as
1i =28
with design matrix Z;, constructed from z;(t), and regression coefficients §;.

e Generic form of the prior for &;:
2 2\ —=5" 1 /
p(&5175) o< (75) % exp | =5 58K,
j

e K; >0 acts as a penalty matrix, rank(K;) = k; < d; = dim(&;).
o Tj2 > 0 can be interpreted as a variance or (inverse) smoothness parameter.

e Relation to penalized likelihood: Penalty terms

1 1
Py, (&) = loglp(&;]77)] = —iAjgg.Kjgj, A= —

.
7;
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e Likelihood contributions for right- and uncensored survival times:

MTY exp [ — /OTA(t)dt |

where ¢ is the censoring indicator.

e Likelihood contributions for interval-censored observations:

P(T € [TlowemTupper]) = S(Tlower) — S(Tupper)

Tiower Tupper
= exp —/ A(t)dt| — exp —/ A(t)dt
0 0

= Derivatives of the log-likelihood become much more complicated for interval-
censored survival times.

e In general, numerical integration has to be used to evaluate the cumulative hazard
rate (e.g. the trapezoidal rule).

e Left truncation can easily be included.
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e Principal idea of empirical Bayes estimation:
— Differentiate between parameters of primary interest and hyperparameters.
— Estimate the hyperparameters up-front from their marginal posterior.
— Plug the resulting estimates back into the joint posterior and maximize with respect
to the parameters of primary interest (yields posterior mode estimates).
e In structured hazard regression models:
— regression coefficients are parameters of primary interest,
— variance components are hyperparameters.

e Employ mixed model methodology to perform empirical Bayes inference: Consider ;
a correlated random effect with multivariate Gaussian distribution.

e Problem: In most cases partially improper random effects distribution (k; = rk(K;) <
dim(&;) = d;).
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e Mixed model representation: Decompose
& = X054 Z;bj,

where
p(B;) ox const and b; ~ N(0, Tj2lkj).

= 3, is a fixed effect and b; is an i.i.d. random effect.
e This yields the variance components model
A(t;-) = exp [2'8 + 2],

where in turn
p(B) o< const, b~ N(0,Q),

and
Q = blockdiag(7{1, ..., 71).
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Empirical Bayes Inference

e Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
— Penalized maximum likelihood for the regression coefficients 3 and b.
— Restricted Maximum / Marginal likelihood for the variance parameters in Q:

Lmer9(Q) = / L(B,b,Q)p(b)dfidb — max.

e Penalized score function and penalized Fisher information:

ol(3,b)

_ o0
LA BTN

0b

B2U(3,b)  92U(6, b)

B 0505’ 0pob
BB =1 g28,0) 021(5,b)
0bo [’ obob’

_ Q_lb

_ Q—l
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e Marginal likelihood estimation corresponds to REML estimation of variances in
Gaussian mixed models.

e The marginal likelihood can not be derived analytically = Apply a Laplace
approximation.

e This yields the approximate marginal log-likelihood

1
S

MI(Q) A Z(B, [)) 5

1., .~ 1

0g|Q| — SV'Q™b — S log |y,
2 2

where F}, is the penalised Fisher information matrix.

e |f both l(ﬁA, IA)) and b vary only slowly when changing the variance components we can
further reduce the marginal log-likelihood to

1 1

mera(Q) ~ — log Q] —

1,
: log|Fp|—§b’Q 'p,

where b denotes a fixed value, e.g. a current estimate.
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e This allows to device a Fisher Scoring algorithm based on matrix differentiation rules.
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Software

e Implemented in BayesX, a software package for Bayesian inference in geoadditive and
related models.

e Available from

http://www.stat.uni-muenchen.de/ bayesx
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e More features:
— Fully Bayesian inference based on MCMC in comparable model classes.

— Univariate responses from exponential families (Gaussian, Binomial, Poisson,
Negative Binomial, Gamma, . . . ).

— Categorical responses (multinomial regression models, cumulative models,
sequential models).

e Latest development: Multi-state models.
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Multi-State Models

Multi-State Models

e Multi-state models form a general class for the description of the evolution of discrete

phenomena in continuous time.

e \We observe paths of a process

X = {X(t),t >0} with X(t)e{l,...q).

e Yields a similar data structure as for Markov processes.

e Examples:

— Recurrent events:

Q==
\\@//
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— Disease progression:

D=@==E==" =@

()
@)

] T

5 © w - O

e (Homogenous) Markov processes can be compactly described in terms of the transition
Intensities

— Competing risks:

Ay = lim P(X(t+ At)=j|X(t) =1)
At—0 At
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e Often not flexible enough in practice since
— The transition intensities might vary over time.
— The transition intensities might be related to covariates.

— The Markov model implies independent and exponentially distributed waiting times.
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Human Sleep Data

e Human sleep can be considered an example of a recurrent event type multi-state
model.

e State Space:

Awake Phases of wakefulness
REM  Rapid eye movement phase (dream phase)
Non-REM  Non-REM phases (may be further differentiated)
e Aims of sleep research:
— Describe the dynamics underlying the human sleep process.

— Analyse associations between the sleep process and nocturnal hormonal secretion.

— (Compare the sleep process of healthy and diseased persons.)
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e Data generation:

— Sleep recording based on electroencephalographic (EEG) measures every 30 seconds
(afterwards classified into the three sleep stages).

— Measurement of hormonal secretion based on blood samples taken every 10
minutes.

— A training night familiarises the participants of the study with the experimental
environment.

= Sleep processes of 70 participants.

e Simple parametric approaches are not appropriate in this application due to
— Changing dynamics of human sleep over night.

— The time-varying influence of the hormonal concentration on the transition
Intensities.

— Unobserved heterogeneity.

= Model transition intensities nonparametrically.
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Specification of Transition Intensities

e To reduce complexity, we consider a simplified transition space:

Awake

Aas(t) AsAa(t)

S|
eep An(t)

Non-REM . REM
Arn(t)
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e Model specification:

Aas,i(t) = exp _fyéAS)(t) 4 bZ(AS)
Asai(t) = exp _fyéSA)(t) n bZ(SA)_
ANRi(t) = exp -’Y(gNR)(t) + Cz‘(t)VgNR) (t) + bz('NR)-
Aava(t) = exp [TV (@) + e (8) + o™
where
Gi(t) = {1 cort?sol > 60 n mol/I at t?me ¢
0 cortisol < 60 n mol/l at time ¢,

S
N.
\b-/.
2
=
\.O
2,
N—"
I

transition- and individual-specific frailty terms.
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Counting Process Representation

Counting Process Representation

e A multi-state model with k different types of transitions can be equivalently expressed
in terms of k counting processes Ny(t), h = 1,...,k counting these transitions.

REM
|
24

Non-REM

awake => sleep

T
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T
760

780

800

740

760

780

800

sleep => awake

T
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T
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720
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e From the counting process representation we can derive the likelihood contributions
for individual :

S~
~
||
(1~

[/0 ZlOg()\hz(t))thz(t) — /0 i/\hi(t)Yhi(t)dt]

>
I
—_

n

.

tij—1

k tij
Z [% tij)10g(Ani(tiz)) — Yi(tis) / Ahz‘(t)dt] -

<.
| |

k number of possible transitions.

Np;(t)  counting process for type h event and individual i.
Yrni(t)  at risk indicator for type h event and individual i.
tij event times of individual i.

n; number of events for individual «.

dni(ti;) transition indicator for type h transition.
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Counting Process Representation

e Baseline effects:
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e Time-varying effects for a high level of cortisol:

Non-REM —> REM (mixed model) REM —> Non-REM (mixed model)

e Individual-specific variation is only detected for the transition between REM and
Non-REM.
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Conclusions

e Unified framework for general regression models describing the hazard rate of survival
models.

e Empirical Bayes inference based on mixed model methodology.
e Extendable to models for transition intensities in multi state models.

e Future work:
— More general censoring mechanisms for multi-state models.
— Conditions for propriety of posteriors.

— Joint modelling of covariates and duration times.
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